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SEMIUNITAL SEMIMONOIDAL CATEGORIES
(APPLICATIONS TO SEMIRINGS AND SEMICORINGS)

JAWAD ABUHLAIL

ABSTRACT. The category 4S4 of bisemimodules over a semialgebra A, with the so
called Takahashi’s tensor-like product — X4 —, is semimonoidal but not monoidal. Al-
though not a unit in 4S4, the base semialgebra A has properties of a semiunit (in a
sense which we clarify in this note). Motivated by this interesting example, we inves-
tigate semiunital semimonoidal categories (V,e,1) as a framework for studying notions
like semimonoids (semicomonoids) as well as a notion of monads (comonads) which we
call J-monads (J-comonads) with respect to the endo-functor J := Ie— ~ —eI: VYV — V.
This motivated also introducing a more generalized notion of monads (comonads) in ar-
bitrary categories with respect to arbitrary endo-functors. Applications to the semiunital
semimonoidal variety (4S4,X 4, A) provide us with examples of semiunital A-semirings
(semicounital A-semicorings) and semiunitary semimodules (semicounitary semicomod-
ules) which extend the classical notions of unital rings (counital corings) and unitary
modules (counitary comodules).

1. Introduction

A semiring is, roughly speaking, a ring not necessarily with subtraction. The first natural
example of a semiring is the set Ny of non-negative integers. Other examples include the
set Ideal(R) of (two-sided) ideals of every associative ring R and distributive complete
lattices. A semimodule is, roughly speaking, a module not necessarily with subtraction.
The category of Abelian groups is nothing but the category of modules over Z; similarly,
the category of commutative monoids is nothing but the category of semimodules over
Np.

Semirings were studied by many algebraists beginning with Dedekind [Ded1984]. Since
the sixties of the last century, they were shown to have significant applications in several
areas as Automata Theory, Optimization Theory, Tropical Geometry and Idempotent
Analysis (for more, see [Gol1999], Gal2002). Recently, Durov [Dur2007] demonstrated
that semirings are in one-to-one correspondence with the algebraic additive monads on
the category Set of sets. The theory of semimodules over semirings was developed by
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many authors including Takahashi, Patchkoria and Katsov (e.g. [Tak1982], [Tak1982],
[Pat2006], [Kat1997]).

A strong connection between corings [Swel975] over a ring A (coalgebras in the
monoidal category 4Mod, of bimodules over A) and their comodules on one side and
comonads induced by the tensor product — ® 4 — and their comodules on the other side
has been realized by several authors (e.g. [BW2003]). Moreover, the theory of monads
and comonads in (autonomous) monoidal categories received increasing attention in the
last decade and extensions to arbitrary categories were carried out in several recent papers
(e.g. [BW2009)]).

Using the so called Takahashi’s tensor-like product — X, — of semimodules over an
associative semiring A [Tak1982], notions of semiunital semirings and semicounital semi-
corings were introduced by the author in 2008. However, these could not be realized as
monoids (comonoids) in the category 4Sy4 of (A, A)-bisemimodules. This is mainly due to
the fact that the category (aSa,Xa, A) is not monoidal in general (an alternative tensor
product —® 4 — was recalled by Katsov in [Kat1997]; in fact (4S4, ®4, A) is monoidal. For
the relation between — ® 4 — and — X4 —, see [Abu]). Motivated by the desire to fix this
defect, we introduce and investigate a notion of semiunital semimonoidal categories with
prototype (4Sa, Xy, A) and investigate semimonoids (semicomonoids) in such categories
as well as their categories of semimodules (semicomodules). In particular, we realize our
semiunital A-semirings (semicounital A-semicorings) as semimonoids (semicomonoids) in
(4Sa, X4, A). Moreover, we introduce and study J-monads (J-comonads) in an arbitrary
category 2, where J : A — 2 is an endo-functor, and apply them to semiunital semi-
monoidal categories in general and to 4S4 in particular. Our results extend recent ones on
monoids (comonoids) in monoidal categories as well as monads (comonads) in arbitrary
categories to semimonoids (semicomonoids) in semiunital semimonoidal categories as well
as J-monads (J-comonads) in arbitrary categories.

Throughout, I denotes the identity endo-functor on the category under consideration.
The paper is organized as follows. After this introduction, we present in Section 2 our
(generalized) notion of J-monads and J-comonads in arbitrary categories. In Section 3,
we introduce and investigate semiunits in semimonoidal categories. In Section 4, we in-
troduce semimonoids (semicomonoids) in semiunital semimonoidal categories as well as
their categories of semimodules (semicomodules). Moreover, we present two reconstruc-
tion results, namely Theorems 4.8 and 4.17. In Section 5, we consider the semiunital
semimonoidal category (variety) of bisemimodules 4S4 over a semialgebra A which pro-
vides us with a rich source of concrete examples for applying our results. As mentioned
above, these concrete examples were the main motivation behind introducing all the ab-
stract notions in this paper. Further investigations of J-bimonads and Hopf J-monads as
well as bisemimonoids and Hopf semimonoids in semiunital semimonoidal categories will
be the subject of a forthcoming paper.

2. Monads and Comonads

Recall first the so called Godement product of natural transformations between functors:
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2.1. Let 2, B, € be arbitrary categories. Any natural transformations ¢ : FF — G and

' F' — G’ of functors 2A FS 5 79 ¢ can be multiplied using the Godement product
to yield a natural transformation ¢’¢) : F'F' — G'G, where

@Z}/G(X) o F'(¢Yx) = (W')x = G'(¢x) o @/J%(X) for every X € 2. (1)

Moreover, if QA o3 M ¢ are functors and ¢:G— H, ¢ : G — H' are natural
transformations, then the following interchange law holds

(dov)(¢ o) = (¢'d) o (¥'¢). (2)

2.2. Let 2 and B be categories, L : A — B, R : 2B — 2 be functors and J : > — 2,
K : %8 — B be endo-functors such that RK ~ JR and LJ ~ KL. We say that (L, R) is
a (J, K)-adjoint pair iff we have natural isomorphisms in X € % and Y € B :

B(LIX), K(Y))

12

A(J(X), RK(Y)).

For the special case J = Iy and K = I3, we recover the classical notion of adjoint pairs.
Till the end of this section, 2 is an arbitrary category.

