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THE GLEASON COVER OF A REALIZABILITY TOPOS

PETER JOHNSTONE

Abstract. Recently Benno van den Berg [1] introduced a new class of realizability
toposes which he christened Herbrand toposes. These toposes have strikingly different
properties from ordinary realizability toposes, notably the (related) properties that the
‘constant object’ functor from the topos of sets preserves finite coproducts, and that De
Morgan’s law is satisfied. In this paper we show that these properties are no accident:
for any Schönfinkel algebra Λ, the Herbrand realizability topos over Λ may be obtained
as the Gleason cover (in the sense of [8]) of the ordinary realizability topos over Λ. As
a corollary, we obtain the functoriality of the Herbrand realizability construction on the
category of Schönfinkel algebras and computationally dense applicative morphisms.

1. Introduction

Realizability toposes were first introduced by Martin Hyland in the late 1970s [7, 6] and
many particular examples have now been extensively studied (see for example [16]). How-
ever, whilst the 2-category of Grothendieck toposes, geometric morphisms and natural
transformations between them has long been well understood, there has been relatively
little progress until recently on understanding the structure of geometric morphisms be-
tween realizability toposes. Indeed, such results as have been established have tended
to be negative in character (e.g., if E is a realizability topos and F is a Grothendieck
topos then there are no geometric morphisms E → F , and (up to isomorphism) only one
morphism F → E , namely that which factors through Set), and have tended to raise
doubts about whether the well-developed techniques for studying geometric morphisms
actually have any utility in the world of realizability. The present paper is perhaps the
first to show that a nontrivial geometric construction developed for Grothendieck toposes
(specifically, the Gleason cover, introduced — at about the same time as realizability
toposes — by the present author [8]) does have a significant rôle to play in this world.

As in [11], we use the term Schönfinkel algebra for what most people call a partial
combinatory algebra: that is, a set Λ equipped with a partial binary operation (denoted
by juxtaposition) and constants K and S such that Kλµ = λ for all λ and µ, and Sλµν =
λν(µν) whenever λν(µν) is defined. For simplicity, we shall assume that all Schönfinkel
algebras we consider are proper in the sense that Sλµ is always defined; but we shall not
require them to be strict in the sense that Sλµν is defined only when λν(µν) is defined.
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We shall make free use of the combinators I,B,E which respectively correspond to the
closed λ-terms λx.x, λxyz.x(yz) and λxy.yx; of the pairing combinator D corresponding to
λxyz.zyx and the unpairing combinators P1 = E(KI) and P2 = EK (note that P1(Dλµ) = λ
and P2(Dλµ) = µ for all λ and µ); and of the Church numerals Cn corresponding to
λxy.x(x(· · · (xy) · · · )) where x appears n times in the body of the term.

We recall briefly the construction of a topos from a tripos, which is described in
greater detail in [7] and in [16]. By a tripos on Set, we mean a Set-indexed preorder
T = (A 7→ TA), such that (a) each preorder TA is a Heyting prealgebra (i.e., its poset
reflection is a Heyting algebra), and the transition functors u∗ : TA → TB induced by
morphisms u : B → A in Set preserve this structure; (b) T is complete and cocomplete
(i.e., the functors u∗ have left and right adjoints ∃u and ∀u satisfying the Beck–Chevalley
conditions); and (c) T has an exemplary element , i.e. an element σ ∈ TΣ for some set Σ,
such that every element of TA (for any A) is isomorphic to u∗(σ) for some (not necessarily
unique) u : A→ Σ. In all the examples we consider, the elements of TA will be actual
functions from A to a fixed set T , the functors u∗ will be induced by composition (so that
the exemplary element may be taken to be 1T ), the Heyting prealgebra structure will
be induced by suitable operations on T , and the quantifiers will be defined ‘pointwise’
in the sense that ∃uf(a) and ∀uf(a) depend only on the set {f(b) | u(b) = a} (so that
the Beck–Chevalley conditions are automatic). (In fact there is no loss of generality in
assuming that these conditions on T are always satisfied, see [7].)

Such a structure gives rise to an allegory (in the sense of [3]) whose objects are sets, and
whose morphisms A# B are isomorphism classes of elements of TA×B, the composition
of [φ : A# B] and [ψ : B # C] being given by [ψ ◦ φ], where

(ψ ◦ φ)(a, c) = ∃b(φ(a, b) ∧ ψ(b, c)) .

The topos Set〈T〉 is obtained from this allegory by splitting all symmetric idempotents
and then cutting down to the subcategory of maps: more specifically,

1.1. Definition.

(i) An object of Set〈T〉 is a pair (A, δ) where A is a set and δ : A× A→ T is ‘sym-
metric and transitive in the logic of T’, i.e. the inequalities δ(a, a′) ≤ δ(a′, a) and
(δ(a, a′) ∧ δ(a′, a′′)) ≤ δ(a, a′′) hold in TA×A and TA×A×A respectively.

