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ON DEFORMATIONS OF PASTING DIAGRAMS, II

TEJ SHRESTHA
D. N. YETTER

Abstract. We continue the development of the infinitesimal deformation theory of
pasting diagrams of k-linear categories begun in [8]. In [8] the standard result that
all obstructions are cocycles was established only for the elementary, composition-free
parts of pasting diagrams. In the present work we give a proof for pasting diagrams in
general. As tools we use the method developed by Shrestha [6] of simultaneously repre-
senting formulas for obstructions, along with the corresponding cocycle and cobounding
conditions by suitably labeled polygons, giving a rigorous exposition of the previously
heuristic method; and deformations of pasting diagrams in which some cells are required
to be deformed trivially.

1. Introduction

It is the purpose of this paper to extend the results of Yetter [8], generalizing classical
results of Gerstenhaber [2] and Gerstenhaber and Schack [3] on the infinitesimal deforma-
tion theory of associative algebras and poset-indexed diagrams of associative algebras to a
deformation theory for arbitrary pasting diagrams of k-linear categories, k-linear functors,
and natural transformations. In particular, in [8] the standard result that obstructions
are cocycles was established only for the simplest parts of pasting diagrams: for pasting
diagrams in which no compositions either 1- or 2-dimensional occur. In this paper we will
establish it for deformation complexes of pasting diagrams in general.

The heart of the proof is the polygonal method developed heuristically by Shrestha in
[6], in which edges of polygons are labeled with arrow-valued operations and corresponding
deformation terms in such a way that a labeled polygon will simultaneously encode a
coherence condition, a related cocycle condition, the formula for a direct-summand of an
obstruction, and the condition on that direct-summand corresponding to the requirement
that the next deformation term cobound the obstruction, depending on which indices
of deformation terms are included in a summation. We give a detailed and rigorous
description of this method and its application to the present problem in Section 5.

The exposition of this paper is not self-contained. Throughout, we assume familiarity
with the definitions, notations, constructions and results of [8]. All categories and functors
considered herein are k-linear over some fixed field k.

We wish to thank the journal’s referee for many helpful suggestions that improved our exposition.
Received by the editors 2013-03-13 and, in revised form, 2014-10-15.
Transmitted by James Stasheff. Published on 2014-10-21.
2010 Mathematics Subject Classification: Primary: 18D05, 13D03, Secondary: 18E05.
Key words and phrases: pasting diagrams, pasting schemes, deformation theory.
c© D. N. Yetter, 2014. Permission to copy for private use granted.

569



570 TEJ SHRESTHA D. N. YETTER

Along the way to proving that obstructions are closed in general, in Section 6, we will
have occasion to consider deformations of pasting diagrams in which specified functors or
natural transformations are required to be deformed trivially. Although in the present
work such conditions will be used only to reduce the problem of showing obstructions are
cocycles to simple instances – three of the examples given in Section 3 – the ability to
handle deformations subject to such restrictions could well be useful in other settings.

We will also make explicit a point overlooked in the statements and proofs of [8]
Theorems 8.2 and 8.3: the cochain maps constructed in those theorems depend on choices
of association for 2-dimenensional compositions in the pasting diagram. However, as
we establish here, the cochain maps are independent of those choices, up to algebraic
homotopy, and thus, the isomorphism type of the deformation complex for a pasting
diagram is well-defined in either the homotopy category or derived category of cochain
complexes over k.

2. Chain maps from pasting composition

At the level of the Hochschild cochain complexes C•(F,G), the interesting cochain maps
are described fully in [8]. Our purpose in this section is, rather, to describe chain maps
induced by pasting compositions on the full deformation complexes C•(D), when D is a
composable pasting diagram.

Proposition 4.5 of [8] constructs two chain maps:

If F,G : C → D, and H : D → E are functors, then there is a cochain map H∗(−) :
C•(F,G)→ C•(H(F ), H(G)) given by

H∗(φ)(f1, . . . , fn) := H(φ(f1, . . . , fn)).

Similarly if F : C → D and G,H : D → E are functors, there is a cochain map
F ∗(−) = −(F •) : C•(G,H)→ C•(G(F ), H(F )) given by

F ∗(φ)(f1, . . . , fn) = φ(F •)(f1, . . . , fn) := φ(F (f1), . . . , F (fn)).

Proposition 4.6 of [8] gives two more:

If τ : F1 ⇒ F2 is a natural transformation, then post- (resp. pre-) composition by τ
induces a cochain map τ ∗ : C•(F2, G)→ C•(F1, G) (resp. τ∗ : C•(G,F1)→ C•(G,F2) for
any functor G.

Here

τ ∗(φ) = τ ∪ φ

and

τ∗(φ) = φ ∪ τ.
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And, [8] Proposition 4.7 gives a cochain map, which ties together all of the deforma-
tions when a natural transformation, its source and target, and their common source and
target are deformed simultaneously:

Let σ : F ⇒ G be a natural transformation between k-linear functors F,G : A → B.

Let C•(A
F

G B) denote the cone on the cochain map[
F∗ −F ∗
G∗ −G∗

]
: C•(A)⊕ C•(B)→ C•(F )⊕ C•(G).

The cochain groups are

C•(A
F

G B) := C•+1(A)⊕ C•+1(B)⊕ C•(F )⊕ C•(G)

with coboundary operators given by

d
A

F
GB

=


−dA 0 0 0

0 −dB 0 0
−F∗ F ∗ dF 0
−G∗ G∗ 0 dG


Proposition 4.71 was then

Let σ : F ⇒ G be a natural transformation, then

σ‡ :=
[

0 (−){σ} σ∗ −σ∗
]

: C•(A
F

G B)→ C•(F,G)

is a cochain map.