2.3. Let T : A — 2 be an endo-functor. An object X € Obj(2) is said to have a
T-action or to be a T-act iff there is a morphism px : T(X) — X in . For two objects
X, X’ with T-actions, we say that a morphism ¢ : X — X’ in 20 is a morphism of T-acts
iff the following diagram is commutative

T(X) —= X

T(s@)l jw

T(X') X'

ox/

The category of T-acts is denoted by Actr. Dually, one can define the category Coact”
of T-coacts.

2.4. REMARK. The objects of Coact”, where F : Set — Set is an endo-functor, play an
important role in logic and theoretical computer science. They are called F-systems (e.g.
[Rut2000]). Some references call these F-coalgebras (e.g. [Gum1999]). For us, coalgebras
are always coassociative and counital unless something else is explicitly specified.

J-MONADS.

2.5. Let J : A — 2A be an endo-functor. With a J-monad on 2 we mean a datum
(M, 1, w,v;J) consisting of an endo-functor M : 2 — 2 associated with natural trans-

formations
p: MM — M, w:I—Jandv:J— M
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such that the following diagrams are commutative

MMM — MM MM " IMM MM " MI
pM H vM w Mv Mw

i.e. for every X € 2 we have
pxoM(ux) = px O pn(x)s UM(x) Owm(x) O phx = Ivm(x) and M(vx)oM(wx)oux = Inana(xy -

2.6. With JMonady we denote the category whose objects are J-monads, where J runs
over the class of endo-functors on 2(. A morphism (¢; &) : (M, p, w,v;J) — (M, i/, 0, V5 T)
in this category consists of natural transformations ¢ : M — M’ and £ : J — J’ such
that the following diagrams are commutative

MM " M I & J v M
A B4 )
MM " M’ I , I , M/

i.e. for every X € 2 we have
@x o pix = px © pr(x) © M(px), Ex owx = wy and px ovx = vy o x.

For a fixed endo-functor J : A — %A, we denote by J-Monadg the subcategory of
JMonady of J-monads on 2 with w the identity natural transformation. In the special
case J = Iy and w is the identity natural transformation, we drop these from our notation
and recover the classical notion of monads on 2.

2.7. REMARK. As we saw above, a J-monad (M, p,w,v;J) is a generalized notion of a
monad. However, it can also be seen as just a monad (M, p,n) whose unit 7 := I —
J %+ M factorizes through J. Having this in mind, a morphism (p; &) : (M, p, w, v;J) —
(M, 1/, ', v/;J') in JMonady is just a morphism of monads which is compatible with the
factorizations of the units through J and J'.

2.8. Let (M, p,w,v;J) € IMonady. An (M J)-module is an object X € Obj(2() with a
morphism gy : M(X) — X in 2 such that the following diagrams are commutative

MM(X) ) mx) M(X) — X
M(X) — X J(X) J(X)
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The category of (M J)-modules and morphisms those of M-acts is denoted by 2ng).
In case J ~ Iy and w is the identity natural transformation, we recover the category of
M-modules of the monad M.

2.9. Let (M, p,w,v;J) € IMonady. For every X € Obj(A), M(X) is an (M J)-module
through
oM(X) - M(M(X)) L2y M(X)-

Such object are called free (M J)-modules and we have the so called free functor

.F(M;J]) (A — Q[(M;J]), X~ M(X)
The full subcategory of free (M J)-modules is called the Kleisli category and is denoted
by Ql(M;J)‘
2.10. REMARK. Let (M, p,w,v;J) € JMonady with MJ ~ JM. If X is an (M;J)-
module, then J(X) is also an (M J)-module through

030 - MI(X) ~ IM(X) "2 1(x).

Moreover, if Y = M(X) is a free (M;J)-module, then J(Y) = JM(X) ~ MJ(X) is
also a free (M;J )—module; One can _easily see that J can be lifted to endo-functors J' :
Q{(M;J) — Q{(M;J) and J : Ql(M;J) — Ql(M;J).

2.11. Let (M, p,w,v;J) € JMonadyg and assume that MJ ~ JM. We have a natural
isomorphism for every X € % and Y € 2y, :

Ay (Forgy (X), I(Y)) = A(X, I(Y)), fr= fo(vow)x

with inverse g — o5(v) © Faug)(g). Consider the forgetful functor U : Ay — A and
the endo-functor J' : Ameyy — Ay (see Remark 2.10). We have a natural isomorphism

Agpasy) (Feazn (J(X)), I'(V)) = AI(X), UT'(Y)));
i.e. (Fogy(—),U0) s a (J,J')-adjoint pair.
J-COMONADS.

2.12. Let J be an endo-functor on 2. With a J-comonad on 2 we mean a datum
(C,A,w,0) consisting of an endo-functor C : 2 — 2 associated with natural trans-
formations

A:C—CC,w:I—Jandb:C—1]

such that the following diagrams are commutative

2 __.CC IC—2 .CC Cl—2 . CC

CC
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i.e. for every X € 21 we have
A(C(X) ©) AX = C(Ax) 9] Ax, 9@(}() o AX = We(x) and C(ex) o AX = C(WX).

2.13. By JComonady we denote the category whose objects are J-comonads, where
J runs over the class of endo-functors on 2A. A morphism (¢;¢) : (C,A w,0;]) —
(C',A',',0";]') in this category consists of natural transformations ¢ : C — C’ and
¢ :J — J' such that the following diagrams are commutative

C 2. cC C 0 J @ I
¢j ldﬂb wt L& H
C——F—CC C 1

i.e. for every X € 2 we have
¢<C'(X) o C(¢X) oAx = A/X oy, {xolbx = 93( otx and {x owx = w’X.

For a fixed endo-functor J : A — 2, we denote by J-Comonady the subcategory of
J-comonads on 2 with w the identity transformation. In the special case J = Iy and w
is the identity natural transformation, we drop these from our notation and recover the
notion of comonads on .

2.14. REMARK. J-Comonads are not fully dual to J-monads. Recall from Remark 2.7
that a J-monad can be seen as a monad whose unit factorizes through J. On the other
hand, J-comonads cannot be seen as a special type of comonads. The lack of duality is
because not all arrows are reversed; the arrow w : I — J is assumed for both. Notice
that keeping this arrow is suggested by the concrete example in Section 5.