(ii) Morphisms (A, δ)→ (B, ε) are named by functions F : A×B → T which are exten-
sional, strict, single-valued and total in the sense that the inequalities

(δ(a′, a) ∧ F (a, b) ∧ ε(b, b′)) ≤ F (a′, b′) ,
F (a, b) ≤ (δ(a, a) ∧ ε(b, b)) ,

(F (a, b) ∧ F (a, b′)) ≤ ε(b, b′) and
δ(a, a) ≤ ∃bF (a, b)

hold; and two such functions name the same morphism iff they are isomorphic as
elements of TA×B.
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We omit the detailed verification that Set〈T〉 is indeed a topos (the reader may find it
in [7] or [16]), but we note for future reference that its subobject classifier Ω is the object
(T,⇔) where⇔denotes the Heyting bi-implication.

1.2. Examples.

(a) The tripos corresponding to ordinary realizability, over a Schönfinkel algebra Λ, is
obtained by taking T to be the power-set PΛ, with Heyting operations given by

(p⇒q) = {λ ∈ Λ | for all µ ∈ p, λµ is defined and λµ ∈ q} ,
(p ∧ q) = {Dλµ | λ ∈ p and µ ∈ q} and
(p ∨ q) = {DKλ | λ ∈ p} ∪ {D(KI)µ | µ ∈ q} .

The preorder on PΛA is the ‘uniform’ ordering given by f ≤ g iff
⋂
{(f(a)⇒g(a)) |

a ∈ A} is inhabited; and the quantifiers are given by ∃uf(a) =
⋃
{f(b) | u(b) = a}

and ∀uf(a) =
⋂
{(Λ⇒f(b)) | u(b) = a}. We denote this tripos by PΛ.

(b) Given a frame (i.e., a complete Heyting algebra) L, we write L for the tripos in
which LA is the set of all maps A→ L, with pointwise ordering. The topos Set〈L〉
is simply the topos of L-valued sets (equivalently, of sheaves on L for the canonical
coverage; cf. [10], C1.3.11). In particular, it is a Grothendieck topos.

By a geometric morphism f : T→ S of triposes, we mean an adjoint pair of indexed
functors (f ∗ : S→ T a f∗ : T→ S), of which the left adjoint f ∗ additionally preserves finite
meets. Given such an adjunction, it is easy to see that the mapping ((A, δ) 7→ (A, f ∗δ))
defines the object-map of a functor (also denoted f ∗) from Set〈S〉 to Set〈T〉, whose
effect on morphisms is similarly given by ([F ] 7→ [f ∗F ]); and this functor preserves finite
limits. In general, f∗ does not induce a functor in the same simple-minded way, since it
need not commute with existential quantification; thus, although (A, f∗δ) is an object of
Set〈S〉 whenever (A, δ) is an object of Set〈T〉, and f∗F is extensional, strict and single-
valued whenever F represents a morphism of Set〈T〉, it may fail to be total since the
definition of totality involves an existential quantifier. Fortunately, however, there is a
‘weak completion’ process for objects of Set〈T〉, such that every object is isomorphic to
its weak completion, and f∗ does preserve totality of functions representing morphisms
whose codomain is weakly complete. Specifically, we say (B, ε) is weakly complete if, for
any (A, δ) and any F : A×B → T representing a morphism (A, δ)→ (B, ε), there exists
a function f : A→ B in Set for which ∃bF (a, b) ∼= F (a, f(a)) in TA. (The word ‘weakly’
is a reminder that we do not, and cannot reasonably, demand that the function f should
be unique.) The following result is well known, but does not seem to be in the literature.

1.3. Lemma. The object Ω is weakly complete.

Proof. Recall that Ω = (T,⇔). If F : A× T → T represents a morphism (A, δ) → Ω,
then from the fact that it is extensional and single-valued we deduce

F (a, t) ≤ (F (a,>)⇔(t⇔>)) ;
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but (t⇔>) is isomorphic to t, and hence we have F (a, t) ≤ F (a, F (a,>)) by a further
application of extensionality. So we may take f(a) to be F (a,>).

We define f∗ : Set〈T〉 → Set〈S〉 by setting f∗(A, δ) = (Ã, f∗δ̃) where (Ã, δ̃) is a weak
completion of (A, δ); it is then straightforward to verify that this yields a right adjoint
for f ∗ at the topos level. In other words, every geometric morphism of triposes T → S
induces a geometric morphism of toposes Set〈T〉 → Set〈S〉. We do not assert that every
geometric morphism between toposes of the form Set〈T〉 arises in this way — although
that is the case if both triposes are induced by frames as in 1.2(b), and it was recently
shown [11] that the same is true if they are both induced by Schönfinkel algebras as in
1.2(a).

For future reference, we note also that if f : T→ S is a reflection (i.e., the counit
of (f ∗ a f∗) is an isomorphism), then the counit of the induced geometric morphism
of toposes is also an isomorphism, i.e. the latter is an inclusion. If the morphism of
triposes is a coreflection, we cannot conclude the same condition for the induced mor-
phism of toposes (unless f∗ happens to commute with existential quantification, so that
its extension to Set〈T〉 may be defined in the ‘simple-minded’ way); but we can say that
f ∗ : Set〈S〉 → Set〈T〉 is faithful, since it reflects isomorphisms between the functions rep-
resenting morphisms of Set〈S〉 — in other words, the induced geometric morphism of
toposes is a surjection.

