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SEQUENTIAL MULTICATEGORIES

CLAUDIO PISANI

Abstract.

We study the monoidal closed category of symmetric multicategories, especially in rela-
tion with its cartesian structure and with sequential multicategories (whose arrows are
sequences of concurrent arrows in a given category). Then we consider cartesian mul-
ticategories in a similar perspective and develop some peculiar items such as algebraic
products. Several classical facts arise as a consequence of this analysis when some of the
multicategories involved are representable.

1. Introduction

The overall aim of the present work is to show how symmetric and cartesian multicate-
gories offer a natural framework encompassing several aspects of the theory of symmetric
monoidal and finite product categories.

It is well known for instance that “preadditive” categories, whose hom-sets are com-
mutative monoids and composition is distributive, occupy a special place among enriched
categories. Here they are characterized as the categories of commutative monoids in a
cartesian multicategory (Corollary 4.19, p. 537); consequently, the (semi)additive cat-
egories are characterized as the categories of commutative monoids in a finite product
category (Corollary 4.20, p. 538).

A crucial role is played by the “Boardman-Vogt” monoidal closed structure on the
category sMlt of symmetric multicategories (see [Weiss, 2011] and [Trova, 2010]). The
internal hom [M,N] has as objects the functors F ∶ M → N in sMlt and as arrows
α ∶ F1, . . . , Fn → F the families of arrows αA ∶ F1A, . . . , FnA → FA in N (A ∈ M), such
that the following “naturality” condition holds for any arrow f ∶ A1, . . . ,Am → A in M:

Ff(αA1 , . . . , αAm) = σαA(F1f, . . . , Fnf)

where σ is the obvious permutation. The composition and the symmetric structure are
inherited pointwise from N (see also [Tronin, 2011]). If N is associated to a symmetric
monoidal structure (that is, if it is representable) or has a cartesian structure, these
are also inherited pointwise by [M,N] (Proposition 3.17, p. 515, and Proposition 4.18,
p. 535).
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In particular, if 1▸ ∈ sMlt is the terminal multicategory, then [1▸,M] ∈ sMlt is the
multicategory of commutative monoids inM. We call “sequential” these multicategories
[1▸,M] of commutative monoids, since they can be also characterized as those of the form
C▸, where (−)▸ ∶Cat→ sMlt is the fully faithful “discrete cocones” functor:

C▸(X1, . . . ,Xn;X) ≅ C(X1,X) × . . . × C(Xn,X) .

So n-ary arrows in C▸ are sequences ⟨f1, . . . , fn⟩ of concurrent arrows in C with the obvious
composition, for instance

⟨f, g, h⟩(⟨l, t⟩, ⟨ ⟩, ⟨q⟩) = ⟨fl, ft, hq⟩

and for any functor F ∶ C → D

F▸⟨f1, . . . , fn⟩ = ⟨Ff1, . . . , Ffn⟩ .

We denote by Seq ⊂ sMlt the full subcategory of sequential multicategories, so that
there is an equivalence Seq ≃Cat. In fact, [1▸,M] is the coreflection ofM in Seq, while
1▸ ⊗M is its reflection (Corollary 3.9, p. 514).

The relation between (symmetric) monoidal categories and (symmetric) multicate-
gories is well known (see for instance [Lambek, 1989], [Hermida, 2000] and [Leinster,
2003]); if (C, I,⊗) is a monoidal category, one gets a multicategory C⊗ by

C⊗(X1, . . . ,Xn;X) = C(X1 ⊗ . . .⊗Xn,X)

(where the particular choice of bracketing is omitted). In fact, there is an equivalence
between the category of (symmetric) monoidal categories and lax monoidal functors and
the category Rep ⊂ Mlt (sRep ⊂ sMlt) of representable (symmetric) multicategories.
Working directly in Rep has the advantage that coherence issues are replaced by the
more natural universal issues.

Since C▸ is representable if, and only if, C has finite coproducts, the full subcategory
Sum ∶= Seq∩ sRep ⊂ sMlt is equivalent to the category of categories with finite coprod-
ucts and all functors (Proposition 3.16, p. 515). Thus [1▸,−] gives also the coreflection of
sRep in Sum (Corollary 3.19, p. 520), and finite sum categories can be characterized as
the categories of commutative monoids in a symmetric monoidal category.

Let us consider now the category fpMlt of cartesian multicategories (see for instance
[Gould, 2008] and the references therein; see also Section 4.1, p. 521). IfM ∈ fpMlt there
are in particular “contraction” mappings

γn ∶ M(A, . . . ,A;B) →M(A;B) .

We will see that giving a cartesian structure on a sequential multicategory C▸ is equivalent
to giving a preadditive structure on C, where contractions correspond to sums of maps.
Thus the full subcategory fpSeq ⊂ fpMlt of sequential cartesian multicategories is equiv-
alent to the category of preadditive categories and additive functors (Proposition 4.12,
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p. 533), and [1▸,−] gives also the coreflection of fpMlt in fpSeq (Corollary 4.19, p. 537).
In particular, we get the characterization of preadditive categories mentioned at the be-
ginning of this introduction; indeed, the preadditive category corresponding to [1▸,M]
is the category cMon(M) of commutative monoids in M, with the sum of the monoid
morphisms f1, . . . , fn ∶M → N given by the contraction

γnmn(f1, . . . , fn)

(the arrows mn ∶ N, . . . ,N → N being the monoid structure).
A useful perspective is to consider symmetric and cartesian multicategories as two

doctrines (in the sense of Lawvere’s categorical logic): that of “linear” theories and that
of algebraic theories, respectively. In fact finite product categories, which are the usual
many-sorted version of Lawvere theories (see for instance [Adamek et al., 2011]), are
included in fpMlt as the representable cartesian multicategories.

In this perspective, the category of models ofM in N , sMlt(M,N) or fpMlt(M,N),
has itself the structure of a symmetric or cartesian multicategory:

[M,N] ; [M,N]fp

(where [M,N]fp is the internal hom for a monoidal closed structure on fpMlt; see Sec-
tion 4.24, p. 539). Therefore it makes sense to consider models valued in [M,N] or
[M,N]fp and the Boardman-Vogt tensor product (on sMlt or fpMlt) and sequential
multicategories play the same role that the Kronecker product and annular theories play
in Lawvere theories (see [Freyd, 1966], [Lawvere, 2004] and [Wraith, 1970]).

On the symmetric level, categories C ∈Cat parameterize two important sorts of linear
theories: the unary ones C− (which have only unary arrows) and the sequential ones C▸:

(−)− ∶Cat→ sMlt ; (−)▸ ∶Cat→ sMlt .

For instance (considering the basic background Set), the models for 1▸ are commutative
monoids, the models for C− are presheaves on C, and the isomorphism C▸ ≅ C− ⊗ 1▸
(Proposition 3.3, p. 510) says that the models for C▸ are monoids in C-presheaves (or
C-presheaves of monoids).

On the cartesian level, preadditive categories parameterize “annular” theories

(−)▸ ∶ cMon−Cat→ fpMlt

and a consequence of the coreflection [1▸,−] ∶ fpMlt → fpSeq is that the models in
any cartesian multicategory M for an annular theory, namely the functors C▸ → M in
fpMlt, are indeed (generalized) modules C▸ → [1▸,M], that is they are additive functors
C → cMon(M).

Summarizing, the category sMlt of symmetric multicategories includes the category
Cat of categories in two ways (as sequential multicategories and as unary multicategories)
as well as the category of symmetric monoidal categories (as representable multicate-
gories). Similarly, the category fpMlt of cartesian multicategories includes preadditive
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categories (as sequential multicategories) and finite product categories (as representable
multicategories). The two levels are themselves related by an adjunction and in both
cases the closed structure (in particular the monoid construction) plays a prominent role;
it restricts, on sequential multicategories, to the cartesian closed structure of Cat and
to the monoidal closed structure of cMon-Cat respectively. This unifying role of mul-
ticategories, along with the perspective of categorical logic and a feasible diagrammatic
calculus, provides an effective point of view on some aspects of category theory.

Some of the items studied here have been considered also in [Pisani, 2013].

1.1. Summary. In Section 2 we shortly review some basic aspects of multicategories
and investigate the cartesian structure of Mlt. In particular, we observe that the expo-
nentiable multicategories coincide with the promonoidal ones (Proposition 2.8, p. 503).
In this perspective, Day convolution appears as the monoidal structure on the exponen-
tial NM in Mlt when M is promonoidal and N is monoidal (i.e., is representable) and
cocomplete (Proposition 2.12, p. 505).

If M is sequential, we have a particularly simple formula for the exponential NM
(Section 2.13, p. 505):

NM(F1, . . . , Fn;F ) = ∫
A
N(F1A, . . . , FnA;FA) ,

that is an arrow α ∶ F1, . . . , Fn → F in NM consists of arrows αA ∶ F1A, . . . , FnA → FA
(A ∈ M) such that for any unary arrow f ∶ A→ B in M

αB(F1f, . . . , Fnf) = (Ff)αA .

In Section 3 we study the monoidal closed structure of sMlt and compare it with the
cartesian one. The main points are:

� [C−,N] ≅ N C▸ and C−⊗N ≅ C▸ ×N (Proposition 3.3, p. 510), so that the cartesian
and the monoidal structures in fact coincide on Seq ⊂ sMlt.