2.15. Let (C,A,w,0;]) € JComonady. A (C;J)-comodule is an object X € Obj(2A)
along with a morphism ¢* : X — C(X) in A such that the following diagrams are
commutative

X < . C(X) X— 2 )
o~ C(e®) wx 0x
C(X) —5— CC(X) J(X) ———J(X)

The category of (C;J)-comodules and morphisms those of C-coacts is denoted by 2A©.
In case J = Iy and w is the identity natural transformation, we recover the category of
C-comodules for the comonad C.
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2.16. Let (C,A,e;J) € JComonady. For every X € Obj(2(), C(X) has a canonical
structure of a (C; J)-comodule through

o“X) L C(X) 25 CC(X).
Such object are called cofree (C;J)-comodules and we have the so called cofree functor
FCA —AG) X = C(X).
The full subcategory of cofree (C;J)-comodules is called the Kleisli category of C and is
denoted by A,

2.17. REMARK. Let (C,A,w,0;]J) € JComonady with JC ~ CJ. If X is a (C;J)-
comodule, then J(X) is also a (C;J)-comodule through

J(X) . I(e)

P9 3(x) 1 Je(x) ~ C(x).

If Y = C(X) is a cofree (C;J)-comodule, then J(Y) = JC(X) ~ CJ(X) is also a cofree
(C, J)-comodule. One case easily see that J lifts to endo-functors J' : A(G) — A and
T ACH G,

2.18. Let (C,A,w,0;]) € JComonady with J idempotent and JC ~ CJ. Consider the

forgetful functor U : ACP — 92 and the endo-functor J' : ACH — ACH We have a
natural isomorphism for X € A and Y € A .

ACDT(Y), FEUX)) = AUIT (V). I(X)), f = Oyxy 0 f
with inverse g — FC(g) 0 ') d.e. (U, FEI(-))is a (I, ])-adjoint pair.
2.19. PROPOSITION. Let A and B be categories, L : A — B, R : B — A be functors
and J: A — A, K : B — B endo-functors such that L] ~ KL, JR ~ RK and (L, R)
is a (J, K)-adjoint pair.

1. (L, R) is an adjoint pair where L : J(2) N K(B) and R : K(*B) LN J() with

unit and counit of adjunction given by

n:J— RL] and ¢ : LRK — K.

2. RL is a monad on J(A) with
Rel,

pre: (RL)(RL)] ~ R(LRK)L — RKL ~ (R)LJ] and ngy :=n.
3. LR is a comonad on K(B) with

LnR

Arg: (LRK ~ LIR 8 L(RLI)R ~ (LR)(LR)K and e := e.
4. L is a monad on J() if and only if R is a comonad on K(B). In this case, J(A) ~
K(B)E.

— I
5. L is a comonad on J() if and only if R is a monad on K(*B). In this case, J(A) ~

—_——

K(B),,.
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PROOF. By assumption, LJ ~ KL whence L(J(2)) := LJ() = KL(A) C K(*B) and
JR ~ RK whence R(K(B)) := R(K(8)) = JR(*B) C J(2). The assumptions imply that
(L£,R) is an adjoint pair. The result follows now from the classical result on right adjoint
pairs (e.g. [EM1965, Proposition 3.1], [BW2009, 2.5, 2.6]). ]

3. Semiunital Semimonoidal Categories

A semimonoidal category is roughly speaking a monoidal category not necessarily with a
unit object. The reader might consult the literature for the precise definitions and for the
notions of (op)-semimonoidal functors between such categories. In this section, we intro-
duce a notion of semiunital semimonoidal categories and semiunital (op-)semimonoidal
functors.

SEMIUNITS.

3.1. Let (V,e) be a semimonoidal category with natural isomorphisms yxy,z : (XeY)e
Z— Xe(YeoZ)forall X,Y,Z €V. We say that I € V is a semiunit iff

1. there is a natural transformation w : I — (I e —);

2. there exists an isomorphisms of functors I e — ~ — eI, i.e. there is a natural

¢
isomorphism Te X = X eI in V with inverse gy, for each object X of V, such that
(1 = pr and the following diagram is commutative for all XY € V' :

TeX)oY — X _Te(XeV)—2XY . (XeV)el
LxeY TX,Y,1
(Xel)eY X e (TeY) o Xe(Yel)
3. the following diagram is commutative for all XY € V' :
TeX)eY —2XT Yoy — ™ . Xe(TeY)
~ WXeY -
Te(XeY)

3.2 XS TeX (e:X X o), then we say that X is firm and set Ay := wy' :Te X — X

DJ71
and rx : X o1 = Te X 255 X. With VE™ we denote the full subcategory of firm objects
in V. If Iis firm (called also pseudo-idempotent) and wfl ol=1 owfl, then one says that
I is idempotent [Koc2008].
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3.3. REMARK. Let (V,e;7) be a semimonoidal category. One says that V is monoidal
[Mac1998] iff V has a unit (or an LR unit), i.e. a distinguished object I € V with natural

isomorphisms I e X ),‘_35 X and X eI 2 X such that X e Ay = kx oY forall X,Y € V
(equivalently, \j = K1, Axey = Ax @ Y and kyxsy = X @ ky for all XY € V). Kock
[Koc2008] called an object I € V a Saavedra unit — called also a reduced unit — iff it is
pseudo-idempotent and cancellable in the sense that the endo-functors I e — and — e I
are full and faithful (equivalently, I is idempotent and the endo-functors Ie — and — eI
are equivalences of categories). Moreover, he showed that I is a unit if and only if 1
is a Saavedra unit. Indeed, every unit is a semiunit, whence our notion of semiunital
semimonoidal categories generalizes the classical notion of monoidal categories.