In [8] the chain maps of [8] Propositions 8.1, 8.2 and 8.3 were used only to construct
the deformation complex of a k-linear pasting diagram in the sense of [8] Definition 2.12.
In fact, they can be assembled into chain maps from the deformation complex of a com-
posable pasting diagram to the simpler pasting diagram in which the compositions have
been carried out. Propositions 2.1, 2.2 and 2.3 give the map explicitly in the cases of
a single 2 composition, precomposition of a natural transformation by a functor, and
postcompostion of a natural transformation by a functor, respectively.

In each case the proof begins by collecting the maps from the Propositions of [8] with
values in the direct summands corresponding to cells of the pasting diagram in which
the compositions have been performed, together with identity maps for those cells which
remain from the original diagram, and arranging their summands in the correct places of
a matrix of maps. What is indicated in the sketches of proofs following each proposition
are the main difficulties in the unedifying calculation which shows that the result is, in
fact, a chain map between the deformation complexes.

1The negative sign on σ∗ was omitted in the statement of the Proposition, in [8], though it is plainly
present in the proof.
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2.1. Proposition. Let F,G,H : A → B be k-linear functors, and σ : F ⇒ G and
τ : G⇒ H be natural transformations. Let D be the pasting diagram consisting of both σ
and τ and their (iterated) sources and targets, and let D′ be the pasting diagram consisting
of the 2-dimensional composition στ and its (iterated) sources and targets. Then there is
a chain map

◦•2 : C•(D)→ C•(D′)

induced by the 2-dimensional composition.
In particular if the summands of C•(D) (resp. C•(D′)) are given in the order

C•+2(A)⊕ C•+2(B)⊕ C•+1(F )⊕ C•+1(G)⊕ C•+1(H)⊕ C•(F,G)⊕ C•(G,H)

(resp.

C•+2(A)⊕ C•+2(B)⊕ C•+1(F )⊕ C•+1(H)⊕ C•(F,H) )

◦•2 is given by 
IdC•+2(A) 0 0 0 0 0 0

0 IdC•+2(B) 0 0 0 0 0
0 0 IdC•+1(F ) 0 0 0 0
0 0 0 0 IdC•+1(H) 0 0
0 (−){σ, τ} 0 0 0 τ∗ σ∗


Proof. (Sketch) The only subtlety in the completely computational verification that this
is a chain map involves one coordinate in which a relation of the sort in Gerstenhaber
and Voronov [4] or the proof of Proposition 4.7 in [8] is needed.

2.2. Proposition. Let F : A → B and G,H : B → C be k-linear functors, and σ :
G⇒ H be a natural transformation. Let D be the pasting diagram consisting of σ and its
(iterated) sources and targets together with F and A, and let D′ be the pasting diagram
consisting of the 1-dimensional composition σF and its (iterated) sources and targets.
Then there is a chain map

◦•1,l : C•(D)→ C•(D′)

induced by the 1-dimensional composition.
In particular if the summands of C•(D) (resp. C•(D′)) are given in the order

C•+2(A)⊕ C•+2(B)⊕ C•+2(C)⊕ C•+1(F )⊕ C•+1(G)⊕ C•+1(H)⊕ C•(G,H)

(resp.

C•+2(A)⊕ C•+2(C)⊕ C•+1(G(F ))⊕ C•+1(H(F ))⊕ C•(G(F ), H(F )) )
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◦•1,l is given by 
IdC•+2(A) 0 0 0 0 0 0

0 0 IdC•+2(C) 0 0 0 0
0 0 0 G∗ F ∗ 0 0
0 0 0 H∗ 0 F ∗ 0
0 0 0 0 0 0 F ∗


Proof. (Sketch) Here the “hardest” verification is a coordinate which vanishes by the
naturality of σF .

2.3. Proposition. Let F,G : A → B and H : B → C be k-linear functors, and σ :
F ⇒ G be a natural transformation. Let D be the pasting diagram consisting of σ and its
(iterated) sources and targets, together with H and C, and let D′ be the pasting diagram
consisting of the 1-dimensional composition τ = H(σ) and its (iterated) sources and
targets. Then there is a chain map

◦•1,r : C•(D)→ C•(D′)

induced by the 2-dimensional composition.
In particular if the summands of C•(D) (resp. C•(D′)) are given in the order

C•+2(A)⊕ C•+2(B)⊕ C•+2(C)⊕ C•+1(F )⊕ C•+1(G)⊕ C•+1(H)⊕ C•(F,G)

(resp.

C•+2(A)⊕ C•+2(C)⊕ C•+1(H(F ))⊕ C•+1(H(G))⊕ C•(H(F ), H(G)) )

◦•1,r is given by 
IdC•+2(A) 0 0 0 0 0 0

0 0 IdC•+2(C) 0 0 0 0
0 0 0 H∗ 0 F ∗ 0
0 0 0 0 H∗ G∗ 0
0 0 0 0 0 (−){σ} H∗


Proof. (Sketch) Here, almost all of the coordinates in the bottom row present some
minor “difficulty”, one depends on a Gerstenhaber-Voronov-style relation, while most
of the others require unpacking the definitions of pullback or pushforward maps along
functors and natural transformations to see some commutativity relation between them.
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3. Deformation complexes for some shapes of commutative pasting dia-
grams and a note on 2-associativity

In this section we use the cochain maps of the previous section to give explicit examples
of deformation complexes associated to four particular shapes commutative pasting di-
agrams. Examples 3.1, 3.5, and 3.6 are shapes of commutative diagrams to which the
proof of our main theorem, Theorem 7.3, reduces the general problem of showing that ob-
structions are cocycles. With the fourth, Example 3.4, we see that cochain maps induced
by two different associations of the 2-dimensional composition are not actually equal, but
only chain homotopic (or, to put it another way, are not equal in the abelian category of
cochain complexes, but are in the homotopy category of cochain complexes and thus a
fortiori in the derived category). Additional explicit examples of deformation complexes
are provided in Appendix A.