� Sequential multicategories are characterized as those with a “central monoid” (Propo-
sition 3.6, p. 511).

� Sequential multicategories form an ideal with respect to ⊗ and [−,−] on both sides
(Corollary 3.7, p. 513).

� The functors 1▸ ⊗ − and [1▸,−] give respectively a reflection and a coreflection of
sMlt in Seq (Corollary 3.9, p. 514).

� If N is representable, then so is [M,N], for any M ∈ sMlt (Proposition 3.17,
p. 515).

As a consequence, we derive under a unified perspective the following facts (which
seem to be well known at least as folklore):
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� If M is symmetric monoidal, the category cMon(M) of commutative monoids in
M is cocartesian with the tensor product inherited byM, and the functor cMon(−)
gives a right adjoint to the inclusion of cocartesian categories in the monoidal ones
(corollaries 3.19 and 3.20, p. 520).

� A symmetric monoidal category is cocartesian if, and only if, it has a “central
monoid” (Proposition 3.21, p. 520).

In Section 4 we move to the level of cartesian multicategories.
If C is a finite product category, then C× (i.e., C⊗ with ⊗ = ×) has a cartesian structure.

In fact, the full subcategory fpRep ⊂ fpMlt of representable cartesian multicategories
is equivalent to the category of finite product categories and finite product preserving
functors (Proposition 4.9, p. 532).

If C is preadditive, i.e., it is enriched in commutative monoids, then C▸ has a cartesian
structure. In fact, the full subcategory fpSeq ⊂ fpMlt of sequential cartesian multi-
categories is equivalent to the category of preadditive categories and additive functors
(Proposition 4.12, p. 533).

The view of cartesian multicategories as a common generalization of finite product
categories and of preadditive categories is not devoid of consequences:

� fpRep∩ fpSeq ⊂ fpMlt is equivalent to the category of additive categories (that is
preadditive categories with (bi)products) and additive functors.

� If M ∈ fpSeq and N ∈ fpRep, the morphisms M → N in fpMlt can be seen as
generalized modules. In particular, if M is an operad (that is, has just one object)
the morphisms M→ Set× coincide with the (semi)modules over the rig M.

� A cartesian multicategory is representable if, and only if, it has “algebraic products”
(Corollary 4.10, p. 533), which in the sequential case reduce to ordinary algebraic
biproducts. In fact, the well-known interplay between cMon-enrichments, products,
coproducts and biproducts arises as a particular case of more general properties of
cartesian multicategories (Corollary 4.16, p. 534).

2. The cartesian structure of the category of multicategories

For an introduction to plain and symmetric multicategories (also known as coloured op-
erads) the reader may consult for instance [Leinster, 2003] and [Trova, 2010]. Note that
a symmetric structure on a multicategory can be defined in the same way as a carte-
sian structure, except that only maps with a bijective shape are supposed to act on the
hom-sets (see Section 4). We do not consider here generalized or enriched multicategories.

We denote by Mlt the category of multicategories and functors, and by sMlt the
category of symmetric multicategories and (symmetric) functors. Recall that given F,G ∶
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M → N , a natural transformation α ∶ F → G consists of a family of unary arrows
αA ∶ FA→ GA (A ∈ M) such that for any arrow f ∶ A1, . . . ,An → A in M

Gf(αA1 , . . . , αAn) = αAFf .

Thus Mlt and sMlt are in fact 2-categories, with natural transformations as 2-cells.

2.1. The unary embedding and the underlying functor. A category C gives rise
to a (symmetric) “unary” multicategory C− consisting only of unary arrows:

C−(X;Y ) = C(X,Y ) ; C−(X1, . . . ,Xn;Y ) = ∅ (n ≠ 1)

and the construction clearly extends to full and faithful 2-functors:

(−)− ∶Cat→Mlt ; (−)− ∶Cat→ sMlt .

In the other direction, there are underlying 2-functors which take any multicategory M
to the categoryM− withM−(X,Y ) =M(X;Y ). It is immediate to verify that there are
adjunctions

(−)− ⊣ (−)− ∶Mlt→Cat ; (−)− ⊣ (−)− ∶ sMlt→Cat .

2.2. Remark. The adjunction (−)− ⊣ (−)− satisfies the Frobenius law:

M×C− ≅ (M− × C)−

In particular, M× 1− ≅ (M−)−.

2.3. The sequential embedding. The discrete cocones functor (−)▸ ∶ Cat → Mlt
mentioned in the introduction (see also [Hermida, 2000]) is in fact a full and faithful
2-functor. For fullness, let F ∶ C▸ → D▸ be a functor in Mlt, ⟨f, g⟩ ∈ C▸(X,Y ;Z), and
F ⟨f, g⟩ = ⟨f ′, g′⟩ ∈ D▸(FX,FY ;FZ); then

f ′ = F ⟨f, g⟩(idFX , ⟨ ⟩) = F ⟨f, g⟩(F idX , F ⟨ ⟩) = F (⟨f, g⟩(idX , ⟨ ⟩)) = Ff

so that in fact F = (F−)▸, where F− ∶ C → D is the “underlying” functor. We say that M
is “sequential” if it is isomorphic to some C▸.

Sequential multicategories have an obvious natural symmetric structure which is pre-
served by any functor. Thus we also have an embedding (−)▸ ∶Cat→ sMlt which restricts
to an equivalence Cat ≃ Seq, where Seq ⊆ sMlt is the full subcategory of sequential mul-
ticategories.

2.4. Remark. Note that 1▸ is terminal in Mlt and in sMlt. In fact, we will see in
Corollary 3.10 that (−)▸ ∶ Cat → sMlt has both a left and a right adjoint, so that it
preserves (co)limits. Recall that the categories Mlt(1▸,M) and sMlt(1▸,M) can be
identified with the categories Mon(M) and cMon(M) of monoids and commutative
monoids in M, respectively. In particular, when M is representable we find again the
usual notion of (commutative) monoid in a (symmetric) monoidal category.

Note also that any full sub-multicategory N ⊆M of a sequential multicategory is itself
sequential (on the corresponding full subcategory of M−).
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2.5. The monoidal embedding. For a detailed account of the relationships between
multicategories and monoidal categories we refer to [Hermida, 2000] and [Leinster, 2003].
Let us just recall the main points. An arrow A1, . . . ,An → A in a multicategory M is
“preuniversal” if it gives a representation for the functorM(A1, . . . ,An;−) ∶ M− → Set;M
is “representable” if for any A1, . . . ,An ∈ M there is a preuniversal arrow A1, . . . ,An → A
and if preuniversal arrows are closed with respect to composition.

Equivalently, M is representable if it has a representation in the following sense: to
any A1, . . . ,An ∈ M is assigned a “universal” arrow uA1,...,An ∶ A1, . . . ,An → A such that,
for any double sequence Ai1, . . . ,Aimi

, composition with uAi1,...,Aimi
∶ Ai1, . . . ,Aimi

→ Ai
yields (for any B ∈ M) a bijection M(A1, . . . ,An,B) →M(A11, . . . ,Anmn ,B).

We denote by Rep ⊂ Mlt and sRep ⊂ sMlt the full subcategories of (symmetric)
representable multicategories. When we will consider representable multicategories, we
assume that a representation in the above sense is given.

2.6. Proposition. Rep (sRep) is equivalent to the category of (symmetric) monoidal
categories and lax monoidal functors.

Proof. We just give an idea of the correspondence. As mentioned in the introduction,
to any monoidal category C there corresponds a multicategory C⊗. Conversely, a repre-
sentation for M yields a tensor product for M−.

Since the arrows in a representable multicategory are generated by unary arrows and
universal arrows, the conditions for F ∶ M → N to be a functor in Mlt correspond to the
conditions for F− ∶ (M−, I,⊗) → (N−, I,⊗) to be a monoidal functor:

1. preservation of composition of unary arrows corresponds the functoriality of F−;

2. the assignment of an image in N to the universal arrows A,B → A ⊗ B in M
corresponds to the assignment of the arrows FA⊗ FB → F (A⊗B);

3. preservation of composition of unary with universal arrows corresponds to the nat-
urality of FA⊗ FB → F (A⊗B);

4. preservation of composition of universal arrows corresponds essentially to the co-
herence conditions for a monoidal functor.

We so get in fact a 2-equivalence: the condition for αA ∶ FA→ GA to be natural becomes,
when M,N ∈ Rep, the commutativity condition with respect to unary arrows (ordinary
naturality) and with respect to universal arrows, giving the usual definition of monoidal
natural transformation.

2.7. Powers of multicategories. If the powerNM does exist in Mlt, then its objects
are the functors M− → N−, while arrows F1, . . . , Fn → F are mappings

M(A1, . . . ,An;A) → N(F1A1, . . . , FnAn;FA)
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that are natural in all the variables:

NM(F1, . . . , Fn;F ) = ∫
A1,...,An,A

Set(M(A1, . . . ,An;A),N(F1A1, . . . , FnAn;FA)) . (1)

Indeed, for objects we have

Mlt(1−,NM) ≅ Mlt(1− ×M,N) ≅ Mlt((M−)−,N) ≅ Mlt(M−,N−) ,

while the n-ary arrows F1, . . . , Fn → F are given by those functors tn ×M → N which
restrict to the given functors on the objects of tn (the generic n-ary arrow). Thus (1)
follows from the description of tn ×M as given (for n = 2) in the proof of Proposition 2.8.