3.4. Let (V,e,I,;wy) and (W, ®,Iy;wyy) be semiunital semimonoidal categories. A
semimonoidal functor F': V — W, with a natural transformation ¢ : F(—) ® F(—) —
F(— e —), is said to be semiunital semimonoidal iff there exists a coherence morphism

¢ : Iyy — F(Iy) in W such that the following diagram is commutative

Iy @ F(X) —— % p(X)® Ty
PRF(X) F(X)®é
F(Iy) ® F(X) F(X)® F(Iy)

1, x éx.1,,
F(I, e X) i F(X o1y)

Moreover, we say that F'is a strong (strict) semiunital semimonoidal functor iff F' is
strong (strict) as a semimonoidal functor and ¢ is an isomorphism (identity). For two
semimonoidal functors F, F' : YV — W, we say that a semimonoidal natural transforma-
tion ¢ : F — F' is semiunital semimonoidal iff the following diagram is commutative

Iy
¢ ¢’
/ \( |

F(Iy) F/(I,

Sty

One can dually define semiunital (strong, strict) op-semimonoidal functors and semiunital
natural transformations between them.

3.5. REMARK. Let (V,e I;w) be a semiunital semimonoidal category and consider the
functor

Ji=Te—:Y — V.
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1. We have natural isomorphisms
JI) o X = J(J(X)) =~ X o J(I) and J(X) oY ~ X e J(V)
for all X,Y € V.

2. J is op-semimonoidal with natural transformation ¢y y : J(— e —) — J(—) @ J(—)
is given by the composition of morphisms

wxﬁy:Io(XoY)wI.(i;Y) (Tel)e(XeY)~(IeX)e(IeY)
forall X, Y € V.

3. Assume that I is firm.

(a) J is strong semiunital semimonoidal with

wrle(XeY ~
dxy : (IeX)e(IeY) ~ (IeI)e(XeY) ' (2 ) Te(XeY) and ¢ :=wy: I — Tel
for all X, Y € V.

(b) J is strong semiunital op-semimonoidal with

Yp=w;':Tel — 1
(c) the full subcategory (V%™ e TI) is monoidal.

,o,.1) 18 a monoidal tull subcategory o ;o 1) wit
d) (J(V I)i idal full sub f (Virm o T) with

-1
M,1,x

Wl
Mex : Ioe(IeX) = (Iel)eX ~ IeX;
frex : (TeX) el X Te(Xel) " Te(leX) " Tex
for every X € V.

3.6. DEFINITION. Let (V,e,I;w) be a semiunital semimonoidal category. We say that
V €V has a left dual iff there exists V;* € V along with morphisms f: 1 — TeV e V¥
and g:TeV,* ¢V — T in V such that

(Veg)o(ty sV eV)o(feV) =ty and (ge V) o (pye oV e V) o (V" o f) = pro.

A right dual V# of V' is defined symmetrically. We say thatV is left (right) autonomous,
or left (right) rigid iff every object in V has a left (right) dual.
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3.7. DEFINITION. Let (V, e, I;w) be a semiunital semimonoidal category. We say that V
is right (left) closed iff for every V- € V, the functor — eV : J(V) — J(V) (V e — :
J(V) — J(V)) has a right-adjoint, i.e. there exists a functor G : J(V) — J(V) and a
natural isomorphism for every pair of objects XY € V :

V(XeIleVYel)~V(XeIG(YoI)) (resp. V(VeleX Yel)~V(XelG(YeoI))).

Moreover, V is said to be closed iff V is left and right closed.

3.8. LEMMA. Let (V,e . I;w) be a semiunital semimonoidal category. If V. € V has a
left (right) dual V¥, then (— eV, — e V®) (Ve — V®e —)) is a (J,])-adjoint pair. In
particular, if V is left (right) autonomous, then V is right (left) closed.

PROOF. Assume that V' € V has a left dual V®. For all X,Y € V we have a natural
isomorphism

V(XeleVYel)~V(XeLYeleV?) fr— (feV¥o(Xeuv) (3)

with inverse g — (Y ew) o (ge V). n

4. Semimonoids and Semicomonoids

In this section, we introduce notions of semimonoids and semicomonoids in semiunital
semimonoidal categories. Throughout, (V, e,I;w) is a semiunital semimonoidal category,
where I is a semiunit, w : I — J is a natural transformation between the identity functor
and the endo-functor J :=Ie— ~ —eI: V — Vand yxy s : (XeY)eZ — Xe(YeZ) are
natural isomorphisms for all XY, Z € V (we assume the existence of natural isomorphisms

Te X 2 X oI with inverse X o I "*%5" T X for every X € V).
SEMIMONOIDS.

4.1. A V-semimonoid consists of a datum (A, (,w), where A€ Vand (: Ae A— A
w : I — A are morphisms in V such that the following diagrams are commutative

AeAdeA—1 Ao A AeAd— ¢ A C  AeA
Ae( ¢ weA WA Aeww
Ae A A JTeA————Te A Ael

¢ la

IfA% Te A, then we say that A is a unital V-semimonoid. A morphism of V-semimonoids
f: (A (w) — (A, ¢,=') is a morphism in V such that the following diagrams are
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commutative
AeA—" A 1I—= -4
fof f f
Ao A A’ I A

! !

The category of V-semimonoids is denoted by SMonoid(V); the full subcategory of unital
V-semimonoids is denoted by USMonoid (V).

4.2. Let (A,(,w) be a V-semimonoid. A right A-semimodule is a datum (M, pys) where
M eV and py : M e A — M is a morphism in V such that the following diagrams are
commutative

prreA

A PM M

MeAe A Me A Me
Me( M Mow| WM
MeA M Mel Ie M
PM 1573

MY TeM , then we say that M is a unitary right A-semimodule. A morphism of
right A-semimodules is a morphism f : M — M’ in V such that the following diagram
is commutative

Me A PM M
foA f

MeA—————->M

Pur’

The category of right A-semimodules is denoted by S4; the full subcategory of unitary
right A-semimodules is denoted by US 4. Analogously, one can define the category 4S of
left A-semimodules and its full subcategory 4US of unitary left A-semimodules.

4.3. EXAMPLE. If1 ST1e I, then I is a unital V-semimonoid with
wi' id
G:Tel T andwp: I =1

w-l
Moreover, every M € V™ s a unitary (I, 1)-bisemimodule with ph, : Te M —% M and

-1
Wy OPM

Py Mel — M.
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4.4. Let A be a V-semimonoid and M a right A-semimodule. We have a functor
—oM:V—S A,

where for all X € V we have a structure of a right A-semimodule on X e M given by

pxent (X oM)e A" X o (Mo A) —s X oM.
Similarly, if M is a left A-semimodule, then we have a functor M e — : )V — 4S.