We note that it is only in commutative pasting diagrams that the effect of the com-
positions of 2-arrows evident: if no commutativities are enforced, the iterative cone con-
struction given explicitly in [8] Proposition 4.7 suffices to describe the entire structure of
the deformation complex of the pasting diagram, as indeed it does in the case of commu-
tative pasting diagrams in which no compositions occur (for example, the commutative
“pillow”2 consisting of two categories a pair of parallel functors between them, and two
copies of the same natural transformation between the functors). Only when compositions
are involved do the cochain maps of the previous section play a role.

In what follows, we leave zero entries in matrices of maps giving coboundaries blank,
as this seems to improve readability.

We begin with the simplest example, the commutative “pillow” with triangular cross-
section shown in Figure 1.

3.1. Example. Consider the pasting diagram given by three functors F,G,H : A → B
and three natural transformations σ : F ⇒ G, τ : G ⇒ H and υ : F ⇒ H , with the
obvious 0-, 1- and 2-cells and a single 3-cell enforcing the condition στ = υ.

The deformation complex of the pasting diagram is then given by

C•+3(A)⊕ C•+3(B)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+1(F,G)⊕ C•+1(G,H)

⊕C•+1(F,H)⊕ C•(F,H)

with coboundary given by

2We informally refer to commutative pasting diagrams which have bigons as faces or cross-sections as
“pillows” because of the fact that an embedding of them in 3-space with a convex 3-cell would resemble
a pillow formed by cloth occupying the 2-cells and stitched along the 1-cells.
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A B

F

G

H

⇓ σ

⇓ τ

⇓ υ
R

�
j

Figure 1: Commutative “pillow” asserting the equality of στ and υ. υ is depicted over-
lapping with the arrow of the intermediate functor to indicate that the 2-cell carrying it
lies behind or in front of it and the 2-cells carrying σ and τ .



−dA
−dB

−F∗ F ∗ dF
−G∗ G∗ dG
−H∗ H∗ dH

(·){σ} σ∗ −σ∗ −dF,G
(·){τ} τ∗ −τ ∗ −dG,H
(·){υ} υ∗ −υ∗ −dF,H

(·){σ, τ} τ∗ σ∗ −Id dF,H


Note that here we have chosen to consider the composition στ to be the source of the

3-cell and the single natural transformation υ to be the target. For the opposite choice the
complex would be the same, except that the non-diagonal entries of the last row would
be negated.

The complex C•(P ) of Example 3.1 is related to the map Φ of Proposition 2.1 by

3.2. Proposition. C•(P ) is quasi-isomorphic to the (dual) mapping cylinder on Φ.

Proof. This follows immediately by applying the following general lemma about (dual)
mapping cylinders of chain maps between mapping cones.
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3.3. Lemma. Let f : C• → A• and g : C• → B• be chain maps, and suppose φ :
cone(f)→ cone(g) is a chain map between their mapping cones of the form

φ =

[
IdC•
σ τ

]
.

Then the (dual) mapping cylinder on φ, cone(f)[1]⊕ cone(g)[1]⊕ cone(g) with differ-
ential given by  −dcone(f) −dcone(g)

−φ Idcone(g) dcone(g)

 ,
is quasi-isomorphic to C•+2 ⊕ A•+1 ⊕B•+1 ⊕B• with differential given by

−dC
f dA
g dB
−σ −τ IdB −dB

 .
Proof. Include the last complex into the (dual) mapping cylinder by (c, a, b, b′)T 7→
(c, a, c, b, 0, b′)T , the cokernel is plainly isomorphic to cone(IdC[1]), which is acyclic, so the
subcomplex is quasi-isomorphic to the (dual) mapping cylinder as claimed.

Another commutative pasting diagram in which only 2-dimensional compositions oc-
cur, a “pillow with square cross-section,” asserting the equality between a composition
of three natural transformations and a fourth, shows that deformation complexes are,
in fact, well-defined even up to isomorphism, only in the homotopy category or derived
category.

3.4. Example. Consider the pasting diagram given by four functors F,G,H,K : A → B
and four natural transformations σ : F ⇒ G, τ : G ⇒ H, υ : H ⇒ K and χ : F ⇒ K,
with the obvious 0-, 1- and 2-cells and a single 3-cell enforcing the condition στυ = χ.

The deformation complex of the pasting diagram is then given by

C•+3(A)⊕ C•+3(B)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)⊕ C•+1(F,G)

⊕C•+1(G,H)⊕ C•+1(H,K)⊕ C•+1(F,K)⊕ C•(F,K)

with coboundary given by
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

−dA
−dB

−F∗ F ∗ dF
−G∗ G∗ dG
−H∗ H∗ dH
−K∗ K∗ dK

(·){σ} σ∗ −σ∗ −dF,G
(·){τ} τ∗ −τ ∗ −dG,H
(·){υ} υ∗ −υ∗ −dH,K
(·){χ} χ∗ −χ∗ −dF,K
ψσ,τ,υ τ∗υ∗ σ∗υ∗ (στ)∗ −Id dF,H


where ψσ,τ,υ := υ∗(·){σ, τ}+ (·){στ, υ}

Now, observe that in this example, we made a choice: we computed the bottom row,
and in particular the map ψσ,τ,υ by left-associating σ, τ and υ. Had we right-associated
them, the bottom row, other than ψσ,τ,υ would have remained the same (though it would
have been more natural to write (τυ)∗, υ∗σ

∗ and τ ∗σ∗ as the names for the other maps).
The second entry, rather than being ψσ,τ,υ would have been

ψ̃σ,τ,υ := σ∗(·){τ, υ}+ (·){σ, τυ}
.