Since the adjunction (−)− ⊣ (−)− satisfies the Frobenius law (see Remark 2.2) the
underlying functor (−)− ∶Mlt→Cat preserves powers (as can be also easily seen directly
from (1) when n = 1).

2.8. Proposition. The exponentiable multicategories are the promonoidal ones. In par-
ticular, representable multicategories and sequential multicategories are exponentiable,
while no unary non-empty multicategory C− is exponentiable.

Proof. Suppose first thatM is exponentiable and consider the pushout q of the generic
2-ary arrow t ∶ X,Y → Z with itself along X ∶ 1− → t and Z ∶ 1− → t. Thus q has three
non-identity arrows: t, t′ and their composite t′′ = t(t′, Y ) ∶ U,V, Y → Z

U V

t′

��
X Y

t

��
Z

The product M× t consists of three copies of the unary (M−)−, say MX , MY and MZ ,
an arrow ft ∶ AX ,BY → CZ for any 2-ary arrow f ∶ A,B → C in M and the composition
rule cZft(aX , bY ) = [cf(a, b)]t for a ∶ A′ → A, b ∶ B′ → B and c ∶ C → C ′.

Similarly, the product M× q consists of five copies of the unary (M−)−, say MX ,
MY ,MZ ,MU andMV , arrows ft ∶ AX ,BY → CZ , ft′ ∶ AU ,BV → CX for any 2-ary arrow
f ∶ A,B → C in M and ht′′ ∶ AU ,BV ,CY →DZ for any 3-ary arrow h ∶ A,B,C →D in M.
The composition rules are as above and moreover ft(gt′ ,BY ) = [f(g,B)]t′′ , whenever the
compositions are meaningful.

On the other hand, it is easy to see that the pushout M× t +M×1−M× t (along the
inclusion ofM×1− = (M−)− asMX andMZ) consists of five copies of the unary (M−)−,
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sayMX ,MY ,MZ ,MU andMV , arrows ft ∶ AX ,BY → CZ and ft′ ∶ AU ,BV → CX for any
2-ary arrow f ∶ A,B → C in M and formal composites ft ○ gt′ (for f and g composable)
with the associativity constraints f(a,B)t ○gt′ = ft ○(ag)t′ for any suitable unary arrow a.

SinceM×− preserves colimits, the canonicalM×t+M×1−M×t→M×q (sending ft○gt′
in ft(gt′ ,BY ) and obvious elsewhere) is an isomorphism. This amounts to saying that any
ht′′ actually has the form ft(gt′ ,BY ) for f and g unique up to the above associativity
constraints. Repeating the argumentation for the pushout of t with the generic 0-ary
arrow, we get the other condition for a multicategory to be promonoidal (see [Day et al.,
2005]).

In the other direction, suppose thatM is promonoidal. Let the multigraph NM have
the functorsM− → N− as objects and arrows in NM(F1, . . . , Fn;F ) given by (1). Then we
can define the composition of, say, α ∶ F,G→H and β ∶H,L→M as the mapping which
takes a 3-ary arrow f ∶ A,B,C →D in M to the arrow βh(αg, LC) ∶ FA,GB,LC →MD,
where h(g,C) = f is a decomposition of f given by the promonoidal structure ofM. Then
it is straightforward to see that

1. the mapping does not depend on the particular decomposition (since two decompo-
sitions related by a unary arrow give the same result);

2. the mapping is natural;

3. the composition so defined on the multigraph NM is associative and unitary;

4. the multicategory so obtained is indeed the power in Mlt.

Next we consider some relevant particular cases of powers.

2.9. Monoidal exponents. If M is representable then for any N the power NM is
given by

NM(F1, . . . , Fn;F ) = ∫
A1,...,An,A

Set(M(A1, . . . ,An;A),N(F1A1, . . . , FnAn;FA)) =

∫
A1,...,An,A

Set(M(A1 ⊗ . . .⊗An;A),N(F1A1, . . . , FnAn;FA)) =

∫
A1,...,An

N(F1A1, . . . , FnAn;F (A1 ⊗ . . .⊗An))

which for N also representable becomes

NM(F1, . . . , Fn;F ) = ∫
A1,...,An

N(F1A1 ⊗ . . .⊗ FnAn;F (A1 ⊗ . . .⊗An)) .

Indeed, the monoids 1▸ → NM on the object (functor) F ∶ M− → N− correspond to the
lax monoidal structures for F .
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2.10. Remark. Monoids are included in Cat as one object categories C; thus they are
also included in two ways in Mlt: as C− and as C▸. In fact, monoids are included in
Mlt in a third way, namely as representable discrete multicategories (that is with a
discrete underlying category). If M and N are monoids in the third sense, NM ∈ Mlt
has all mappings of the underlying sets as objects and a (unique) arrow F,G → H when
(Fx) ⋅ (Gy) =H(x ⋅ y) (and H is the codomain of a 0-ary arrow if, and only if, H1 = 1).

2.11. Monoidal base. Now we show that Day convolution is nothing but the monoidal
structure on NM, when N is representable and cocomplete.

2.12. Proposition. If N is representable and cocomplete, then NM is also representable
(for any promonoidal M) by the usual convolution tensor product.

Proof.

NM(F1, . . . , Fn;F ) = ∫
A1,...,An,A

Set(M(A1, . . . ,An;A),N(F1A1, . . . , FnAn;FA)) =

∫
A1,...,An,A

Set(M(A1, . . . ,An;A),N(F1A1 ⊗ . . .⊗ FnAn;FA)) =

∫
A1,...,An,A

N(M(A1, . . . ,An;A) ⋅ F1A1 ⊗ . . .⊗ FnAn;FA)) =

∫
A
N(∫

A1,...,An

M(A1, . . . ,An;A) ⋅ F1A1 ⊗ . . .⊗ FnAn;FA)) .

Thus the functor ∫
A1,...,AnM(A1, . . . ,An;−) ⋅ F1A1 ⊗ . . . ⊗ FnAn is a representing object

for NM(F1, . . . , Fn;−).

2.13. Sequential exponents. When M is sequential, formula (1) becomes

∫
A1,...,An,A

Set(M(A1;A) × . . . ×M(An;A),N(F1A1, . . . , FnAn;FA))

which by Yoneda reduction gives

NM(F1, . . . , Fn;F ) = ∫
A
N(F1A, . . . , FnA;FA) . (2)

Thus, an arrow α ∶ F1, . . . , Fn → F in NM amounts to a family of arrows

αA ∶ F1A, . . . , FnA→ FA (A ∈ M)

such that for any unary f ∶ A→ B in M

(Ff)αA = αB(F1f, . . . , Fnf) . (3)

Indeed, in this case (as it happens for ordinary categories) the natural mappings α ∶
M(A1, . . . ,An;A) → N(F1A1, . . . , FnAn;FA) are in fact determined by the image of those
of the form ⟨idX , . . . , idX⟩ ∶X, . . . ,X →X, since for fi ∶ Ai → A we have

⟨f1, . . . , fn⟩ = ⟨idA, . . . , idA⟩(f1, . . . , fn)
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and these have to satisfy condition (3) since for any f ∶ A→ B

f⟨idA, . . . , idA⟩ = ⟨idB, . . . , idB⟩(f, . . . , f) .

If furthermore N is representable, one thus gets the following well-known particular case
of the convolution product:

2.14. Proposition. If N is representable then N C▸ is also representable, in a pointwise
way:

N C▸(F1, . . . , Fn;F ) = ∫
A
N(F1A⊗ . . .⊗ FnA;FA) .

Since Seq is equivalent to Cat, it is cartesian closed. Moreover, products and expo-
nentials in Seq can be computed as in Mlt:

2.15. Corollary. The discrete cocones functor (−)▸ ∶ Cat → Mlt preserves products
and exponentials. Thus Seq is closed with respect to products and exponentials in Mlt.

Proof. Since (−)▸ clearly preserves products, we need to show that D C▸▸ ≅ (D C)▸. By the
above description, an arrow F1, . . . , Fn → F in D C▸▸ is a sequence of arrows αiA ∶ FiA→ FA,
for any A ∈ C, such that

(Ff)αiA = αiB(Fif)
for any f ∶ A→ B in C. But this amounts exactly to a sequence of natural transformations
αi ∶ Fi → F , that is to an arrow in (D C)▸.

2.16. Powers of symmetric multicategories. Powers in sMlt are computed es-
sentially as in Mlt. LetM,N ∈ sMlt and suppose that the power NM of the underlying
multicategories exists in Mlt. By (1), an arrow α ∶ F1, . . . , Fn → F is given by natural
mappings α ∶ M(A1, . . . ,An;A) → N(F1A1, . . . , FnAn;FA). If we define

σα ∶ f ↦ σα(σ−1f) (4)

it is easy to see that σα is also natural and that we so get a symmetric structure on NM.

2.17. Proposition. In the above hypothesis, NM with the symmetric structure given by
(4) is also the power in sMlt.

Proof. A functor α ∶ L → NM in sMlt is a functor α ∶ L → NM in Mlt such that, for
any g in L and any permutation σ of its domain, α(σg) = σ(αg), that is

α(σg) ∶ f ↦ σα(σ−1f) ⇐⇒ α(σg) ∶ σf ↦ σ(αf) .