Given a tripos T, we write LT (or simply L) for the Heyting algebra obtained from T 1

by identifying isomorphic elements, and q : T → LT for the quotient map. If e : LT → T
denotes ∃q(1T ), we say that T has standard existential quantification (briefly, T is ∃-
standard) if qe = 1L. (If existential quantification is pointwise, so that it is in effect
induced by a join map

∨
: PT → T , this is equivalent to saying that the join of each

isomorphism class is a member of the class.) It is shown in [7] that if this condition
holds, then L is a frame, and the pair (q, e) induces a geometric morphism of triposes
L → T. So we obtain a geometric morphism (in fact an inclusion) Set〈L〉 → Set〈T〉. If
in addition T is two-valued (that is, LT has only two isomorphism classes [>] and [⊥]),
this becomes a geometric inclusion Set→ Set〈T〉; since it is clearly dense (i.e., its direct
image preserves the initial object) and Set is Boolean, it identifies Set with the subtopos
sh¬¬(Set〈T〉). Given a set A, we write ∇A for A considered as a ¬¬-sheaf in Set〈T〉; it
may be identified with (A,∆) where ∆(a, a) = e([>]) for all a ∈ A, and ∆(a, a′) = e([⊥]) if
a 6= a′. (The reader should be warned that this functor does not always coincide with the
functor Set→ Set〈T〉 which is denoted ∇ in [16]: it does so for an ordinary realizability
topos, but not for a Herbrand realizability topos.) All the triposes that we consider in
this paper are ∃-standard, and the majority of them (including PΛ) are two-valued.

Ordinary realizability toposes are decidedly non-classical. It has been known for some
time that an ordinary realizability topos does not admit any geometric morphism to a
Boolean topos, but the following stronger result has not been published before. Recall that
a geometric morphism f : F → E is said to be skeletal [9] if f∗ maps ¬¬-sheaves to ¬¬-
sheaves; of course, any morphism with Boolean codomain is skeletal, and it was shown in
[11] that any geometric morphism between ordinary realizability toposes is skeletal. More
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generally, if S and T are two-valued ∃-standard triposes, then any geometric morphism
Set〈T〉 → Set〈S〉 which is induced by a geometric morphism of triposes is skeletal, since
the triangle

2 //

��

T

��
S

clearly commutes.

1.4. Lemma. Let Λ be a Schönfinkel algebra. Then there is no skeletal geometric mor-
phism f : Set〈PΛ〉 → E where E satisfies De Morgan’s law.

Proof. Suppose given such a morphism f ; then since f∗(0) is a ¬¬-sheaf and hence a
complemented subterminal object of E , we see that the image of f is dense in a clopen
subtopos of E , and hence also satisfies De Morgan’s law. And the surjective part of the
image factorization of f is still skeletal ([9], 3.5(i)); thus we may reduce to the case when
f itself is surjective. For any set A, f∗(∇A) is a ¬¬-sheaf and hence decidable in E ([10],
D4.6.2(v)), so that f ∗f∗(∇A) is decidable in Set〈PΛ〉 and hence a modest assembly ([16],
p. 153). Now E (1, f∗(∇A)) injects into Set〈PΛ〉 (1, f ∗f∗(∇A)), and thus has cardinality
bounded by that of Λ, since distinct morphisms into a modest assembly must be tracked
by distinct elements of Λ. But we also have E (1, f∗(∇A)) ∼= Set〈PΛ〉 (1,∇A) ∼= A; taking
A to be the power-set of Λ, we obtain a contradiction.

2. Herbrand Realizability

Herbrand realizability, introduced by Benno van den Berg in [1], may be viewed as a
further modification of modified realizability (for which see [14]); it resembles the latter
in that propositions come equipped with two sets p and a of ‘potential’ and ‘actual’
realizers, but differs in that the actual realizers are not individual members of p but
are (in effect) finite subsets of p. To this end, we need to suppose that our Schönfinkel
algebra is equipped with a notion of coding, not just for pairs, but for arbitrary finite
sequences; of course, the latter may easily be constructed from the D-combinator and the
Church numerals, but in particular cases there may be simpler ways of achieving it —
for example, if Λ has underlying set N, we may code a finite sequence (n1, . . . , nk) by the
number 2n1+13n2+1 · · · pnk+1