Now, it is easy to see that the chain maps from

C•+3(A)⊕ C•+3(B)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)

⊕C•+1(F,G)⊕ C•+1(G,H)⊕ C•+1(H,K)⊕ C•+1(F,K)

to C•(F,H) given by the entries of the bottom row other than dF,H are not equal, and
their difference has a single non-zero entry ψσ,τ,υ − ψ̃σ,τ,υ. There is however a contracting
homotopy for this difference, given by the map with all but the second entry zero, and
that entry given by (·){σ, τ, υ}, due to the relationship between the brace and coboundary
discovered in the classical case by Gerstenhaber and Voronov [4] and seen to apply in the
categorical setting in [8]. Thus in the homotopy category (or the derived category, if one
prefers) our choice of left-association was a matter of indifference.

Two shapes of pasting diagrams involving 1-dimensional composition are also needed
in the proof of Theorem 7.3.

3.5. Example. Consider the pasting diagram consisting of three categories A, B and C,
three functors F,G : A → B and H : B → C, two natural transformations σ : F ⇒ G and
τ : H(F )⇒ H(G) and a single 3-cell enforcing the condition that H(σ) = τ .

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)
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⊕C•+1(F,G)⊕ C•+1(H(F ), H(G))⊕ C•(H(F ), H(G))

with coboundary given by



−dA
−dB

−dC
−F∗ F ∗ dF
−G∗ G∗ dG

−H∗ H∗ dH
(·){σ} σ∗ −σ∗ −dF,G

(·){τ} τ∗(H∗) −τ∗(H∗) −τ∗(G∗) + τ∗(F
∗) −d(H(F ),H(G))

(·){σ} H∗ −Id d(H(F ),H(G))



3.6. Example. Consider the pasting diagram consisting of three categories A, B and C,
three functors F : A → B and G,H : B → C, two natural transformations σ : G ⇒ H
and τ : G(F )⇒ H(F ) and a single 3-cell enforcing the condition that σF = τ .

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)

⊕C•+1(F,G)⊕ C•+1(G(F ), H(F ))⊕ C•(G(F ), H(G))

with coboundary given by



−dA
−dB

−dC
−F∗ F ∗ dF

−G∗ G∗ dG
−H∗ H∗ dH

(·){σ} σ∗ −σ∗ −dF,G
(·){τ} τ∗(G∗) −τ∗(H∗) τ∗(F

∗)− τ∗(F ∗) −d(G(F ),H(F ))

F∗ −Id d(G(F ),H(F ))



4. Constructing larger deformation complexes from smaller

First, observing that the map ℘σD is simply the identity in the case where the composable
pasting diagram D is simply the 2-cell σ (with its sources and targets), and that the (dual)
mapping cylinder on a map is the cone on the direct sum of the map and the identity on
its target we have
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4.1. Proposition. If D is a pasting diagram with a single 3-cell, the boundary of which
has domain (resp. codomain) which is a composable pasting diagram D′ and codomain
(resp. domain) which is a single 2-cell, then C•(D) is quasi-isomorphic to the (dual)
mapping cylinder of the map of Proposition 8.3 of [8] induced by the composition.

Observe this is a generalization of Proposition 3.2 and in special instances relates the
(dual) mapping cylinder of the map in Proposition 2.3 (resp. 2.2) to the complex of
Example 3.5 (resp. 3.6).

The following is a trivial observation about the deformation complex constructed in
Proposition 8.3 of [8] and the remarks following:

4.2. Proposition. If D = D1 ∪ D2 is a pasting diagram which is the union of pasting
diagrams D1 and D2, then the deformation complex C•(D) is the pushout of the induced
inclusions of deformation complexes C(ιi) for ιi : D1 ∩D2 → Di, i = 1, 2.

5. The polygonal method

In [6] Shrestha developed a method of using polygons with edges labeled by arrow-valued
operations to simultaneously encode cocycle conditions, the formulas for obstructions,
and the condition that the next term of a deformation cobound the obstruction. Suitable
cell-decompositions of the surface of a 2-sphere into such polygons and “trivial” polygons
which encode tautologous equalities in place of cocycle conditions and zero (as a difference
of identical sums) in place of an obstruction, then provide a convenient method of proof
for standard obstructions-are-cocycle results.

As an example, consider the cocycle conditions, formulas for obstructions, and cobound-
ing conditions in the case of the deformation of composition, writing the undeformed
composition as µ(0) to match the notation for the degree n deformation term as µ(n)εn:

The cocycle condition is, of course,

δ(µ(1))(a, b, c)

= µ(0)(µ(1)(a, b), c)− µ(0)(a, µ(1)(b, c)) + µ(1)(µ(0)(a, b), c)− µ(1)(a, µ(0)(b, c))

=
∑

i+j=1,i,j∈{0,1}

µ(i)(µ(j)(a, b), c)− µ(i)(a, µ(j)(b, c))

= 0

The formula for the degree n obstruction is

ω(n)(a, b, c) =
∑

i+j=n,i,j∈{0,...,n−1}

µ(i)(µ(j)(a, b), c)− µ(i)(a, µ(j)(b, c))

.
And the condition that µ(n) cobounds ω(n) is
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a(bc)
// ◦

.
ab

//

bc

OO

(ab)c.

OO .

Figure 2: Square encoding associativity and related cocycle condition, obstructions and
cobounding conditions

ω(n)(a, b, c)− δ(µ(n))(a, b, c) =
∑

i+j=n,i,j∈{0,...,n}

µ(i)(µ(j)(a, b), c)− µ(i)(a, µ(j)(b, c))

= 0

Now consider the square, with oriented edges labeled by the compositions occurring
in the expression of the associativity of composition, shown in Figure 2.

Each of the above formulas can be obtained from (or represented by) the square by
adding all possible terms obtained by assigning degrees to the edges in such a way that the
degrees are chosen from a particular set and the sum of degrees along each of the oriented
parts of the boundary has a specified value, and taking the difference of the expressions
thus obtained for each of the oriented parts of the boundary.