When transposed, α corresponds thus to a functor α ∶ L ×M→N such that

α(σg, σf) = σα(g, f)

that is to a functor α ∶ L ×M→N in sMlt.
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Thus, promonoidal symmetric multicategories are exponentiable in sMlt. We have
seen in Section 2.13 that the α ∶ M(A1, . . . ,An;A) → N(F1A1, . . . , FnAn;FA) in N C▸ are
in fact determined by the αA = α⟨idA, . . . , idA⟩. Since the arrows ⟨idA, . . . , idA⟩ in C▸ are
fixed by any permutation of the domain, the formula (4) gives

(σα)A = σαA . (5)

3. The monoidal closed structure of the category of symmetric multicate-
gories

In the previous section we have studied the cartesian structure of Mlt and sMlt. We
now consider a non-cartesian symmetric monoidal closed structure

(sMlt,1−,⊗BV )

on symmetric multicategories; the symmetry hypothesis is necessary. The Boardman-Vogt
tensor product ⊗BV is described in [Weiss, 2011], [Moerdijk & Weiss, 2007] and [Trova,
2010] and has its roots in [Boardman & Vogt, 1973] but also (for the one-sorted case) in
the Kronecker tensor product of Lawvere theories of [Freyd, 1966]. The set of objects of
M⊗BV N (or simply M⊗N ) is the product of those of M and N while its arrows are
generated by the arrows

fX ∶ ⟨A1,X⟩, . . . , ⟨An,X⟩ → ⟨A,X⟩ ; hA ∶ ⟨A,X1⟩, . . . , ⟨A,Xm⟩ → ⟨A,X⟩

(for any f ∶ A1, . . . ,An → A in M and X ∈ N , and any h ∶ X1, . . . ,Xm → X in N and
A ∈ M respectively) with the obvious relations ensuring that we have functors in sMlt

(−)X ∶ M →M⊗N ; (−)A ∶ N →M⊗N

and a commuting relation for any pair of arrows f ∶ A1, . . . ,An → A in M and h ∶
X1, . . . ,Xm →X in N :

fX(hA1 , . . . , hAn) = σhA(fX1 , . . . , fXm)
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where σ is the obvious permutation. For instance, if f ∶ A,B,C → D and h ∶ X,Y → Z,
one has the following equality in M⊗N :

⟨A,X⟩ ⟨A,Y ⟩ ⟨B,X⟩ ⟨B,Y ⟩ ⟨C,X⟩ ⟨C,Y ⟩

hA

��

hB

��

hC

��
⟨A,Z⟩ ⟨B,Z⟩ ⟨C,Z⟩

fZ

��

=

⟨D,Z⟩

⟨A,X⟩ ⟨A,Y ⟩ ⟨B,X⟩ ⟨B,Y ⟩ ⟨C,X⟩ ⟨C,Y ⟩

⟨A,X⟩ ⟨B,X⟩ ⟨C,X⟩ ⟨A,Y ⟩ ⟨B,Y ⟩ ⟨C,Y ⟩

fX

��

fY

��
⟨D,X⟩ ⟨D,Y ⟩

hD

��
⟨D,Z⟩

The associated internal hom [M,N] has functors M→ N as objects while an arrow
α ∶ F1, . . . , Fn → F consists of arrows αA ∶ F1A, . . . , FnA → FA (A ∈ M) such that the
following commuting condition holds for any arrow f ∶ A1, . . . ,Am → A in M:

Ff(αA1 , . . . , αAm) = σαA(F1f, . . . , Fnf) (6)

where σ is the obvious permutation. The composition and the symmetric structure are
defined pointwise.

3.1. Remark. The multicategory [M,N] is studied in [Tronin, 2011], where its arrows
are called natural multitransformations (of multifunctors). Note that

[M,N]− ≅ sMlt(M,N)

where sMlt is given the usual 2-category structure. Furthermore,

[C−,D−] ≅ (D C)− .
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For instance, an arrow α ∶ F,G → H is a family of arrows αA ∶ FA,GA → HA (A ∈ M)
such that for any arrow, say f ∶ A,B,C →D, the following equality holds:

FA GA FB GB FC GC

αA

��

αB

��

αC

��
HA HB HC

Hf

��
HD

=

FA GA FB GB FC GC

FA FB FC GA GB GC

Ff

��

Gf

��
FD GD

αD

��
HD

3.2. Remark. In particular, if M,N,L ∶ 1▸ →M are monoids on the objects A, B and
C respectively, an arrow α ∶ M,N → L in [1▸,M] is an arrow α⋆ ∶ A,B → C in M such
that

A B A B

α⋆

��

α⋆

��
C C

m2
C

��
C

=

A B A B

A A B B

m2
A

��

m2
B

��
A B

α⋆

��
C
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(where for instance m2
A =Mm2 is the image of the unique 2-ary arrow of 1▸) and

m0
C

��
C

=

m0
A

��

m0
B

��
A B

α⋆

��
C

3.3. Proposition. For any C ∈Cat and N ∈ sMlt,

[C−,N] ≅ N C▸ ; C− ⊗N ≅ C▸ ×N .

In particular, C− ⊗ 1▸ ≅ C▸ and C− ⊗D− ≅ (C × D)−.

Proof. Since sMlt(C−,N) ≅ Cat(C,N−) ≅ Cat((C▸)−,N−), the objects of [C−,N] and
of N C▸ are in both cases the functors C → N−.

Since the condition (6) relative to an arrow α in [M,N] reduces, for the unary f in
C−, to the condition (3) relative to an arrow α in N C▸ , also the arrows coincide. Further-
more, by (5), the symmetric structure is the pointwise one in both cases. The second
isomorphism then follows by adjunction.

3.4. Corollary. The 2-category sMlt is tensored and cotensored (as a Cat-enriched
category). The tensor and the cotensor of M by C ∈Cat are given respectively by C▸ ×M
and MC▸.

Proof.
sMlt(C▸ ×M,N) ≅ sMlt(C− ⊗M,N) ≅ sMlt(C−, [M,N]) ≅

≅ Cat(C, [M,N]−) ≅ Cat(C, sMlt(M,N)) .

sMlt(N ,MC▸) ≅ sMlt(N , [C−,M]) ≅ sMlt(C−, [N ,M]) ≅
≅ Cat(C, [N ,M]−) ≅ Cat(C, sMlt(N ,M)) .

(In fact, the proposition holds true in the non-symmetric context too.)
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3.5. Characterizations of sequential multicategories. We are now in a posi-
tion to characterize sequential multicategories in a more abstract way. Following [Tronin,
2011], we define the center of M ∈ sMlt as the full sub-multicategory (in fact an op-
erad) of [M,M] generated by the object idM ∶ M → M. Thus, an n-ary arrow α in
the center of M consists of n-ary arrows αA ∶ A, . . . ,A → A (A ∈ M) such that for each
f ∶ A1, . . . ,Am → A

f(αA1 , . . . , αAm) = σαA(f, . . . , f) .
Accordingly, a “central monoid” in M is a commutative monoid in the center of M,
that is a functor 1▸ → [M,M] which restricts along 1− → 1▸ to the name of the identity
1− → [M,M]. Similarly one defines central unital magmas.

The functor 1− → 1▸ induces canonical functors

[1▸,M] →M ; M→ 1▸ ⊗M .

The first one forgets the monoid structure while the second one inserts the arrow f ∈ M
in 1▸ ⊗M as f⋆ (where ⋆ is the unique object of 1▸).

3.6. Proposition. The following are equivalent for M ∈ sMlt:

1. M is sequential, that is M ≅ C▸, for a C ∈Cat.

2. M ≅ (M−)▸.

3. M has a central monoid 1▸ → [M,M].

4. M has a central unital magma.

5. [1▸,M] →M is an iso (that is M is orthogonal to 1− → 1▸ in an enriched sense).

6. M→ 1▸ ⊗M is an iso.

Proof. Since (C▸)− = C, (1) and (2) are equivalent. If [1▸,M] → M has an inverse
M→ [1▸,M], one gets (by the closed structure of sMlt) a central monoid 1▸ → [M,M].
Thus (5) ⇒ (3), and similarly (6) ⇒ (3). The equivalence of (3) and (4) follows from a
Hilton-Eckmann argument.

Suppose now thatM has a central monoid, given by n-ary arrows mn
A ∶ A, . . . ,A→ A,

A ∈ M and n = 0,1,2, . . ., such that for any f ∶ A1, . . . ,Am → A

f(mn
A1
, . . . ,mn

Am
) = σmn

A(f, . . . , f)

(which implies in particular that any unary arrow is a monoid morphism). We will define
identity-on-objects functors

F ∶ M → (M−)▸ ; G ∶ (M−)▸ →M
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which are each other’s inverse, thus proving that (3) ⇒ (2). For an arrow f ∶ A1, . . . ,An →
A in M, let Ff = ⟨f1, . . . , fn⟩ in (M−)▸ be given by

fi = f(m0
A1
,m0

A2
, . . . ,m0

Ai−1
,Ai,m

0
Ai+1

, . . . ,m0
An−1

,m0
An

)

that is, fi is obtained by substituting the 0-ary arrow m0 (the monoid unit) in any object
of the domain but the i-th one.