k , where pk denotes the kth prime. We write 〈λ1, . . . , λk〉 for
the element coding the sequence (λ1, . . . , λk) (and 〈〉 for the element coding the empty
sequence), and if λ codes a sequence we shall write |λ| for the length of this sequence and
λi for its ith term (it being understood that λi may be undefined if i > |λ|). We shall also
write λ ∗ µ for the element coding the concatenated sequence (λ1, . . . , λ|λ|, µ1, . . . , µ|µ|).
We assume that the coding function (λ1, . . . , λk) 7→ 〈λ1, . . . , λk〉, the projection functions
(−)i, the function λ 7→ C|λ|, and the function (λ, µ) 7→ λ ∗ µ are all recursive — that is,
they are ‘tracked’ by suitable elements of Λ.
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Given a set p ⊆ Λ, we shall write !p for the set of codes for finite sequences (of arbitrary
length) whose members all belong to p. Note that 〈〉 ∈ !p for any p; we shall also write !+p
for the set of codes for nonempty sequences of members of p. We preorder !p by setting
λ � µ if every term in the sequence coded by λ also occurs in that coded by µ (but not
necessarily in the same order). (The partial order reflection of !p is of course isomorphic
to the free join-semilattice Kp, i.e. the set of finite subsets of p.) A realizer λ for (p⇒q)
easily yields a realizer !λ for (!p ⇒!q), given by (!λ)µ = 〈λµ1, . . . , λµ|µ|〉. In fact the
mapping p 7→ !p defines an indexed monad on the indexed preorder PΛ; we shall not make
explicit use of this structure, but we reserve the letters ι and υ for elements of Λ coding
the recursive functions Λ → !Λ and !!Λ → !Λ which yield the unit and multiplication of
this monad, namely λ 7→ 〈λ〉 and

〈µ1, µ2, . . . , µn〉 7→ µ1 ∗ µ2 ∗ · · · ∗ µn .

Note also that ι and (−)1 are uniform realizers for the implications (p⇒!+p) and (!+p⇒p)
respectively.

We shall use the ‘exponential isomorphism’ linking !(−) to the join and meet operations
of PΛ:

2.1. Lemma. The implications !(p ∨ q)⇒ (!p∧ !q) and (!p∧ !q)⇒!(p ∨ q) are uniformly
realizable.

Proof. Given an element λ of !(p ∨ q), we map it to Dµν, where µ codes the sequence
of those elements P2λi (i ≤ |λ|) for which P1λi = K, and ν similarly codes the sequence
of those P2λi for which P1λi = KI. In the opposite direction, given an element Dµν of
(!p∧ !q), we map it to (!(DK)µ) ∗ (!(D(KI))ν). It is easy to see that both these mappings
are recursive — that is, they may be ‘tracked’ by elements of Λ.

The mappings constructed above are not literally inverse to each other, but they are
inverse modulo the equivalence relation induced by the preorder �; so in what follows
— where we are primarily interested in (upwards-closed, and hence) equivalence-closed
subsets of sets of the form !p — we shall regard them as entitling us to identify !(p ∨ q)
with !p∧ !q.

We now define HΛ to be the set of pairs (p, a) where p ⊆ Λ and a is an upwards-closed
subset of !p. (The idea is that, if we have specified enough potential realizers to give an
actual realization of some proposition, we cannot destroy it by adding more potential
realizers.) For any set A, we preorder the set HΛA by setting f ≤ g if the implications
(!f1(a)⇒!g1(a)) and (f2(a)⇒ g2(a)) are simultaneously realized, uniformly in a (where
we write f1(a) and f2(a) for the first and second components of f(a)).

We define meet and join operations on HΛ by setting

((p, a) ∧ (q, b)) = ((p ∨ q), (a ∧ b)) and
((p, a) ∨ (q, b)) = ((p ∨ q), (a∧ !q) ∪ (!p ∧ b))

(note the use we have made of the exponential isomorphism); and the implication is given
by

((p, a)⇒(q, b)) = ((!p⇒!q), c) ,
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where c the set of codes for sequences which contain at least one term in (a⇒b).

2.2. Proposition. The above definitions make HΛA into a Heyting prealgebra for any
set A, and the indexed preorder HΛ = (A 7→ HΛA) into a tripos.

We omit the proof, whose details may be found in [1]. However, we note that existential
quantification in HΛ is given by taking ∃uf(a) to have as its first component

⋃
{!f1(b) |

u(b) = a}, and as its second component the set of codes for sequences which contain an
element of f2(b) for some b with u(b) = a. It follows that HΛ is ∃-standard as well as two-
valued (the two isomorphism classes in HΛ1 consist of those pairs (p, a) with a inhabited,
and those with a = ∅), so as usual we have a geometric inclusion Set → Set〈HΛ〉,
representing the former as the subcategory of ¬¬-sheaves in the latter. However, the
most striking difference between Herbrand and ordinary (or modified) realizability lies
in the fact that the direct image functor ∇ preserves finite coproducts; hence, by [10],
D4.6.2(xiii), Set〈HΛ〉 satisfies De Morgan’s law. (Once again, we refer to [1] for the
proof.)