Gerstenhaber’s proof [2] that obstructions to the deformation of an associative algebra
are Hochschild cocycles can then be described in terms of the cube of Figure 3 by first
noting that the formula for the coboundary of the degree n obstruction can be written as
a signed sum of the obstruction-type expressions (with the edge-degrees ranging from 0
to n− 1), five faces representing the usual terms of the coboundary, and one representing
0, “prolonged” by pre- or post-composing with the degree 0 label on another edge so that
all of the expressions represent compositions of terms from the deformation of an iterated
composition of all four maps, and thus, all representing parallel maps, can all be added.

The proof then proceeds by iteratively “clearing” edges shared by two squares with
the same sign by rewriting terms involving that edge’s label contributed by one square
using the cobounding and cocycle condition from the other square sharing the edge until
the expression is reduced to two copies of the obstruction-type expression on the hexagon,
which in Figure 3 is formed by the outer boundary of the plane drawing of the cube.

This observation, that Gerstenhaber’s proof can be encoded by such a figure, then
motivates a sequence of definitions and lemmas that allow for similar encoding of more
general and complex proofs of the same sort. Shrestha’s technique [6] is most quickly and
rigorously described by labeling 1-cells of certain pasting schemes and computads (cf. [7],
[5], [8]) with well-formed expressions in a particular (essentially) algebraic theory:
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.
((ab)c)d

// �

.

(ab)c

BB

cd // .

(ab)(cd)

AA

.

a(bc)

OO

(bc)d
// .

a(b(cd))

OO

◦

ab

OO

bc

AA

cd // .

b(cd)

AA

ab

OO

Figure 3: Cube encoding Gerstenhaber’s proof that obstructions to deformation of an
associative algebra are cocycles.
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5.1. Definition. A directed polygon P is a 2-computad with a single 2-cell, all of whose
0- and 1-cells lie in the boundary of the 2-cell.

A whiskered polygon W is a 2-computad with a single 2-cell P , whose underlying
1-computad is the union of two 1-dimensional pasting schemes (directed paths), with the
same 0-domain and 0-codomain, whose underlying cell complex is contractible. We refer
to the 1-dimensional pasting scheme consisting of the path from the 0-domain of W to
the 0-domain of P as the domain whisker (note: it may be simply a 0-cell), and the
1-dimensional pasting scheme consisting of the path from the 0-codomain of P to the
0-codomain of W as the codomain whisker (again it may simply be a 0-cell).

A tiled sphere is a 3-computad with a single 3-cell, all of whose 0-, 1- and 2-cells lie
in the boundary of the 3-cell.

In applying the method in a given circumstance, one needs to label the edges of tiled
spheres with arrow-valued operations from a theory associated to the pasting diagram (or
more general structure). For the present application the following suffice:

5.2. Definition. To any pasting diagram D, theory of D, T(D), is the essentially al-
gebraic theory with types OC and AC for each category C in the diagram (the objects of C
and the arrows of C respectively) and operations

• IdC(−) of arity OC and type AC,

• sC and tC of arity AC and type OC, and

• mC of arity AC t×s AC and type AC

for each category C in D;

• FO of arity OC and type OD and

• FA of arity AC and type AD

for each functor F : C → D in D; and

• σ of arity OC and type AD

for each natural transformation σ : F ⇒ G for F,G : C → D in D;

and with axioms the equations expressing the axioms of categories for each 6-tuple

(OC, AC, IdC, sC, tC,mC),

the functoriality of each (FO, FA) and the naturality of each σ.

We term operations of type AC for any C “arrow-valued” and those of type OC for
any C “ object-valued”, and refer to the model of T(D) given by D as the “tautologous
model”. In other applications of the method, as in [6] T(D) may be replaced with an
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extension of the theory (for instance including operations of arity AC×AC and type AC�C
encoding monoidal product of two arrows). We conjecture that broader generalizations,
for instance to deformations of n-tuple categories and (weak) n- categories with a k-linear
structure on their n-arrows, and to suitable pasting diagrams of these, or even to models
of other sorts of essentially algebraic theories (cf. [1]) with appropriate linearizations of
parts of the structure, can be described, but do not pursue this possibility here.

Notice a subtlety in the description of the axioms of T(D) in Definition 5.2: the axioms
are only those inherited from the axioms of categories, functors and natural transforma-
tions. In the Definition 5.3, on the contrary, all of the equations which hold in the diagram
D are enforced.

5.3. Definition. The theory of parallels P(D) for a pasting diagram D is the essentially
algebraic theory with the same types and object valued operations as T(D) and with arrow-
valued operations given by all set functions π with the same domain and codomain as
the instantiation of an arrow-valued operation ω of T(D) in the tautologous model and
satisfying s(π) = s(ω) and t(π) = t(ω) (we call π a parallel for ω), and all equations that
hold among (iterated generalized) compositions of these functions as axioms.

Notice in neither definition did we include any addition or scalar multiplication op-
erations induced by the k-linear structure on the categories, even though we are only
applying these constructions to pasting diagrams of k-linear categories, k-linear functors
and natural transformations. However, when applied to such a pasting diagram, the vec-
tor space structure on the hom-sets induces a vector space structure on the set of parallels
for any arrow-valued operation ω of T(D).

Given a stock of variables of each type in the theory it is evident what is meant by a
well-formed formula (wff) of the theory.

We now make some technical definitions:

5.4. Definition. An equivalent of a wff is any wff of the same type in the same variables
such that for every instantiation of the variables in the two formulas, the values are equal.