In the other direction, if fi ∶ Ai → A (i = 1, . . . , n), let G⟨f1, . . . , fn⟩ = mn
A(f1, . . . , fn).

Then one easily checks that F and G are indeed functors and that they are each other’s
inverse. For instance, for 2-ary arrows we have

m0
B

��

m0
A

��
A B A B

f

��

f

��
C C

m2
C

��
C

=

m0
B

��

m0
A

��
B A

A A B B

m2
A

��

m2
B

��
A B

f

��
C

=

=

m0
A

��

m0
B

��
A A B B

m2
A

��

m2
B

��
A B

f

��
C

=

A B

f

��
C
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and in the other direction:

m0
B

��
A B

f1

��

f2

��
C C

m2
C

��
C

=

A

f1

��

m0
C

��
C C

m2
C

��
C

=

A

f1

��
C

To prove that (1) ⇒ (5), note that mA = ⟨idA, . . . , idA⟩ is the unique monoid structure
on A in C▸. Indeed, if for instance m2

A = ⟨f, g⟩, then f = m2
A(⟨ ⟩, idA) = idA. Furthermore,

mA clearly commutes with any arrow in C▸.
Finally, we prove that (1) ⇒ (6). Note first that for any M ∈ sMlt, by the definition

of the Boardman-Vogt tensor product, 1▸ ⊗M has essentially the same objects as M,
while its arrows are generated by the f⋆ (with f in M) and by the mn

A ∶ A, . . . ,A → A
(A ∈ M), where mn is the unique n-ary arrow in 1▸. These mn

A form a commutative
monoid on A and commute with all the f⋆. Thus mA is a central monoid in 1▸ ⊗M and
(since we already know that (3) ⇒ (1)) 1▸ ⊗M is sequential. Now suppose that M is
itself sequential. To show that 1▸⊗M ≅ M it is enough to compare them with sequential
multicategories L:

1▸ ⊗M→ L

M→ [1▸,L]

M→ L

(since we already know that (1) ⇒ (5)).

3.7. Corollary. If L is sequential and M ∈ sMlt then M⊗L, [M,L] and [L,M] are
also sequential.

Proof.
(M⊗L) ⊗ 1▸ ≅ M⊗ (L⊗ 1▸) ≅ M⊗L ,

[1▸, [M,L]] ≅ [M, [1▸,L]] ≅ [M,L] ,
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[1▸, [L,M]] ≅ [1▸ ⊗L,M] ≅ [L,M] .

3.8. Remark. Note that the central monoid in [M,L] is given by (mF )A = mFA, while
that in [L,M] is given by (mF )A = FmA (where mA is the central monoid in L).

3.9. Corollary. The functors 1▸ ⊗ − and [1▸,−] give respectively a reflection and a
coreflection of sMlt in Seq.

Proof. If L is sequential, then for any M ∈ sMlt we have natural isomorphisms

1▸ ⊗M→ L

M→ [1▸,L]

M→ L

;

L → [1▸,M]

1▸ ⊗L →M

L→M

3.10. Corollary. (−)▸ ∶Cat→ sMlt has both a left and a right adjoint.

Proof. Just compose the above (co)reflection with an equivalence Cat ≃ Seq; for in-
stance:

(1▸ ⊗ −)− ⊣ (−)▸ ⊣ [1▸,−]− ≅ cMon(−) .

3.11. Remark. The above results can be placed in a more general perspective. Consider
a monoidal category (C, I,⊗) with a terminal object 1 ∈ C. Then we have a (unique)
monoid structure on 1 (with respect to ⊗) and thus also a monad 1 ⊗ (−) on C. For
instance, for C = (Set,0,+) one gets the monad for pointed sets.

If C is closed, we have 1⊗(−) ⊣ [1,−], so that [1,−] is a comonad on C with the same
algebras. Suppose furthermore that 1⊗1→ 1 is an iso. Then the (co)monad is idempotent
and the isomorphic categories of algebras isolate a full subcategory D ⊆ C which is both
reflective and coreflective.

When C = sMlt we get D ≅ Seq ≃Cat. For another instance, consider the poset C of
the subsets of a monoid M with the usual tensor (truth values convolution on the discrete
M). Then D is given by the monoid ideals of M . (Note that if C is cartesian or I ≅ 1 one
gets D ≅ C, while for pointed sets or abelian groups D ⊆ C is the zero object inclusion.)

3.12. Corollary.

(C × D)▸ ≅ C▸ ⊗D▸ ; (D C)▸ ≅ [C▸,D▸] .

(Recall however that 1▸ /≅ I = 1−.)
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Proof.

C▸ ⊗D▸ ≅ (C− ⊗ 1▸) ⊗D▸ ≅ C− ⊗ (1▸ ⊗D▸) ≅ C− ⊗D▸ ≅ C▸ ×D▸ .

[C▸,D▸] ≅ [C− ⊗ 1▸,D▸] ≅ [C−, [1▸,D▸]] ≅ [C−,D▸] ≅ D C▸▸ .

3.13. Remark. In the same way one sees that, for any M ∈ sMlt,

C▸ ⊗M ≅ C▸ × (M⊗ 1▸) ; [C▸,M] ≅ [1▸,M]C▸ ; [M,C▸] ≅ CM⊗1▸
▸

.

3.14. Corollary. By restricting ⊗ and [−,−] to Seq ⊂ sMlt one gets a monoidal closed
structure (Seq,1▸,⊗) which is cartesian and coincides essentially with the cartesian closed
structure on Cat.

3.15. Sequentiality and representability. In the rest of this section we investi-
gate some consequences of the previous results, under the hypothesis that some of the
multicategories involved are representable. We begin by recalling what are the sequential
representable categories.

3.16. Proposition. The full sub-multicategory sRep ∩ Seq ⊂ sMlt is equivalent to the
category of cocartesian monoidal categories (those in which I is initial and ⊗ gives sums)
and to the category of categories with finite sums (and all functors).

Proof. Indeed, a preuniversal arrow A1, . . . ,An → A in C▸ amounts to a representation
for the functor C(A1,−)× . . .×C(An,−), that is to a universal cone Ai → A1+ . . .+An. Fur-
thermore, universal cones are closed with respect to composition and all functors between
finite sum categories are lax monoidal functors between the corresponding cocartesian
monoidal categories.

Next, there is the fact that representability is inherited pointwise by [M,N] from N .

3.17. Proposition. If N is representable then so is [M,N], for any M ∈ sMlt.

Proof. For simplicity, we focus on 2-ary arrows. Given F,G ∶ M → N we want to find a
universal arrow u ∶ F,G→H in [M,N]. Let uA ∶ FA,GA→HA (A ∈ M) be universal in
N . Since we want to extend the assignment A ↦ HA to a functor H ∶ M → N in such a
way that the uA become an arrow in [M,N], the effect of H on arrows is forced by the
naturality conditions. Namely, for f ∶ A1, . . . ,An → A in M, the condition (6)

Hf(uA1 , . . . , uAn) = σuA(Ff,Gf)
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defines (by the universality of the uA) a unique arrow Hf in N . For instance, given the
arrow f ∶ A,B → C in M, Hf is defined by

FA GA FB GB

uA

��

uB

��
HA HB

Hf

��

=

HC

FA GA FB GB

FA FB GA GB

Ff

��

Gf

��
FC GC

uC

��
HC

Now, drawing suitable diagrams, it is routine to check that H is indeed a functor. For
instance, let us show that H preserves composition of 2-ary arrows:

FR GR FS GS FT GT FU GU

uR

��

uS

��

uT

��

uU

��
HR HS HT HU

Hk

��

Hl

��
HA HB =

Hf

��
HC

FR GR FS GS FT GT FU GU

FR FS GR GS FT FU GT GU

Fk

��

Gk

��

Fl

��

Gl

��
FA GA FB GB

uA

��

uB

��

=

HA HB

Hf

��
HC
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FR GR FS GS FT GT FU GU

FR FS GR GS FT FU GT GU

Fk

��

Gk

��

Fl

��

Gl

��
FA GA FB GB

FA FB GA GB

= Ff

��

Gf

��

=

FC GC

uC

��
HC

FR GR FS GS FT GT FU GU

FR FS GR GS FT FU GT GU

FR FS FT FU GR GS GT GU

Fk

��

Fl

��

Gk

��

Gl

��
FA FB GA GB

Ff

��

Gf

��

=

FC GC

uC

��
HC

FR GR FS GS FT GT FU GU

FR FS FT FU GR GS GT GU

Fk

��

Fl

��

Gk

��

Gl

��
FA FB GA GB

= Ff

��

Gf

��

=

FC GC

uC

��
HC

FR GR FS GS FT GT FU GU

uR

��

uS

��

uT

��

uU

��
HR HS HT HU

Hf(k, l)

��
HC
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Now, it is clear that if t ∶ F,G → L factors in [M,N] as t = ul then l is uniquely
defined by tA = uAlA. Then, to show that u ∶ F,G → H is universal we need to check
that lA ∶ HA → LA so defined is indeed a map in [M,N], that is (for 2-ary arrows, for
simplicity) that Lf(lA, lB) = lCHf , for any f ∶ A,B → C:

FA GA FB GB

uA

��

uB

��
HA HB

Hf

��
HC

lC

��
LC

FA GA FB GB

FA FB GA GB

Ff

��

Gf

��
= FC GC =

uC

��
HC

lC

��
LC

FA GA FB GB

FA FB GA GB

Ff

��

Gf

��
= FC GC =

tC

��
LC

FA GA FB GB

FA FB GA GB

FA GA FB GB

tA

��

tB

��
LA LB =

Lf

��
LC
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FA GA FB GB

tA

��

tB

��
= LA LB =

Lf

��
LC

FA GA FB GB

uA

��

uB

��
HA HB

lA

��

lB

��
LA LB

Lf

��
LC

3.18. Remark. In particular, for M = 1▸ one gets the usual monoidal structure on
cMon(N) = [1▸,N]−. More specifically, let M,N ∶ 1▸ → N be monoids on the objects A
and B respectively, and let u ∶ A,B → A ⊗B be universal in N . Then u is universal in
[1▸,N] as well, when A⊗B is given the monoid structure such that

A B A B

u

��

u

��
A⊗B A⊗B

m2
A⊗B

��
A⊗B

=

A B A B

A A B B

m2
A

��

m2
B

��
A B

u

��
A⊗B

m0
A⊗B

��
A⊗B

=

m0
A

��

m0
B

��
A B

u

��
A⊗B
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Similarly, a 0-ary u ∶ → I universal in N is universal also in [1▸,N], when I is given the
monoid structure such that m2

I (u,u) = u = m0
I .

Now, from Corollary 3.9 and propositions 3.16 and 3.17 we get

3.19. Corollary. The coreflection of sMlt in Seq restricts to sRep ⊂ sMlt. Thus the
commutative monoids construction cMon(−) = [1▸,−]− gives the coreflection of symmetric
monoidal categories in the cocartesian ones.

(In [Fox, 1976] a similar result is stated, but with strict in place of lax monoidal
functors.) In particular,

3.20. Corollary. If M is representable, then the category cMon(M) of commutative
monoids in M, with the tensor product of Remark 3.18, is cocartesian.

So, cocartesian symmetric monoidal categories (C, I,⊗) can be characterized as those
of the form C ≅ cMon(D) for a symmetric monoidal (D, I,⊗), or also as those for which
cMon(C) → C is an iso. In fact, propositions 3.6 and 3.16 yield a more effective charac-
terization, namely as those monoidal categories with a central monoid (or unital magma).
The latter amounts to a monoid (or unital magma) mA on each object A ∈ C, which
commutes with both unary and universal arrows (since these generate the correspond-
ing multicategory C⊗). The first condition says that each arrow is a monoid (or unital
magma) morphism, that is that the m0

A and the m2
A are natural. The second one says

that the monoid (unital magma) structure mA⊗B on A⊗B is the expected one, related as
in Remark 3.18 to mA and mB (and similarly for mI). Thus, we find again the following
piece of folklore:

3.21. Proposition. A symmetric monoidal category (C, I,⊗) is cocartesian if, and only
if, it has a natural monoid (or unital magma) structure mA (A ∈ C) such that mA⊗B is
related in the usual way with mA and mB.

4. Cartesian multicategories and preadditive categories

The algebra of abstract operations encoded in a (small) multicategory M can be seen as
an algebraic theory, whose category of models is Mlt(M,Set×). The algebraic theories
which can be so represented are those which can be given by equations between terms
with the same variables in the same order (named “strongly regular” in [Leinster, 2003]).
Notably, the terminal multicategory is the theory for monoids. In order to allow per-
mutation (exchange) of variables (as for commutative monoids) one considers symmetric
multicategories instead.

More general algebraic theories, such as the theory of groups, require laws which can
be expressed in multicategories of the form C× (for a finite product category C) where
one can furthermore duplicate or delete the variables. For instance, given an operation
f ∶ A ×B ×A→D in Set, one gets another operation σf ∶ B ×C ×A→D by

σf(b, c, a) = f(a, b, a) .
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It is convenient to see the domain of f as the family of sets 3 = {1,2,3} → objSet
given by 1 ↦ A,2 ↦ B,3 ↦ A, that of σf as the family of sets 3 → objSet given by
1 ↦ B,2 ↦ C,3 ↦ A and σ ∶ 1 ↦ 3,2 ↦ 1,3 ↦ 3 as a family morphism (that is a mapping
3→ 3 over objSet).

More generally, if A1, . . . ,An and B1, . . . ,Bm are families of objects in C and σ ∶ n→m
is a map of families in the above sense, one gets (for each C ∈ C) a mapping

σ(−) ∶ C(A1 × . . . ×An,C) → C(B1 × . . . ×Bm,C)
by precomposing with the map σ ∶ B1 × . . . ×Bm → A1 × . . . ×An such that piσ = qσi. As
particular instances of σ we find projections and diagonals.

Abstracting from this, one gets the notion of cartesian multicategory defined below
and the 2-category fpMlt of cartesian multicategories.

Thus the categories Mlt, sMlt and fpMlt can be seen as the “doctrines” of strongly
regular, linear and algebraic theories respectively, and the latter has the same expressive
power of (many-sorted) Lawvere theories. Since the obvious forgetful functors have left
adjoints (see [Gould, 2008]) each doctrine “contains” the weaker ones. For instance, one
has an algebraic theory for commutative monoids by taking the free algebraic theory on
1▸ ∈ sMlt, which is N▸ ∈ fpMlt (the sequential multicategory on the monoid of natural
numbers with the cartesian structure given by zero and addition).

4.1. Cartesian multicategories. Cartesian multicategories have appeared in various
guises in the literature; when considered in relation with deduction theory they are usually
called “Gentzen multicategories” (see for instance [Lambek, 1989]). The definition that
we give here follows essentially [Boardman & Vogt, 1973] and [T. Fiore, 2005] (see also
[Gould, 2008], especially for the case of operads).

Let N be the full subcategory of Set which has objects 0,1,2, . . ., with n = {1,2, . . . , n}
(so that 0 = ∅) and consider, for a multicategory M, the obvious comma category
N/objM. Now, the domain of an n-ary arrow in M is in fact a mapping α ∶ n→ objM,
that is an object of N/objM; thus, for any fixed codomain object A ∈ M we have a
mapping

obj (N/objM)→ objSet ; α ↦M(α;A) =M(A1, . . . ,An;A) .
To give a cartesian structure on M means to extend these mappings to functors

N/objM→ Set

in a way that is compatible with composition.
To illustrate such functoriality and compatibility conditions and to do calculations

in cartesian multicategories, it is convenient to make use of a graphical calculus (which
in fact we have already used in the particular case of symmetric multicategories). For
instance, if f ∶X,Y,X → U is an arrow inM and σ is the following mapping in N/objM

Y Z X

X

88

Y

]]

X

OO
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we have the arrow σf ∶ Y,Z,X → U which we denote by

Y Z X

X Y X

f

��
U

=

Y Z X

σf

��
U

Functoriality (that is the fact that mappings over objM act on hom-sets)

ρ(σf) = (ρσ)f

is illustrated by the fact that we can compose mappings over arrows. For instance,

Z X Y V

Y Z X

X Y X

f

��
U

=

Z X Y V

X Y X

f

��
U

As for the compatibility conditions with respect to composition, there are two of them.
The first one is pretty obvious:

f(σ1f1, . . . , σnfn) = (σ1 + . . . + σn)f(f1, . . . , fn)

that is, composing f with arrows fi acted upon by σi is the same as composing f with the
fi and then acting on it with the obvious “sum” of maps in N/objM. Thus, diagrams
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such as this one
E A B D C

A B A C D

g

��

t

��

h

��
X T Y

f

��
Z

can be interpreted in an unambiguous way in a cartesian multicategory.
The second compatibility condition concerns composition in the case when it is f that

is acted upon by a mapping σ:

(σf)(f1, . . . , fn) = σ′(f(fσ1, . . . , fσn))

where σ′ is a suitably defined map in N/objM, which is graphically obvious. For instance,

A B C D E F

k

��

l

��

t

��
Y Z X

X Y X

f

��
U

=

A B C D E F

E F A B E F

t

��

k

��

t

��
X Y X

f

��
U

A functor F ∶ M →M′ induces an obvious functor N/objM→ N/objM′, and maps
of cartesian multicategories are of course those functors which commute with the actions
of N/objM and N/objM′. For instance, for σ as above,
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FY FZ FX

F (σf)

��
FU

=

FY FZ FX

FX FY FX

Ff

��
FU

By defining 2-cells as in sMlt, we so obtain the 2-category fpMlt of cartesian multi-
categories, with the obvious forgetful functor U ∶ fpMlt→ sMlt.

4.2. Remark. An important special case are the actions of constant shape n→ 1, giving
“contraction” mappings on hom-sets:

γn ∶ M(A, . . . ,A;B) →M(A;B) .