4.5. Let A and B be V-semimonoids. Let M be a left B-semimodule as well as a right
A-semimodule and consider Be M € S, and M e A € gpM. We say that M is a (B, A)-
bisemimodule iff pyr.p) : B @ M — M is a morphism in Sy, or equivalently iff pys.4) :
M e A — M is a morphism in gS. The category of (unitary) (B, A)-bisemimodules
with morphisms being in gS N S, is denoted by gS4 (FUS4). Indeed, every (unital)
V-semimonoid A is a (unitary) (A, A)-bisemimodule in a canonical way.

4.6. PROPOSITION. Every semiunital semimonoidal functor F': (V,e,1,) — (W, ®,1y)
lifts to a functor

F : SMonoid(V) — SMonoid(W), A —s F(A)
that commutes with the forgetful functors
Uy : SMon(V) — V and Uy, : SMon(W) — W.

PROOF. Let (A, (4, wa) be a semimonoid in V and consider B := F(A). Define
Cp @ F(A) @ F(A) 24 F(ae A) " p(a),
oy Ly -2 F(Ly) " B(a).

One checks easily that (B, (g, wp) is a semimonoid in W. If f : A — A’ is a morphism of
V-semimonoids, then examining the involved diagrams shows that F'(f) : F'(A) — F(A4’)
is a morphism of W-semimonoids. Finally, it is clear that Uy, o ' = F o Uy,. [

4.7. PROPOSITION. Let (A,(,w) be a V-semimonoid.
1. We have J-monads
—eA:V—Vand Ae—:V — YV
and isomorphisms of categories
Sa~=Viean and 4S = Vise_.7).
2. If B is a V-semimonoid, then we have J-monads
—e0A: g8S— S and Be—:S4, — Sy4
and isomorphisms of categories

(BS)(Ceany = BSa = (Sa)Be—)-
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PRrROOF. Consider the natural transformations

X,AA

po: (—eA)eA— —e A MX:(XOA)OAVQ XO(AOA)ﬁ;XoA,

v o J— —eA VX:IOXEéXOI)f)XOA.
One can easily check that (— e A, p,w,v) is a J-monad. The isomorphism S ~ V(_ea.)
follows immediately from comparing the corresponding diagrams. The other assertions
can also be checked easily. [

An object G in a cocomplete category 2 is said to be a (regular) generator iff for

every X € 2, there exists a canonical (regular) epimorphism fx : || G — X
FEAG,X)
[BW2005, p. 199] (see also [Kel2005], [Ver]); recall that an arrow in 2 is said to be a

reqular epimorphism iff it is a coequalizer (of its kernel pair).

4.8. THEOREM. Let V be cocomplete, I and A €V be firm and assume that 1 is a reqular
generator in 'V and that both A e — and — e A preserve colimits in V. There is a bijective
correspondence between the structures of unital semimonoids on A, the structures of J-
monads on — e A and the structures of J-monads on A e —.

PROOF. Assume that (— e A, u,w, ) is a J-monad and consider

0o AOAMIQAQALIQAEA;
w o TS Tel “hTed™ A
Clearly, (A, p,w) is a (unital) semimonoid. The converse follow by Proposition 4.7. The

proof of the bijective correspondence is similar to that in the proof of [Ver, Theorem 3.9].
The statement corresponding to the endo-functor A @ — can be proved analogously. [

SEMICOMONOIDS.

4.9. A V-semicomonoid is a datum (C,d,€) where C € V, §:C — Ce(C e:C — 1
are morphisms in V such that the following diagrams are commutative

C 0 CeC CeC d C d CeC

4 oeC co(C we Cee

Ce(C Ce(Ceo(C IRYOE——— ' Ye Cel
Ced Lo

fC X Te C, then we say that C' is a counital V-semicomonoid. A morphism of V-
semicomonoids f : (C,d,e) — (C',0',€') is a morphism in V such that the following
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diagrams are commutative

C I . CeC C : I
f fof f
o ("o (" C'— I

The category of V-semicomonoids is denoted by SComonoid(V); the full subcategory of
counital V-semicomonoids is denoted by CSComonoid (V).

4.10. Let (C,d,¢) be a V-semicomonoid. A right C-semicomodule is a datum (M, p*)
where M € V and p™ : M — M e C is a morphisms in V such that the following
diagrams are commutative

M M

M P Me(C M P Me(C

pM pMeC wpm Mee

Me(C Me(Co(C Te M

Medc M Mel

A morphism of right C-semicomodules is a morphism f : M — M’ in V such that the
following diagram is commutative

M P Me(C

f foC

M/

M o (C

pM

The category of right C-semicomodules is denoted by S¢; the category of counitary right
C-semicomodules is denoted by CS®. Analogously, one can define the category ¢S of left
C'-semicomodules and its full subcategory “CS of counitary left C-semicomodules.

4.11. REMARK. We prefer to use the terminology unital semimonoids (counital semi-
comonoids) to distinguish them from monoids (comonoids) which we reserve for monoidal
categories. For example, the category of unital semimonoids in the monoidal category Set
of sets is the category Monoid of usual monoids of the sense of Abstract Algebra. The
same applies for unitary semimodules (counitary semicomodules). This is also consistent
with the classical terminology of semirings and semimodules used in Section 5.
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4.12. Let C be a V-semicomonoid and M a right C-semicomodule. We have a functor
—eM:V— S,

where for every X € V we have a structure of a right C'-semicomodule on X e M given by

pX'M:XoMX.—pA;Xo(MOC)%ﬂ}c (XeM)eC.
Similarly, if M is a left C-semicomodule, then we have a functor M e — : )V — ©S.

4.13. Let C' and D be V-semicomonoids. Let M be a left D-semicomodule and a right
C-semicomodule and consider D @ M € S¢ and M e C € PS. We say that M is a
(D, C)-bisemicomodule iff p™:P) . M — D e M is a morphism in S¢ or equivalently
iff pMC) : M —+ M e C' is a morphism in PS. The category of (D, C)-bisemicomodules
with morphisms in SN S¢ is denoted by ?S. The full subcategory of counitary (D, C)-
bisemicomodules is denoted by PCSY. Indeed, every (counital) V-semicomonoid C' is a
(counitary) (C, C)-bisemicomodule in a canonical way.