In what follows, for brevity we will refer to well-formed subformulas, or sub-wffs, of
a wff as swffs. When considered as swffs of a fixed wff W , repetitions of equal wffs are
considered distinct swffs. With this convention, the following (a generality about swffs of
a wff in any formal system) is immediate:

5.5. Proposition. The swffs of a wff W form a partially ordered set Σ(W ) under U ≤ V
when U is a swff of V , and the incidence diagram of Σ(W ) is a tree. Thus Σ(W ) admits
a natural number valued depth function d for which d(W ) = 0 and whenever V covers U ,
d(U) = d(V ) + 1. The minimal elements (in the order-theoretic sense, not just those of
maximum depth) for Σ(W ) are instances of variables. We denote the subposet of non-
minimal swffs of W by Σ(W )◦

5.6. Definition. A well-formed labeling of a whiskered polygon (resp. tiled sphere) is
an assignment e 7→ λe to each directed 1-cell of arrow-valued wff in T(D) for some pasting
diagram (or an appropriate extension of this theory) with the properties



584 TEJ SHRESTHA D. N. YETTER

WF0 Edges are not labeled with variables (i.e. all labels involve an operation in the theory).

WF1 For each 1-pasting scheme (directed path) e1, e2, . . . en from the 0-domain of the
whiskered polygon (resp. tiled sphere) the labels λe1 , . . . , λen can be iteratively re-
placed, beginning at the 0-codomain, with labels λ̃e1 , . . . , λ̃en such that

WF1a If the only proper swffs of λei are variables then λ̃ei = λei.

WF1b For all i λ̃ei is equivalent to λei.

WF1c In the list of replacement labels λ̃e1 , . . . , λ̃en, for each λ̃ei, if κ is a wff occurring
m times as a non-minimal swff of λ̃ei, then there exist m distinct j’s with j < i
such that λ̃ej = κ.

WF2 If e1, e2, . . . en is a maximal directed path in a whiskered polygon (resp. tiled sphere),
the replacement labels λ̃e1 , . . . , λ̃en are precisely the non-minimal swffs of λ̃en.

WF3 For every 2-cell, and every maximal extension of the 2-cell to a whiskered polygon,
the labels of the final edges of the two paths from the 0-domain to the 0-codomain of
the whiskered polygon are equivalents. (Note this condition is vacuously true unless
the 0-codomain of the 2-cell is the 0-codomain of the whiskered polygon.)

The following is then immediate:

5.7. Proposition. For any maximal path e1, e2, . . . en in a whiskered polygon (resp. tiled
sphere) the totally ordered set of wff’s {λ̃e1 ≤ . . . ≤ λ̃en} is a totalization of the partially
ordered set Σ(λ̃en)◦.

An example of a well-formed labeling of a tiled sphere is given in Figure 4. (The bound-
aries of the two octogons bordering the unbounded region should be identified along the
edges with the same labels, and the 3-cell inserted to fill the resulting topological sphere.)
This particular example arises in applying the method to show that the obstructions to
deforming (the arrow part of) a functor, when the compositions in its source and target
categories are also being deformed, are cocycles. Note that in the labeling, at one point
notation has been abused and F (abc) has been used in place of either of the equivalent
wffs F ((ab)c) or F (a(bc)). It is also easy to see along which paths the label-replacement
axiom WF1 results in non-trivial replacements of labels (as, for instance along any path
ending in the top right-most edge in which F (b)F (c) occurs, rather than F (bc): the label
of the top right-most edge must be replaced with F (a)(F (b)F (c))).

Now each arrow-valued operation is a part of the algebraic structure which is subject
to infinitesimal deformation, by being replaced by a formal power-series (or polynomial
in ε with εn = 0 for some n) whose coefficients are arrow-valued operations of the same
type and arity (e.g. the arrow part of a functor F : C → D is replaced with F̃ =

∑
F (n)εn

where for each a ∈ Arr(C), F (n)(a) is a map from s(F (a)) to t(F (a))). From this, we
abstract
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F (ab)

F (a)

F (b)

F (a)F (b)

F (ab)F (c)

F (c)

F (a)F (bc)

F (c)

F (a) bc

F (bc)

F (c)
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F (bc)ab

F (ab)

F (ab)F (c)

F (a)F (bc)

ab
F (a)

F (c)

bc

a(bc)

(ab)c

F (a(bc))

T

T

T

F (b)F (c)

Figure 4: A well-formed labeling of a tiled sphere associated to the deformation of a
functor. Faces marked T are trivial in the informal sense of the discussion at the beginning
of this section and are the 2-cells of whiskered polygons trivial in the rigorous sense given
by Proposition 5.14.
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5.8. Definition. Consider any set of arrow-valued operations O in T(D) for some D.
Fix n ∈ N∪{∞}. To each arrow-valued operation ψ ∈ O associate a sequence of parallels
ψ(k) in the sense of Definition 5.3 (truncated at k = n if n <∞) with ψ(0) = ψ. We call
ψ(k) the degree k parallel of ψ, and a choice On of such a sequence for every operation in
O, a degree n family of parallels for O

Now, for any well-formed labeling of a whiskered polygon or tiled sphere, let O be
the set of all arrow-valued operations occurring in the labels of the edges, closed under
equivalence. Every family of parallels for O, then gives rise to many labelings of the
maximal paths of the whiskered polygon or tiled sphere by wffs from P(D) by replacing
the labels along the path using WF1, then for each edge, choosing a degree, k, and
replacing the last-applied operation ψ in the label on that edge with ψ(k) in the label for
that edge and all edges later in the path for which the label on the given edge as a swff.

In particular, any such choice of degrees for each edge along a path from the 0-domain
to the 0-codomain creates a new wff in P(D). Suppose the sequence of labels on a maximal
path was f1, f2, . . . , fn, where each fi denotes a well-formed expression all of whose iterated
inputs have an equivalent among the labels earlier in the sequence, and by abuse of notion
also that well-formed expression’s last-applied operation. A choice of degrees i1, i2, . . . , in
then produces a new sequence of well-formed expression f

(i1)
1 , f

(i2)
2 , . . . , f

(in)
n in which each

instance of an operation has been replaced with its parallel of the chosen degree in that and
all later edge-labels. Note: in general these new labelings are not well-formed labelings.