If M is promonoidal, its cartesian structure is determined by its symmetric structure
and by contractions. Indeed, any σ ∶ m → n can be written as a bijection followed by a
monotone σ′ ∶ m → n, and the latter is a sum of constant mappings σ′1, . . . , σ

′

n. Now, to
know σ′f it is enough to write f as the composite f ′(f1, . . . , fn) following the pattern of
the σ′n (using promonoidality) and then to contract the fi (using the first compatibility
condition). For instance,

X Z Y

X X Y

f

��
U

=

X Z Y

X X Y

f1

��

f2

��

f3

��
R S T

f ′

��
U

4.3. Algebraic products. LetM be a cartesian multicategory. An algebraic product
of A,B ∈ M consists of an object C along with maps p ∶ C → A, q ∶ C → B and u ∶ A,B → C
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such that
C

C C

p

��

q

��
A B

u

��
C

=

C

id

��
C

(7)

A B

u

��
C

p

��
A

=

A B

A

id

��
A

A B

u

��
C

q

��
B

=

A B

B

id

��
B

(8)

The definition easily extends to any finite family A1, . . . ,An of objects. In particular,
for n = 0, an algebraic product of the empty family is an object C with a 0-ary arrow
u ∶ → C such that

C

u

��
C

=

C

id

��
C

(On the left, the 0-ary u is acted upon by a map of shape 0→ 1.)
We say that the cartesian multicategoryM has algebraic products if any finite family

of objects in M has an algebraic product.
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4.4. Universal products. Let M be a cartesian multicategory. A universal product
of A,B ∈ M consists of an object C along with maps p ∶ C → A and q ∶ C → B such
that any pair of arrows f ∶X1, . . . ,Xn → A and g ∶X1, . . . ,Xn → B with the same domain
factors uniquely as f = pt and g = qt.

The definition of course extends to any family of objects. In particular, a universal
product of the empty family is an object C such that each hom-setM(X1, . . . ,Xn;C) has
a unique element.

4.5. Proposition. For any finite family A1, . . . ,An in a cartesian multicategory M, the
following are equivalent:

1. A1, . . . ,An has an algebraic product.

2. A1, . . . ,An has a universal product.

3. A1, . . . ,An is the domain of a preuniversal arrow.

Proof. We prove the case n = 2, the other ones being similar. To prove that (1) implies
(3), we show that in an algebraic product p ∶ C → A, q ∶ C → B and u ∶ A,B → C, u is
preuniversal; that is, that any arrow f ∶ A,B → D factors uniquely as f = tu. Indeed, if
such a t ∶ C →D does exist, we have

C

t

��
D

=

C

C C

p

��

q

��
A B

u

��
C

t

��
D

=

C

C C

p

��

q

��
A B

f

��
D
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thus showing unicity. Furthermore, this t gives indeed the desired factorization:

A B

u

��
C

C C

p

��

q

��
A B

f

��
D

=

A B

A B A B

u

��

u

��
C C

p

��

q

��
A B

f

��
D

=

=

A B

A B A B

A B

id

��

id

��
A B

f

��
D

=

A B

id

��

id

��
A B

f

��
D

Similarly, to prove that (1) implies (2) we show that in an algebraic product p ∶ C → A,
q ∶ C → B and u ∶ A,B → C, p and q are the projections for a universal product. Suppose
that we have arrows (unary, for graphical simplicity) f ∶ D → A and f ∶ D → B. If they
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factor as f = pt and g = qt, then t is equal to

D

t

��
C

C C

p

��

q

��
A B

u

��
C

=

D

D D

t

��

t

��
C C

p

��

q

��
A B

u

��
C

=

D

D D

f

��

g

��
A B

u

��
C

and this t gives indeed the desired factorization:

D

D D

f

��

g

��
A B

u

��
C

p

��
A

=

D

D D

f

��

g

��
A B

A

id

��
A

=

D

D D

D

f

��
A

=

D

f

��
A

(and similarly qt = g).
In the other direction, to show that (3) implies (1), suppose that u ∶ A,B → C is

preuniversal and define p ∶ C → A and q ∶ C → B as the unique arrows fulfilling equations
(8) in the definition of algebraic product. We so get indeed an algebraic product for A
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and B, since condition (7) follows again from the preuniversality of u:

A B

u

��
C

C C

p

��

q

��
A B

u

��
C

=

A B

A B A B

u

��

u

��
C C

p

��

q

��
A B

u

��
C

=

=

A B

A B A B

A B

id

��

id

��
A B

u

��
C

=

A B

id

��

id

��
A B

u

��
C

Finally, to show that (2) implies (1), assume that p ∶ C → A and q ∶ C → B are a universal
product for A and B and let u ∶ A,B → C be the unique arrow fulfilling equations (8) in
the definition of algebraic product. That we so get indeed an algebraic product follows
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now from the universality of projections, since:

C

C C

p

��

q

��
A B

u

��
C

p

��
A

=

C

C C

p

��

q

��
A B

A

id

��
A

=

C

C C

C

p

��
A

=

C

p

��
A

and similarly with q in place of p.

Suppose now that p ∶ C → A, q ∶ C → B, u ∶ A,B → C and l ∶ E → C, r ∶ E → D,
v ∶ C,D → E are algebraic products in M. One may wonder if their “composite”

pl ∶ E → A ; ql ∶ E → A ; r ∶ E →D ; v(u,D) ∶ A,B,D → E

is again an algebraic product for A, B and D. The answer is affirmative.

4.6. Proposition. Algebraic products in a cartesian multicategory are closed with respect
to composition.
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Proof. We give the proof in the above case of composition of binary products.

E

E E E

l

��

l

��
C C

p

��

q

��

r

��

A B

u

��
C D

v

��
E

=

E

E

l��

E

C

C C

p

��

q

��

r

��

A B

u

��
C D

v

��
E

=

E

E E

l

��

r

��
C D

v

��
E

=

E

id

��
E

A B

u

��
C D

v

��
E

l

��
C

p

��
A

=

A B

u

��
C D

C

id

��
C

p

��
A

=

A B D

A B

u

��
C =

p

��
A

A B D

A

id

��
A
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(and similarly for q in place of p).

A B

u

��
C D

v

��
E

r

��
D

=

A B

u

��
C D

D

id

��
D

=

A B D

D

id

��
D

4.7. Corollary. If a cartesian multicategory M is representable then M− has finite
products. If M has algebraic products, then it is representable. Any functor F ∶ M → N
in fpMlt preserves algebraic products, preuniversal arrows and universal products that
exist in M.

Proof. The first part follows directly from Proposition 4.5, since universal products in
M are in particular products inM−. For the second part, by Proposition 4.5 every finite
family is the domain of a preuniversal arrow and by Proposition 4.6 these arrows are
closed with respect to composition. Since algebraic products are clearly preserved by
functors in fpMlt, the third part follows again from Proposition 4.5.

4.8. Finite product categories as cartesian multicategories. As sketched at
the beginning of this section, finite product categories give rise to cartesian multicate-
gories. In fact, if we denote by fpCat the category of finite product categories and finite
product preserving functors, we have:

4.9. Proposition. The category fpRep of representable cartesian multicategories is
equivalent to fpCat.

Proof. Given a finite product category C, let us fix a universal cone pi ∶ A1× . . .×An → Ai
for any finite family A1, . . . ,An. Then we define C× ∈ fpRep by

C×(A1, . . . ,An;A) = C(A1 × . . . ×An,A)

with the obvious composition and the following cartesian structure. If f ∶ A1, . . . ,An → A,
then we define σf = fσ ∶ B1, . . . ,Bm → A, where σ ∶ B1 × . . . × Bm → A1 × . . . × An
is the map such that piσ = qσi. Conversely, given a representation for M ∈ fpRep
we get, as in Proposition 4.5, a universal cone in M− for any finite family A1, . . . ,An.
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Now, it is straightforward to check that (C×)− ≅ C and that, in the other direction, we
have an isomorphism of multicategories (M−)× ≅ M which takes an arrow f ∶ A1 ×
. . . × An → A to fu ∶ A1, . . . ,An → A (where u is the corresponding universal arrow in
the representation). To show that this isomorphism respects the cartesian structure, by
Remark 4.2 we only need to check that it respects permutations and contractions, which
is also straightforward.

Both the constructions C× andM− extend to functors (recall Corollary 4.7) giving the
desired equivalence fpCat ≃ fpRep.

4.10. Corollary. For a symmetric multicategory M the following are equivalent:

1. M is cartesian and has algebraic products.

2. M is cartesian and has finite universal products.

3. M is cartesian and representable.

4. M is cartesian monoidal, that is M ≅ C× for a C ∈ fpCat.

Proof. The equivalence of the first three conditions follows from Proposition 4.5 and
Corollary 4.7, while the equivalence of the last two follows from Proposition 4.9.

4.11. Preadditive categories as cartesian multicategories. We have just seen
that the representable cartesian multicategories arise from finite product categories. Pre-
sently, we show that the sequential cartesian multicategories arise from preadditive cat-
egories. Note that, following other authors, we omit the prefix “semi” which is some-
times used to refer to commutative monoids (rather than abelian groups) enrichments.
Thus, the category preAdd of preadditive categories and additive functors is the cate-
gory cMon-Cat of categories enriched in commutative monoids. Similarly, Add is the
full subcategory of those preadditive categories with (bi)products.

4.12. Proposition. The category fpSeq of sequential cartesian multicategories is equiv-
alent to preAdd.

Proof. Giving a preadditive structure on a category C amounts to giving a cartesian
structure on C▸. Indeed, suppose that C ∈ preAdd and let f = ⟨f1, . . . , fn⟩ ∶ A1, . . . ,An → A
be an arrow in C▸. We define σf = ⟨g1, . . . , gm⟩ ∶ B1, . . . ,Bm → A by

gi = Σσk=ifk

and it is straightforward to check that (because of distributivity of composition) this is
indeed a cartesian structure on C▸.