3. A Tale of Three Triposes

In [14], Jaap van Oosten showed that, at least when Λ is the Kleene algebra, the modified
realizability topos over Λ may be identified with a closed subtopos of an ordinary realiz-
ability topos over the Sierpiński topos [2,Set], whose open complement is the ordinary
realizability topos Set〈PΛ〉. Fortunately, thanks to the theorem of A.M. Pitts on iterated
tripos extensions (see [16], 2.7.1), we do not have to concern ourselves here with internal
Schönfinkel algebras in [2,Set], since the ordinary realizability topos which we need can
also be presented as Set〈P1Λ〉 for a suitable tripos P1Λ on Set. Specifically, P1Λ is the
set {(p, q) ∈ PΛ× PΛ | q ⊆ p}, with Heyting operations defined by

(p, q) ∧ (p′, q′) = (p ∧ p′, q ∧ q′) ,
(p, q) ∨ (p′, q′) = (p ∨ p′, q ∨ q′) and
(p, q)⇒(p′, q′) = ((p⇒p′), (p⇒p′) ∩ (q⇒q′))

and preordering on P1ΛA defined by f ≤ g iff
⋂
{(f(a)⇒ g(a))2 | a ∈ A} is inhabited.

The verification that this yields a tripos (with quantifiers, like join and meet, defined
‘componentwise’) is straightforward. We note in passing that P1Λ, though ∃-standard, is
not two-valued: in addition to [>] and [⊥], there is a third isomorphism class in P1Λ1,
consisting of those pairs (p, ∅) with p 6= ∅.

Between PΛ and P1Λ, we have a string of five indexed adjoint functors (f1 a f2 a f3 a
f4 a f5), induced respectively by composition with (p 7→ (p, ∅)), ((p, q) 7→ p), (p 7→ (p, p)),
((p, q) 7→ q) and (p 7→ (Λ, (Λ⇒ p))). (The adjunctions are all trivial to verify except for
the last: if λ realizes (q⇒r), then B(Bλ)K realizes ((p, q)⇒(Λ, (Λ⇒r))), and if µ realizes
((p, q)⇒ (Λ, (Λ⇒ r))), then B(EK)µ realizes (q ⇒ r).) Although f1 does not preserve
the top element, it does preserve binary meets, and hence composition with it defines a
full embedding Set〈PΛ〉 → Set〈P1Λ〉, whose image consists of those objects (A, δ) such
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that the second component of δ(a, a′) is empty for all a, a′. But these are exactly the
objects admitting a morphism to the unique nontrivial subterminal object U of Set〈P1Λ〉
(which may be taken to be ({∗}, δ) where δ(∗, ∗) = (p, ∅) for some inhabited p); so we
may identify Set〈PΛ〉 with Set〈P1Λ〉/U , in such a way that the functor induced by f1 is
identified with ΣU — and hence the functors induced by f2 and f3 are identified with U∗

and ΠU respectively, i.e. they form an open geometric inclusion u : Set〈PΛ〉 → Set(P1Λ〉.
The open inclusion u has a left adjoint g : Set(P1Λ〉 → Set〈PΛ〉 induced by f3 and f4,

and this in turn has a left adjoint v : Set〈PΛ〉 → Set(P1Λ〉 induced by f4 and f5. Since v
is an inclusion (equivalently, g is connected), g is a local geometric morphism in the sense
of [12].

3.1. Lemma. The inclusions u and v define disjoint subtoposes of Set〈P1Λ〉.

Proof. The local operators j and k on P1Λ corresponding to u and v are respectively
given by (p, q) 7→ (p, p) and (p, q) 7→ (Λ, (Λ⇒ q)); we have to show that the join (m,
say) of these two operators is isomorphic to (p, q) 7→ (Λ,Λ). But this is easy, since the
idempotency of m yields jk ≤m, and the composite jk is exactly (p, q) 7→ (Λ,Λ).

An alternative proof of 3.1 could be given by observing that v∗(0) is the subterminal
object U ; recall that, for any geometric morphism f , f∗(0) is the open complement of the
closure of the image of f .

As we remarked above, in [14] Jaap van Oosten identified the closed complement of the
open subtopos u as the modified realizability topos Set〈MΛ〉 over Λ, at least in the case
when Λ is the (first) Kleene algebra. Moreover, by 3.1 the non-open inclusion v factors
through this closed subtopos; hence the composite Set〈MΛ〉 → Set〈P1Λ〉 → Set〈PΛ〉 is
still local.

More recently, van Oosten [private communication] observed:

3.2. Lemma. There is a geometric inclusion w : Set〈HΛ〉 → Set〈P1Λ〉. Moreover, this
subtopos is disjoint from u.

Proof. w is induced by a geometric morphism of triposes whose direct image is ((p, a) 7→
(!p, a)) and whose inverse image is ((p, q) 7→ (p, s(p, q))) where s(p, q) ⊆ !p is the set of
codes for sequences containing at least one term in q. It is easy to see that both these maps
are order-preserving. If λ realizes ((p, s(p, q))⇒(r, a)), then Bλι realizes ((p, q)⇒(!r, a));
and conversely if µ realizes ((p, q)⇒ (!r, a)) then Bυ(!µ) realizes ((p, s(p, q))⇒ (r, a)). A
realizer for the fact that w∗ preserves binary meets is given by a code for the function
sending Dλµ (where λ and µ code sequences of lengths m and n respectively) to the
code for the sequence of length mn whose (rn + s)th term is Dλr+1µs. And ι realizes
(1 ≤ w∗w∗), so the adjunction is a reflection.