4.14. EXAMPLE. I is V-semicomonoid with
oIS Tel andq:IﬂI.

Moreover, every (firm) M €V is a (counitary) (I,T)-bisemicomodule with (p™)" : M =5
Le M and (pM)": M M e T,

Dual to Proposition 4.6, we have

4.15. PROPOSITION. Every semiunital op-semimonoidal functor F : (V, e, 1,) — (W, ®, L)
lifts to a functor

F : SCMonoid(V) — SCMonoid(W), C — F(C)
which commutes with the forgetful functors
Uy : SCMon(V) — V and Uy, : SCMon(W) — W.

Dual to Proposition 4.7, we obtain

4.16. PROPOSITION. Let (C,0,€) be a V-semicomonoid.
1. We have J-comonads
—e(C:V—VandCe—:V —V
and isomorphisms of categories

SC ~ PG gnd €S ~ PO,
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2. If D is a V-semicomonoid, then we have J-comonads
~eC:PS— PSand De—:8“ — 8¢
and isomorphisms of categories

(DM)(”C;J) ~ DS ~ (8¢ De=D),

Our second reconstruction result is obtained in a way similar to that of Theorem 4.8:

4.17. THEOREM. Let V be cocomplete, I and C' € V be firm and assume that I is a
reqular generator and that both C'e — and — e C' respect colimits in V. There is a bijective
correspondence between the structures of counital semicomonoids on C, the structures of
J-comonads on (— e C, A w, ;) and the structures of J-comonads on (C @ — A w,&;J).

4.18. PROPOSITION. If (C, 4, €) is a semicomonoid and (A, (, @) is a unital semimonoid,
then (V(C, A), x,¢) is a monoid in Set with multiplication and neutral element given by
frxg:=Co(feg)od ande:=woe.

PROOF. For every f,g,h € V(C, A), we have

((fxg)xh) = Co(CeA)o((feg)eh)o(iel)od
= (o(Ae()o(fe(geh))o(Ced)od
= [*(g*h),

whence * is associative. On the other hand, we have for every f € V(C, A)

lpowygo(fxe) = lpowygoo(few)o(Cee)od
(LhowroColAem))o(fel)o(Ced)od
(AeT)o(fel)o(Cec)od

= EfoI)o(Coe)O(S
(

fel)o(loouwce)

Since A fazoa A el is an isomorphism (in particular a monomorphism), we conclude that
f *e= f. One can conclude similarly that e * f for all f € V(C, A). ]

4.19. PROPOSITION. If ¢ : (C,dc,ec) — (D, dp,€p) is a morphism of semicomonoids
and o : (A, Ca,wa) — (B, p,wg) is a morphism of unital semimonoids, then

<C,—>

V(D,A) “=5 V(C,A), fr— fop and V(C,A) ““5 V(C,B), g—s 0oy
are morphisms of monoids in Set. In particular, we have functors

V(C,—) : SMonoid, — Monoid and V(—, A) : SCMonoid;;, — Monoid.
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5. A concrete example

In this section we give applications to the category of bisemimodules over a semialgebra.
For the convenience of the reader and to make the manuscript self-contained, we begin this
section by recalling some basic definitions and results on semirings and their semimodules.

SEMIRINGS AND SEMIMODULES.

5.1. DEFINITION. A semiring is an algebraic structure (S, +,-,0,1) consisting of a non-
empty set S with two binary operations “+” (addition) and “” (multiplication) satisfying
the following axioms:

1. (S,4+,0) is a commutative monoid with neutral element Og;

2. (S,-,1) is a monoid with neutral element 1;

3 x-(y+z)=x-y+x-zand (y+z)-x=y-x+z-x foralzyzeS,
4.0-s=0=s-0 for every s € S (i.e. 0 is absorbing).

5.2. Let 5,5 be semirings. A map f: S — 5’ is said to be a morphism of semirings
iff for all s1,80 € S :

f(s1482) = f(s1) + f(s2), [(s152) = f(s1)f(s2), f(0s) = O0s and f(1ls) = 1g.
The category of semirings is denoted by SRng.

5.3. Let (S,+,-) be a semiring. We say that S is
cancellative iff the additive semigroup (S, +) is cancellative, i.e. whenever s,s',s"” € S
we have
s+s=s+5"=5=5"

commutative iff the multiplicative semigroup (S, -) is commutative;
semifield iff (S\{0},-,1) is a commutative group.

5.4. EXAMPLES. Rings are indeed semirings. The first natural ezample of a (commutative )
semiring which is not a ring is (No, +, ), the set of non-negative integers. The semirings
(Rg,+,-) and (QF,+,-) are indeed semifields. For every associative ring R we have a
semiring structure (Ideal(R),+,-) on the set Ideal(R) of (two-sided) ideals of R. Every
distributive complete lattice (L,N\,V,0,1) is a semiring. For more examples, the reader
may refer to [Gol1999]. In the sequel, we assume that Og # 1g.
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5.5. DEFINITION. Let S be a semiring. A right S-semimodule is an algebraic structure
(M, +,0p) consisting of a non-empty set M, a binary operation “+” along with a right
S-action

M xS — M, (m,s)+— ms,

such that:

1. (M,+,0y) is a commutative monoid with neutral element 0yy;

2. (ms)s' =m(ss’), (m+m')s =ms+m's and m(s+s") = ms+ms' for all s,s' € S
and m,m' € M;

3. mlsg =m and mOg = 0py = 0pzs for allm € M and s € S.

5.6. Let M, M’ be right S-semimodules. A map f: M — M’ is said to be a morphism
of S-semimodules (or S-linear) iff for all my, my € M and s € S :

f(my +my) = f(my) + f(mz) and f(ms) = f(m)s.

The set Homg(M, M") of S-linear maps from M to M’ is clearly a commutative monoid
under addition. The category of right S-semimodules is denoted by Sg. Analogously, one
can define the category S of left S-semimodules. A right (left) S-semimodule is said to
be cancellative iff the semigroup (M, +) is cancellative. With CSg C Sg (resp. sCS C
sS) we denote the full subcategory of cancellative right (left) S-semimodules. For two
semirings S and T, an (S, T')-bisemimodule M has a structure of a left S-semimodule and
a right T-semimodule such that (sm)t = s(mt) for all m € M, s € S and t € T. The
category of (S,T)-bisemimodules and S-linear T-linear maps is denoted by ¢Sr; the full
subcategory of cancellative (S, T")-bisemimodules is denoted by sCSr.