Conversely, if C▸ has a cartesian structure the contraction mappings give a preadditive
structure on C and the processes are easily seen to be each other’s inverse. (Again, by
Remark 4.2 it is enough to check that the cartesian structures on C▸ coincide on contrac-
tions.) Thus, the equivalence (−)− ⊣ (−)▸ ∶ Cat → Seq lifts to the desired equivalence
preAdd ≃ fpSeq.
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4.13. Remark. By propositions 3.16 and 4.9, we know that a sequential (respectively,
cartesian) multicategory M is representable if, and only if, M− has finite sums (respec-
tively, products) if, and only if,M is represented by sums (respectively, products). Thus,
Proposition 4.12 makes precise the idea that preadditive categories are those categories
in which finite sums and finite products coincide, whenever they do exist (see also Corol-
lary 4.16).

4.14. Remark. For a category C ∈Cat, one has

(FC)▸ ≅ F (C▸)

where the F on the left is the usual free preadditive category functor, while that on the
right is the free cartesian multicategory functor. That is, F ⊣ U ∶ fpMlt→ sMlt restricts,
on sequential multicategories, to the usual adjunction F ⊣ U ∶ preAdd→Cat.

4.15. Comparison with classical algebraic products. It is well known (see for
instance [MacLane, 1971]) that in a preadditive category C the existence of finite products
and of finite sums are equivalent (to the additivity of C), since both of them amount to
the “algebraic” (rather than universal) notion of biproduct. We are now in a position to
show that this is just a particular case of Corollary 4.10.

4.16. Corollary. For a category C the following are equivalent:

1. C is preadditive and has algebraic biproducts.

2. C is preadditive and has finite products.

3. C is preadditive and has finite sums.

4. C has both finite products and finite sums and they coincide.

Proof. First observe that the definition of an algebraic product of A,B ∈ M becomes,
forM ≅ C▸ (C preadditive), an object C along with maps p ∶ C → A, q ∶ C → B, i ∶ A→ C
and j ∶ B → C such that

C

C C

p

��

q

��
A

i

��

B

j

��
C

=

C

id

��
C
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which, recalling that contractions in C▸ are given by sums of arrows in C, translates as

ip + jq = idC

and such that

A

i

��

B

j

��
C

p

��
A

=

A B

A

id

��
A

A

i

��

B

j

��
C

q

��
B

=

A B

B

id

��
B

which translate as

pi = idA ; pj = 0B,A ; qj = idB ; qi = 0A,B

(The same argument can be of course repeated for any finite family of objects.) Thus
equations (7) and (8) become, forM ≅ C▸, the classical equations giving algebraic biprod-
ucts. Therefore, when M is sequential the first condition of Corollary 4.10 becomes the
first condition listed above.

Now, recalling Proposition 4.12 and Remark 4.13 it is easy to see that also the other
conditions of Corollary 4.10 become, when M is sequential, the conditions listed above
which are therefore equivalent.

4.17. The additive coreflection. Our next goal is to show that the commutative
monoids functor [1▸,−] ∶ sMlt → Seq lifts to the cartesian level, giving a coreflection
[1▸,−] ∶ fpMlt→ fpSeq.

4.18. Proposition. If N is a cartesian multicategory then, for any M ∈ sMlt, [M,N]
is also cartesian in a natural way.

Proof. The cartesian structure on [M,N] is inherited pointwise from that of N . For
instance, the contraction α′ ∶ F → G of α ∶ F,F → G is given by

FA

α′A

��
GA

=

FA

FA FA

αA

��
GA
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Since the conditions for a cartesian multicategory are clearly inherited pointwise from N ,
we only have to check that α′ ∶ F → G is indeed an arrow in [M,N]:

FA FB

Ff

��
FC

FC FC

αC

��
GC

=

FA FB

FA FB FA FB

Ff

��

Ff

��
FC FC

αC

��
GC

=

=

FA FB

FA FB FA FB

FA FA FB FB

αA

��

αB

��
GA GB

Gf

��
GC

=

FA FB

FA FA FB FB

αA

��

αB

��
GA GB

Gf

��
GC
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Similarly, for weakenings we have:

FA FB HA HB

Ff

��

Hf

��
FC HC

FC

αC

��
GC

=

FA FB HA HB

FA FB

Ff

��
FC

αC

��
GC

=

=

FA FB HA HB

FA FB

αA

��

αB

��
GA GB

Gf

��
GC

=

FA FB HA HB

FA HA FB HB

FA FB

αA

��

αB

��
GA GB

Gf

��
GC

4.19. Corollary. The functor [1▸,−] gives the coreflection of fpMlt in fpSeq. Thus,
the preadditive categories are exactly those of the form cMon(M), for a cartesian multi-
category M.

Proof. By Corollary 3.9, [1▸,−] gives the coreflection of sMlt in Seq and, by Proposition
4.18, if M is cartesian so it is also [1▸,M]. Furthermore, arrows α ∶M1, . . . ,Mn →M in
[1▸,M] are arrows α⋆ ∶ A1, . . . ,An → A in M between the underlying objects (satisfying
the commutativity conditions of Remark 3.2) and σα is computed as σα⋆.

Thus, in the correspondence
C▸ →M

C▸ → [1▸,M]
the upper functor preserves the cartesian structure if, and only if, the lower one does.
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Since [1▸,−] preserves representability (by Proposition 3.17), it also gives the coreflec-
tion of fpRep ≃ fpCat in fpRep ∩ fpSeq ≃Add.

4.20. Corollary. The commutative monoids construction gives the coreflection of fpCat
in Add. Thus, the additive categories are exactly those of the form cMon(C), for a finite
product category C.

4.21. The multicategory of cartesian functors. IfM and N are cartesian mul-
ticategories, we denote by [M,N]fp the full sub-multicategory of [M,N] whose objects
are functors in fpMlt. Since the cartesian structure and sequentiality are inherited by
[M,N] from N , as well as by full sub-multicategories, it follows that [M,N]fp has a
natural cartesian structure and that it is sequential whenever N is so. More interestingly,
also representability is inherited by [M,N]fp from N .

4.22. Proposition. If M and N are cartesian multicategories and N is representable,
then [M,N]fp is also representable.

Proof. Recall from Proposition 3.17 that given functors F,G ∶ M → N and a family
of universal arrows uA ∶ FA,GA → HA, one gets a functor H ∶ M → N and an arrow
u ∶ F,G → H universal in [M,N]. Thus we only have to check that if F and G are
functors in fpMlt, then so H. Let us show for instance that H preserves the contraction
f ′ ∶ A→ B of f ∶ A,A→ B.

FA GA

uA

��
HA

HA HA

Hf

��
HB

=

FA GA

FA GA FA GA

uA

��

uA

��
HA HA

Hf

��
HB

=
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=

FA GA

FA GA FA GA

FA FA GA GA

Ff

��

Gf

��
FB GB

uB

��
HB

=

FA GA

FA FA GA GA

Ff

��

Gf

��
FB GB =

uB

��
HB

=

FA GA

Ff ′

��

Gf ′

��
FB GB

uB

��
HB

=

FA GA

uA

��
HA

Hf ′

��
HB

4.23. Remark. The following well-known facts can be seen as particular cases of the
above proposition when M is also representable or when M and N are sequential, re-
spectively:

� if C and D are finite product categories, then [C,D]fp has (pointwise) finite products;

� if C is preadditive and D is additive, then [C,D]add has a (pointwise) additive struc-
ture.

4.24. The monoidal closed structure of fpMlt. The cartesian multicategory
[M,N]fp is in fact the internal hom for a symmetric monoidal closed structure on fpMlt.
The tensor product is the free cartesian multicategory generated by the same arrows and
relations defining the monoidal structure on sMlt. The unit is F1−, the free cartesian
multicategory generated by 1−.

This monoidal structure restricts, on fpSeq ≃ preAdd, to the usual monoidal struc-
ture on cMon-enriched categories. Furthermore, the role played by 1▸ in sMlt is played
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here by F1▸ ≅ N▸, where N is the rig of natural numbers (see Remark 4.14). Indeed, we
have the following analog of Corollary 3.9.

4.25. Proposition. The functors N▸ ⊗fp − and [N▸,−]fp give respectively a reflection
and a coreflection of fpMlt in fpSeq.

Proof. The coreflection formula follows from Corollary 4.19, since

[N▸,M]fp ≅ [F1▸,M]fp ≅ [1▸,M]

As for the reflection, N▸ ⊗fpM is sequential (since it has a central monoid) and, for any
sequential L, we have natural isomorphisms

N▸ ⊗fpM→L

M→ [N▸,L]fp
M→L

Similar results concerning the reflection of Lawvere theories in annular theories are
stated in [Freyd, 1966], [Lawvere, 2004] and [Wraith, 1970]. Note that, on the other hand,
the coreflection [N▸,−]fp can not work in the single sorted context, since a single-coloured
operad may of course support several commutative monoids. This gives further evidence
to the fact that the categories sMlt and fpMlt are much more natural and effective than
their single sorted counterparts, which lack natural closed structures.
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