At this point, again recall that all of this is taking place in a linear setting, so that
parallel arrows (and thus parallels) can be added. We will now define several different
expressions which a system of parallels associates to a whiskered polygon.

5.9. Definition. For any well-formed labeling of a whiskered polygon W , O the set
of operations occurring in the replacement labelings of both paths, and On a family of
parallels for O, let f1, . . . , fk (resp. g1, . . . , g`) be the replacement labeling on the maximal
path which traverses domain (resp. codomain) of the 2-cell.

The cocycle-type condition associated to W is the equation∑
i1,...,ik∈{0,1}
i1+...+ik=1

f
(i1)
1 , f

(i2)
2 , . . . , f (ik)

n −
∑

j1,...,j`∈{0,1}
j1+...+j`=1

g
(j1)
1 , g

(j2)
2 , . . . , g

(j`)
` = 0.

The mth order obstruction-type expression associated to W is the expression∑
i1,...,ik∈{0,...,m−1}
i1+...+ik=m

f
(i1)
1 , f

(i2)
2 , . . . , f (ik)

n −
∑

j1,...,j`∈{0,...,m−1}
j1+...+j`=m

g
(j1)
1 , g

(j2)
2 , . . . , g

(j`)
` .

And, the mth order cobounding-type condition associated to W is the expression∑
i1,...,ik∈{0,...,m}
i1+...+ik=m

f
(i1)
1 , f

(i2)
2 , . . . , f (ik)

n −
∑

j1,...,j`∈{0,...,m}
j1+...+j`=m

g
(j1)
1 , g

(j2)
2 , . . . , g

(j`)
` = 0.
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In each case, the string of parallels should be understood as naming the well-formed ex-
pression obtained by the iterated substitution of the named parallel for the corresponding
operation in the well-formed expression labeling the last edge of the path.

The following then provides the basis for Shrestha’s method:

5.10. Proposition. For any well-formed labeling of a tiled sphere T with 3-cell C, O
the set of operations occurring in the replacement labelings of all paths, and On a family
of parallels for O, the domain (resp. codomain) of C can be expressed as the union of
whiskered polygons with the same 0-domain and 0-codomain as T , one with each 2-cell
in dom(C) (resp. cod(C)) as its 2-cell in such a way that the sum of the mth order
obstruction-type expressions for the whiskered polygons is the mth order obstruction-type
expression for the (whiskered) polygon consisting of a single 2-cell and the union of the
1-pasting schemes dom(dom(C)) = dom(cod(C)) and cod(dom(C)) = cod(cod(C)).

Proof. Once the combinatorial structure of Power’s proof of the uniqueness of pasting
compositions [5] is recalled, the result is immediate – sums cancel in pairs leaving only
the difference giving the desired mth order obstruction-type expression.

Unfortunately, as it stands, the result is not immediately applicable. Recall the cube
encoding Gerstenhaber’s proof. Any face is part of a whiskered polygon (with one whisker
having one edge, and the other having none). The mth order obstruction is given by∑

i,j∈{0,...,m−1}
i+j=m

µ(i)(µ(j)(a, b), c)−
∑

i,j∈{0,...,m−1}
i+j=m

µ(i)(a, µ(j)(b, c))

The terms in its coboundary are not mth order obstruction-type expressions associated
to the faces of their cubes with their whiskers. The mth order obstruction type expressions
are, instead, instances of µ(0) = µ with the obstruction and a variable as inputs, or
instances of the obstruction with one of its variables replaced with µ(0) = µ applied to
two variables. What then is the relationship between actual mth order obstructions and
mth order obstruction-type expressions?

If one considers one of the whiskered polygons in the example, it is easy to see that
the terms in the mth order obstruction-type expression which do not correspond to terms
from the coboundary of the obstruction have a label of positive degree on the edge of the
whisker. If we fix the label on the whisker edge to be of degree d > 0, the terms with
this label are then the condition that µ(m−d) cobounds the degree m − d obstruction (or
the cocycle condition if m− d = 1) with µ(d) of two variables as argument (resp. used as
input to an instance of µ(d)) when the non-trivial whisker is the domain (resp. codomain)
whisker.

In this case, provided the system of parallels is describing the terms of an associative
deformation, the mth order obstruction-type expression is thus equal to the corresponding
term in the coboundary of the mth order obstruction, since its extra terms all vanish by
the cocycle and cobounding conditions.
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To imitate this in general, we need conditions depending only on the labels on the
domain and codomain of the 2-cell in a whiskered polygon which ensures that the cocycle-
and cobounding-type conditions in all lower degrees hold.

As in Definition 5.9 consider a whiskered polygon W with 2-cell P and let f1, . . . , fk
(resp. g1, . . . , g`) be the replacement labeling on the maximal path which traverses domain
(resp. codomain) of P . Suppose the first s edges lie in the domain whisker. In this case,
for i ≤ s, fi and gi are equivalents, and the orderings on the edge labels of the domain
whisker induced by restricting the partial orderings on Σ(fk) and Σ(g`) coincide. Let
(D,≤) be the resulting partially ordered set of equivalence classes of wffs.

5.11. Definition. Given a well-formed labeling of a whiskered polygon W with 2-cell P ,
let O be the set of operations occurring in the replacement labelings of both paths, and On

a family of parallels for O. Recall that P(W ) is the theory of parallels for W (and thus
includes the elements of On. Let s and (D,≤) be as in the discussion above. And suppose
the last t edges of each path lie in the codomain whisker.