For the second assertion, we again consider the composite jl, where l is the local
operator ((p, q) 7→ (!p, !+p)) corresponding to w. We have jl(p, q) = (!p, !p) for all (p, q);
and since 〈〉 ∈ !p for all p this is isomorphic to the constant function with value (Λ,Λ).
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The composite h = gw is not a local morphism: the left adjoint v of g cannot factor
through w by 1.4, since such a factorization would be (a dense inclusion, and hence)
skeletal. But it is surjective, since it corresponds to the geometric morphism of triposes
given by ((p, a) 7→ a) and (p 7→ (p, !+p)), and as we observed earlier the inequality
h∗h

∗(p) ≤ p is realized by (−)1.

3.3. Lemma. h : Set〈HΛ〉 → Set〈PΛ〉 is a closed map.

Proof. By the tripos version of [10], C3.2.1, it suffices to verify the ‘co-Frobenius’ con-
dition

(h∗((p, a) ∨ h∗(q))⇔(h∗(p, a) ∨ q)) .

But the two sides reduce to (a∧ !q) ∪ (!p∧ !+q) and to (a ∨ q) respectively; so a realizer
for the left-to-right implication is given by a code for the function sending Dλµ to DKλ
if µ = 〈〉 and to D(KI)µ1 otherwise, and the right-to-left implication is realized by a code
for the function sending Dλµ to Dµ〈〉 if λ = K, and to D〈〉(ιµ) if λ = KI.

4. Herbrand Realizability as a Gleason Cover

The Gleason cover construction takes its name from a paper by A.M. Gleason [4], in
which he showed how to construct a ‘best possible’ covering of an arbitrary compact
Hausdorff space by an extremally disconnected one. This construction was subsequently
extended to larger classes of spaces by various authors, and in [8] the present author
showed that it may be extended to arbitrary toposes. Given a topos E , its Gleason cover
γE is defined to be the topos of E-valued sheaves on the internal frame Idl(Ω¬¬) of ideals
of the complete Boolean algebra Ω¬¬ in E . γE always satisfies De Morgan’s law, and it
comes equipped with a geometric morphism f : γE → E which is a proper separated map
and a minimal localic surjection; moreover, γE is characterized up to equivalence in Top/E
by these properties (see [10], D4.6.8). The morphism f is also skeletal (indeed, it restricts
to an equivalence between categories of ¬¬-sheaves), and the construction E 7→ γE may
be viewed as a right adjoint to the inclusion, in the 2-category of toposes and skeletal
geometric morphisms, of the full sub-2-category of toposes satisfying De Morgan’s law
([10], D4.6.12).

In our present context, the domain of h : Set〈HΛ〉 → Set〈PΛ〉 satisfies De Morgan’s
law; h is skeletal (either by direct computation, or by the argument of Lemma 2.1 in [11])
and localic (as are all morphisms induced by geometric morphisms of triposes), and it is
minimal surjective since the only proper closed subtopos of its domain is the degenerate
topos. So, in order to identify it with the Gleason cover of Set〈PΛ〉, it would suffice to
show that it is proper and separated. As we saw in 3.3, it is a closed map, which is one part
of propriety; the other is preservation of filtered Set〈PΛ〉-indexed colimits by its direct
image. Although filtered colimits in realizability toposes were studied by van Oosten in
[15], we have chosen not to follow this route, but instead to argue directly to show that
the internal frame in Set〈PΛ〉 which corresponds to h is isomorphic to the frame of ideals
of Ω¬¬ = ∇2.
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Since Ω is weakly complete in Set〈HΛ〉 by 1.3, we may compute h∗(Ω) in the ‘simple-
minded’ way: that is, its underlying set is simply HΛ, with PΛ-valued equality predicate
obtained by applying h∗ to the HΛ-valued predicate⇔ (that is, by forgetting the first
coordinate of the latter). We have to show that this object is isomorphic to Idl(∇2) in
Set〈PΛ〉.

Of course, an ideal I � ∇2 is completely determined by a pair of truth-values (=
subsets of Λ) p = [[0 ∈ I]] and q = [[1 ∈ I]]; but the assertion that these truth-values define
an ideal involves realizers for the assertions that I is downwards closed and closed under
finite joins — i.e., we must be given specified realizers α ∈ [[0 ∈ I]] = p,

β ∈
⋂
{([[i ∈ I]]⇒ [[j ∈ I]]) | i ≥ j} = (p⇒p) ∩ (q⇒p) ∩ (q⇒q) , and

γ ∈
⋂
{(([[i ∈ I]] ∧ [[j ∈ I]])⇒ [[i ∨ j ∈ I]]) | i, j ∈ 2}

= ((p ∧ p)⇒p) ∩ (p ∧ q)⇒q) ∩ ((q ∧ p)⇒q) ∩ ((q ∧ q)⇒q) .