5.7. Let M be a right S-semimodule. An S-congruence on M is an equivalence relation
= such that

mip = mg = m1S +m = mas + m for all my,ms,m € M and s € S.
In particular, we have an S-congruence relation =g on M defined by
m=p m <= m-+m"=m'+m" for some m" € M.

The quotient S-semimodule M/ = is indeed cancellative and we have a canonical sur-
jection ¢py : M — ¢(M), where ¢(M) := M/ =|p), with

Ker(cy) = {m e M | m+m” =m" for some m” € M}.

The class of cancellative right S-semimodules is a reflective subcategory of Sg in the sense
that the functor ¢ : S¢ — CSg is left adjoint to the embedding functor CSg — Sg, i.e.
for every S-semimodule M and every cancellative S-semimodule N we have a natural
isomorphism of commutative monoids Homg(¢(M), N) ~ Homg(M, N) [Tak1982, p.517].
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TAKAHASHI'S TENSOR-LIKE PRODUCT.

5.8. ([Gol1999, page 187]) Let Mg be a right S-semimodule, sN a left S-semimodule
and consider the commutative monoid U := SM*N) 5 GIMXN) T ot [J! C SIMXN) o G(MXN)
be the symmetric S-subsemimodule generated by the set of elements of the form

(f(m1+m2,n)7 f(ml,n) + f(mg,n))> (f(m1,n) + f(mg,n)v f(m1+m2,n))7
(f(m,n1+n2)a f(m,nl) + f(m,nz))v (f(m,m) + f(m,n2)7 f(m,m-i-nz))a
(f(ms,n)y f(m,sn))a (f(m,sn)a f(ms,n) )a

where
lg,  (myn)=(m',n)
f(m,n) (mla n/) =
0, (m,n) # (m/,n’).

Let = be the S-congruence relation on S™*N) defined by
f=f << f+g=f+¢ forsome (g,¢9') € U

Takahashi’s tensor-like product of M and N is defined as M Kg N := U/ = . Notice that
there is an S-balanced map

T:MxN— MKgN, (mn)—mXgn:=(m,n)/ =

with the following universal property [Tak1982]: for every commutative monoid G and
every S-bilinear S-balanced map 8 : M x N — G there exists a unique morphism of
monoids v : M Xg N — ¢(G) such that we have a commutative diagram

MxN—2 G (4)
MQSN <<<<<<<<<<< o c(g

The following result collects some properties of — Xg — (compare with [Abu] and
[Gol1999, Proposition 16.15, 16.16]):

5.9. PROPOSITION. Let S and T be semirings, M be a right S-semimodule and N a left
S-semimodule.

1. M NWg N is a cancellative commutative monoid.
2. Mg (sN) is cancellative if and only if (M) ~ M (¢(N) ~ N).
3. We have natural isomorphisms of functors

—&SSEC(—)I SS—>SS andS@S—:c(—): SS—) SS.
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Moreover, we have isomorphisms of functors
—&SSZC(—)ZS&S—: SSS—> SSS-

We set
iy O
MXsS ~ M and SKg N ~ N.

4. We have idempotent functors
J:SKg—: 6S— sSandK:= Xy T :Sp — Sr. (5)
In particular, ¢(¢(M)) ~ ¢(M) and ¢(¢(N)) ~ ¢(N).
5. We have natural isomorphisms of commutative monoids

C(M)gsNZC(M) &SC(N) EMggt(N)ﬁMgsNEC(M&SN) (6)

5.10. PROPOSITION. Let S and T be semirings, M a right S-semimodule and N an
(S, T)-bisemimodule. Consider the functors

—XNgN:Sg —Sp, NRr—: 7S — S
and the endo-functors J and K in (5).
1. (= Xg N,Hom_r(N,—)) is a (J,K)-adjoint pair.
2. (NXp — Homg_(N,—)) is a (K,J)-adjoint pair.

PRrROOF. For every right T-semimodule G we have natural isomorphisms of commutative
monoids

Hom_7(J(M)Xg N),K(G)) =~ Hom_r(c¢(M)XgN),c(G))
~ Hom_r(M Kg N, ¢(G))
~ Hom_g(M,Hom_7(N,¢(G))) ([Gol1999, 16.15])
~ Hom_g(¢(M),Hom_r(N,¢(G)))  ([Takl1982, p. 517])
~ Hom_g(J(M),Hom_r(N,K(G)))

The second statement can be proved symmetrically. [

In what follows, S denotes a commutative semiring with 1g # Og, A is an S-semialgebra
(i.e. asemiring with a morphism of semirings ¢4 : S — A), 4S4 is the category of (A, A)-
bisemimodules and 4CS,4 is its full subcategory of cancellative (A, A)-bisemimodules.
Moreover, we fix the idempotent endo-functor J given by

C(—)ZA&A—Z—&AA: ASA—> ASA-
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5.11. THEOREM.
1. (4Sa,Xy4, A) is a closed semiunital semimonoidal category.
2. (4CS4, Ky, c(A)) is a closed monoidal category.

5.12. By a semiunital A-semiring we mean an (A, A)-bisemimodule A associated with
(A, A)-bilinear maps (4 : ANy A — A and wy : A — A such that the following
diagrams are commutative

ARy ARy A AR, A ARy AL At AR, A
A&AgAl jCA wAﬁA.A$ CAl T.AIXIA‘WA
A&A.A ‘A A AgAAWC(A)WAgAA

Let A and A" be semiunital A-semirings. An (A, A)-bilinear map f : A — A’ is called
a morphism of semiunital A-semirings iff

fola=Cuo(fHaf)and fowy=wa.

The set of morphisms of semiunital A-semirings form A to A’ is denoted by SSRng 4 (A, A").
The category of semiunital A-semirings will be denoted by SSRng ,. Indeed, we have an
isomorphism of categories SSRng 4, ~ SMonoid(4S,).

5.13. Let A be a semiunital A-semiring. A semiunitary right A-semimodule is a right A-
semimodule along with a right A-linear map py; : M X4 A — M such that the following
diagrams are commutative

MX w4

MRUAR, AP R, A MELA MK, A
MX4Ca M 9%, oM
MXy, A o M c(M) — M

A morphism of semiunitary right A-semimodules (A-linear) is an A-linear map f : M —
M’ such that the following diagram is commutative

MIZAA PM M
JRAA f
M X, A M’

P!
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The category of semiunitary right A-semimodules and A-linear maps is denoted by SS 4;
the full subcategory of unitary cancellative right A-semimodules is denoted by CS4.
Analogously, one can define the category 4SS of semiunital left A-semimodules and its
full subcategory 4CS of unitary cancellative left A-semimodules. For two semiunital A-
semirings A and B, one can define the category 5SS 4 of semiunitary (B, .A)-bisemimodules
and its full subcategory gCS 4 of unitary cancellative (B, .4)-bisemimodules in the obvious
way. Considering any semiunital A-semiring as a semimonoid in (4S4,Xy4, A), we have
indeed isomorphisms of categories for any two semiunital A-semirings A and B:

BSS =~ (4SS)Br,—i)s SSa = (Sa)(—Radic)s BSSA ™~ BS4
5@8 >~ (ACS>BgA,, (CSA >~ ((CSA),gA_A, B(CSA >~ BUSA

5.14. REMARK. We use the terminology semiunital A-semirings to stress that such semi-
monoids are defined in the semiunital semimonoidal category (4Sa,X4, A) and to avoid
confusion with (unital) A-semirings which can be defined as monoids in the monoidal
category (aSa, ®4, A). The same applies for semicounitary A-semicorings below.

5.15. Being a variety, in the sense of Universal Algebra, the category 1S4 of (A, A)-
bisemimodules is cocomplete. The class of regular epimorphism in 4S,4 coincides with
that of surjective (A, A)-bilinear maps. For every (A, A)-bisemimodule M, there is a
surjective (A, A)-bilinear map from a free (A, A)-bisemimodule to M (compare with
[Gol1999, Proposition 17.11]); whence, A is a regular generator. Moreover, for every
(A, A)-bisemimodule X, both X K4 —, — K4 X : sS4 — 4CS, respect colimits since
they are left adjoints [Tak1982, Corollary 4.5].

Applying Theorem 4.8 to 4S,4, we obtain:

5.16. COROLLARY. Let A be cancellative and A a cancellative (A, A)-bisemimodule. There
is a bijective correspondence between the structures of unital A-semirings on A, the struc-
tures of c-monads on AN, — and the structures of c-monads on — X4 A.

5.17. A semicounital A-semicoring is an (A, A)-bisemimodule associated with (A, A)-
bilinear maps d¢ : C — C X4 C and e¢ : C — A such that the following diagrams are
commutative

C be CR,C CR, <X _c—*.cx,C
5Cl lc‘X’A(SC ec‘ZlAcl CCL jc&,aﬁc (7)
C&AC 5eRAC C&AC&AC A&ACWC C(C) ﬁEC&AA

The map d¢ (ec) is called the comultiplication (counity) of C. Using Sweedler-Heyneman’s
notation, we have for every c € C :

Z ciiMacioXacr = Z c1 My co1 My co;
e aeele)) = cole) =cc(d)_ecler)ea).
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Let (C,d,¢€) and (C', ¢, €) be semicounital A-semicorings. We call an (A, A)-bilinear map
f:C — C" a morphism of semicounital A-semicorings iff

(f&Af)O(sczdc/of al’ldEC/OfZE(j.

The set of morphisms of semicounital A-semicoring from C to C’ is denoted by SSCog 4(C,C’).
The category of semicounital A-semicorings is denoted by SSCrng ,. Indeed, we have an
isomorphism of categories SSCrng, ~ SCMonoid(4S,).

5.18. Let (C,d,€) be an A-semicoring. A semicounitary right C-semicomodule is a right
A-semimodule M associated with an A-linear map

pM : M — MIEAC, m —» Zm<0> IXA Mc1>,

such that the following diagrams are commutative

M M

M P MX,C M P MX,C

pML jM&Aéc Czul lM@Aec

MKy C————= MR, C R, C (M) MK, A

4 aC Ay,

Using Sweedler-Heyneman’s notation, we have for every m € M :
E Meos Kameis1 Mamarse = E M<o><0> Xa Meos<1> Ba mars;

C(Z megsec(Mmears)) = cu(m).

For semicounitary right C-comodules M, M’, we call an A-linear map f : M — M’ a
morphism of semicounitary right C-semicomodules (or C-colinear) iff the following dia-
gram is commutative

M ! N
pMj LpN
MRAC— N, C

The category of semicounitary right C-semicomodules and C-colinear maps is denoted by
SS: the full subcategory of counitary right C-semicomodules is denoted by CS°. Analo-
gously, one can define the category ¢SS of semicounitary left C-semicomodules and its full
subcategory ¢CS of counitary left C-semicomodules. For two semicounital A-semicorings C
and D one can define the category PSS® of semicounitary (D, C)-bisemicomodules and its
full subcategory PCSC of counitary (D, C)-bisemicomodules in the obvious way. Consid-
ering any semicounital A-semicoring as a semicomonoid in (4Sa, X4, A), we have indeed
isomorphisms of categories for any two semicounital A-semicorings C and D:

PSS (4S)PHa™9), SSC v (S,)THa¢9), PSSC ~ PSC
PCS ~ PEA=(,CS), CS¢ ~ (CS,)~¥4¢, PCSC ~ PCSC
Applying Theorem 4.17 to 4S 4, we obtain:
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5.19. COROLLARY. Let A be cancellative and C a cancellative (A, A)-bisemimodule. There
is a bijective correspondence between the structures of counital A-semicorings on C, the
structures of c-comonads on C X4 — and the structures of c-comonads on — Xy C.

Almost all structures of corings over rings (e.g. [Abu2003], [BW2003]) can be trans-
ferred to obtain structures of semicorings over semirings.

5.20. EXAMPLE. Let f : B — A be an extension of S-semialgebras and consider A
as a (B, B)-bisemimodule in the canonical way. One can define Sweedler’s counital A-
semicoring C := (AXp A, 0, €) with

0 A‘XBA—)(A&BA)&A(AX’BA), a&BaH(a&BlA)&A(lA&B’&);
e : AXpA — A, aXpga+ aa.
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