We note that if (p, a) is any element of HΛ then the pair (!p, a) carries this structure,
with α = 〈〉, β = I and γ taken to be a code for the mapping (Dλµ 7→ λ ∗ µ). In showing
that any ideal is isomorphic to one of this form, we proceed in two steps:

4.1. Lemma.

(i) Given any ideal (p, q) (with realizers α, β, γ), we may uniformly construct an iso-
morphic ideal (p′, q′) for which q′ ⊆ p′ and β′ = I.

(ii) Given an ideal (p, q) with q ⊆ p (and realizers α, I, γ), we may uniformly construct
an isomorphic ideal (!p′, a) where a is an upwards-closed subset of !p′.

Proof. (i) We define p′ = p and q′ = p∩q; clearly this is an ideal, with the same realizers
α and γ as (p, q) and with β′ = I. Moreover, β realizes the inequality (p, q) ≤ (p′, q′), and
I realizes the converse.

(ii) Again, we take p′ = p, and we take a to be the set of codes for sequences including
at least one term in q. The inequality (p, q) ≤ (!p, a) is realized by ι; to realize the
converse, we take a code for the function f : !p→ p recursively defined by

f(λ) = α if λ = 〈〉
= γ(D(f(〈λ1, . . . , λ|λ|−1〉))λ|λ|) if |λ| > 0 .

It is clear that if λ codes a sequence including a member of q then f(λ) ∈ q.

4.2. Theorem. For any Schönfinkel algebra Λ, the internal frames h∗(Ω) and Idl(∇2) are
isomorphic in Set〈PΛ〉. Hence Set〈HΛ〉 is equivalent to the Gleason cover of Set〈PΛ〉.
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Proof. We may take Idl(∇2) to be the set of pairs (p, q) of subsets of Λ for which there
exist realizers α, β, γ as above, with [[(p, q) ∈ Idl(∇2)]] taken to be the set of coded triples
〈α, β, γ〉 which satisfy the conditions for p and q, and equality predicate δ given by

δ((p, q), (p′, q′))

= [[(p, q) ∈ Idl(∇2)]] ∧ [[(p′, q′) ∈ Idl(∇2)]] ∧ ((p, q) ≤ (p′, q′)) ∧ ((p′, q′) ≤ (p, q)) ,

where ((p, q) ≤ (p′, q′)) denotes (p ⇒ p′) ∩ (q ⇒ q′). As already mentioned, h∗(Ω) is
the set of elements (p, a) ∈ HΛ, with equality predicate ε((p, a), (p′, a′)) = (((p, a) ≤
(p′, a′)) ∧ ((p′, a′) ≤ (p, a))), where ((p, a) ≤ (p′, a′)) is the set of codes for sequences of
elements of (!p⇒!p′) which contain at least one term in (a⇒ a′). Note that, given such
a code λ, we may uniformly construct an element of ((!p⇒!p′) ∩ (a⇒ a′)), coding the
function which applies each of the λi for i ≤ |λ| to an element of !p and then concatenates
the results.

It is now straightforward to verify that, if we define F : Idl(∇2)×HΛ→ PΛ by

F ((p, q), (r, a)) = δ((p, q), (!r, a)) ,

then F represents a bijection f : Idl(∇2)→ h∗(Ω) in Set〈PΛ〉. Strictness is easy, as is
extensionality in the first variable (p, q); extensionality in the second variable follows
from the last sentence of the previous paragraph; single-valuedness in either direction is
again easy; totality is the left-to-right direction follows from 4.1, and totality from right
to left follows from the fact which we noted earlier that [[(!r, a) ∈ Idl(∇2)]] has a uniform
realizer.

Moreover, f is an isomorphism of ordered sets (and hence of frames), since the order
relation on each of the two objects is induced in the obvious way by the relations on their
elements which we denoted ≤, and F is clearly compatible (in either direction) with these
relations. But we have Set〈HΛ〉 ' Sh(h∗(Ω)) since h is localic, so

Set〈HΛ〉 ' Sh(Idl(∇2)) ' γ(Set〈PΛ〉) .

5. Functoriality of Herbrand Realizability

The functoriality of the construction Λ 7→ Set〈PΛ〉 has been extensively studied, first by
John Longley [13] and more recently by Hofstra and van Oosten [5] and by the present
author [11]. The conclusion of these researches can be summarized as follows:

5.1. Theorem. The assignment Λ 7→ Set〈PΛ〉 is a full embedding of 2-categories
Schönop

qs → Top, where Schön denotes the 2-category of Schönfinkel algebras and applicative
morphisms, Schönqs is its subcategory whose 1-arrows are quasi-surjective morphisms, and
Top is the 2-category of toposes and geometric morphisms.
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We recall that Longley defined an applicative morphism θ : Λ# M of Schönfinkel al-
gebras to be an entire relation (i.e. one relating each element of Λ to at least one element
of M) which has a witness τ ∈ M such that, if θ(λ, µ) and θ(λ′, µ′) hold and λλ′ is defined
in Λ, then τµµ′ is defined in M and θ(λλ′, τµµ′) holds. Such a morphism is said to be
quasi-surjective if there exists a function r : M→ Λ and an element ρ ∈ M such that for
all µ, µ′ ∈ M, if θ(r(µ), µ′) holds, then ρµ′ = µ. In [11], this was shown to be equiva-
lent to the notion of computational density introduced by Hofstra and van Oosten in [5],
which is in turn equivalent to the assertion that the indexed functor PΛ → PM induced
by composition with θ has a right adjoint (and is thus the inverse image of a geometric
morphism of triposes).

We have already observed that the 2-full embedding of 5.1 takes values in the sub-
2-category Topsk of toposes and skeletal geometric morphisms. But the Gleason cover
construction is 2-functorial on this 2-category; in fact, as shown in [10], D4.6.12, it is
right adjoint to the inclusion DMTopsk → Topsk, where DMTopsk is the full sub-2-category
of toposes satisfying De Morgan’s law. Thus we may immediately conclude:

5.2. Corollary. The assignment Λ 7→ Set〈HΛ〉 is a 2-functor Schönop
qs → Top.

No doubt it would be possible to give a direct proof of Corollary 5.2, by showing that a
quasi-surjective morphism of Schönfinkel algebras induces a geometric morphism between
the corresponding Herbrand triposes. We leave this as an exercise for the reader! (Note,
however, that we do not make any fullness claim for the 2-functor of 5.2: we do not even
know whether every geometric morphism Set〈HΛ〉 → Set〈HM〉 is induced by a geometric
morphism of triposes HΛ→ HM.)

We conclude with an open problem. In [2], Olivia Caramello showed that every topos
E contains a largest dense subtopos which satisfies De Morgan’s law; if E is two-valued, so
that its only proper closed subtopos is degenerate, then the word ‘dense’ may be omitted
from this characterization. We have seen that, at least when Λ is the Kleene algebra,
Set〈HΛ〉 is a dense subtopos of the modified realizability topos Set〈MΛ〉; indeed, the
latter is the closure of the former as a subtopos of Set〈P1Λ〉. It would therefore be
of interest to know whether the Herbrand realizability topos could also be obtained by
applying Caramello’s construction to the modified realizability topos. It seems highly
likely that this is true; for if E is any subtopos of Set〈MΛ〉 satisfying De Morgan’s law,
then the composite E → Set〈MΛ〉 → Set〈PΛ〉 is skeletal, and hence factors uniquely
through the Gleason cover Set〈HΛ〉 by [10], D4.6.12. However, this argument does not
suffice to show that the triangle

E //

##

Set〈HΛ〉

��
Set〈MΛ〉

commutes.



THE GLEASON COVER OF A REALIZABILITY TOPOS 1151

References

[1] B. van den Berg, The Herbrand topos, Math. Proc. Cambridge Philos. Soc. 155
(2013), 361–374.

[2] O. Caramello, De Morgan classifying toposes, Adv. Math. 222 (2009), 2117–2144.

[3] P.J. Freyd and A. Scedrov, Categories, Allegories (North–Holland, 1990).

[4] A.M. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489.

[5] P.J.W. Hofstra and J. van Oosten, Ordered partial combinatory algebras, Math. Proc.
Cambridge Philos. Soc. 134 (2003), 445–463.

[6] J.M.E. Hyland, The effective topos, in The L.E.J. Brouwer Centenary Symposium,
Studies in Logic and the Foundations of Mathematics vol. 110 (North–Holland, 1982),
165–216.

[7] J.M.E. Hyland, P.T. Johnstone and A.M. Pitts, Tripos theory, Math. Proc. Cam-
bridge Philos. Soc. 88 (1980), 205–232.

[8] P.T. Johnstone, The Gleason cover of a topos, I, J. Pure Appl. Algebra 19 (1980),
171–192.

[9] P.T. Johnstone, Factorization theorems for geometric morphisms, II, in Categorical
Aspects of Topology and Analysis, Lecture Notes in Math. vol. 915 (Springer–Verlag,
1982), 216–233.

[10] P.T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Oxford Logic
Guides 43–44 (Oxford University Press, 2002).

[11] P.T. Johnstone, Geometric morphisms of realizability toposes, Theory Appl. Cate-
gories 28 (2013), 241–249.

[12] P.T. Johnstone and I. Moerdijk, Local maps of toposes, Proc. London Math. Soc. (3)
58 (1989), 281–305.

[13] J.R. Longley, Realizability toposes and language semantics, Ph.D. thesis, University
of Edinburgh (1994).

[14] J. van Oosten, The modified realizability topos, J. Pure Appl. Algebra 116 (1997),
273–289.

[15] J. van Oosten, Filtered colimits in the effective topos, J. Pure Appl. Algebra 205
(2006), 446–451.

[16] J. van Oosten, Realizability: An Introduction to its Categorical Side, Studies in Logic
and the Foundations of Mathematics vol. 152 (Elsevier, 2008).



1152 PETER JOHNSTONE

Department of Pure Mathematics, University of Cambridge, England
Email: P.T.Johnstone@dpmms.cam.ac.uk

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/28/32/28-32.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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