The mth order strong vanishing condition associated to W (for m ≥ 0) is the condition
that

∀Φ1, . . .Φt

∑
is+1,...,ik−t∈{0,...,m}
is+1+...+ik−t=m

f̂
(is+1)
s+1 , f̂

(is+2)
s+2 , . . . , f̂

(ik−t)
k−t ,Φ1, . . .Φt−

∑
js+1,...,j`−t∈{0,...,m}
js+1+...+j`−t=m

ĝ
(js+1)
s+1 , ĝ

(js+2)
s+2 , . . . , ĝ

(j`−t)
`−t ,Φ1, . . .Φt = 0.

where the hatting of wffs indicates the result of the following process: for each maximal
element of (D,≤) select a variable of the same type which does not occur in among the
variables used in the labeling; the hatted wff is the result of replacing all swffs in that
equivalence class with the corresponding variable; and the universal quantification ranges
over all parallels in P(W ) to the labels on the corresponding edge of the codomain whisker.

We then have

5.12. Proposition. For any well-formed labeling of a whiskered polygon W with oper-
ations O and a family of parallels On, the 1st order strong vanishing condition implies
the cocycle-type condition, the pth order strong vanishing condition implies the pth order
cobounding-type condition, and, moreover, if the pth order vanishing conditions hold for
all 0 ≤ p < m, then the mth order coboundary-type expression is equal to

∑
is+1,...,ik−t∈{0,...,m−1}
is+1+...+ik−t=m

f1, . . . , fs, f
(is+1)
s+1 , f

(is+2)
s+2 , . . . , f

(ik−t)
k−t , fk−t+1, . . . , fk−

∑
js+1,...,j`−t∈{0,...,m−1}
js+1+...+j`−t=m

g1, . . . , gs, g
(js+1)
s+1 , g

(js+2)
s+2 , . . . , g

(j`−t)
`−t , g`−t+1, . . . g`.
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where s and t are as in the previous definition and the meanings of the sequences of wffs
are as in Definition 5.9.

Proof. The cocycle-type condition simply an instantiation of the 1st order strong van-
ishing condition, while the pth order cobounding-type condition is the sum of all instanti-
ations of the pth order strong vanishing condition ranging over all choices of parallels for
the labels of edges in the whiskers.

For the last statement, notice that the terms in the mth order coboundary-type ex-
pression which are not represented in the expression of the proposition all have at least
one label on an edge of one of the whiskers which is of positive degree. These terms can
be partitioned into subsets according to the degrees of the labels in the whiskers. For
each choice of degrees for the labels in the whiskers, the terms are an instantiation of the
strong cocycle-type condition, and thus add to zero.

Two sorts of whiskered polygons satisfying the strong vanishing conditions arise in
practice: “non-trivial” whiskered polygons in which the strong vanishing conditions follow
from the well-formedness of the labeling and deformation theoretic cocycle and cobound-
ing conditions satisfied by the parallels of the labels in the boundary of the 2-cell, and
“trivial” whiskered polygons in which the sets of edge labels on the domain and codomain
of the 2-cell differ only by changing the choice of totalization of the partial order on swffs
of the final label in the path and substitution of equivalent wffs. In Figure 4 the polygons
marked with T are precisely those whose corresponding whiskered polygons are “trivial”
in this sense.

We formalize this in the following propositions:

5.13. Proposition. Given a well-formed labeling of a whiskered polygon W with 2-cell
P , let O be the set of operations occurring in the replacement labelings of both paths, and
On a family of parallels for O. Let s, t, k, ` and (D,≤) and the hatting of wffs be as
Definition 5.11.

If f̂s+1, . . . , f̂k−t and ĝs+1, . . . , ĝ`−t are a well-formed labeling of the directed polygon
P , then W satisfies the 0th order strong vanishing condition. If, moreover, this labeling
of P and the system of parallels satisfy the cocycle-type condition (resp. the mth order
cobounding-type condition) then the well-formed labeling of W and system of parallels
satisfies the 1st order (resp. mth order strong vanishing condition).

Proof. Notice first that the condition that the labeling of P be well-formed means that
the wff labeling the two edges incident with the 0-codomain of P are equivalents, and thus
their difference (as an arrow-valued operation) vanishes. The well-formedness may thus
be viewed as a zeroth order analogue of the cocycle-type and cobounding-type relations.

The proposition is immediate once it is observed that at each order the strong vanishing
condition on W is simply the result of applying the parallels to labels on the codomain
whisker to the terms of the expression of that order which vanishes on P .
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In practice the labels on P come from an equational condition (associativity, func-
toriality, or naturality in the present work) and the cocycle-type and cobounding-type
conditions are actual cocycle and cobounding conditions derived from the requirement
that deformations preserve the equational condition, while the whiskers arise in taking
coboundaries of the corresponding obstruction.

5.14. Proposition. Given a well-formed labeling of a whiskered polygon W with 2-cell
P , let s, t, k, `, and (D,≤) and the hatting of wffs be as Definition 5.11.

If k = ` and f̂s+1, . . . , f̂k−t is obtained from ĝs+1, . . . , ĝ`−t by changing the totalization of
the partial ordering on the swffs of the label on the edge(s) incident with the 0-codomain
of W and replacing wffs with equivalents, then the well-formed label of W satisfies the
strong vanishing conditions of all orders for any system of parallels.

Proof. In this case for any choice of parallels labels on edges of the codomain whisker,
and of degrees in a system of parallels for the corresponding f̂σ(i) and ĝi, the resulting
expressions for the two paths are equivalent and thus their difference is zero, and summing
over all such choices of total order p gives the pth order strong vanishing condition for
W .

We refer to whiskered polygons equipped with a labeling satisfying the hypotheses of
Proposition 5.14 as trivial whiskered polygons.

Finally, we need to describe in general the relationship between the cohomological
description of infinitesimal deformations and the evident expression of the same data in
terms of systems of parallels and the various expressions given by labeling of (whiskered)
polygons and tiled spheres.

5.15. Definition. If D is a k-linear pasting diagram, T(D) its theory, or an extension
thereof with the same types, its deformation theory is polygonizable if the cochain group
in which cocycles specify first order deformations admits a direct sum decomposition in-
dexed by a family of equational axioms of the theory each of which can be expressed as
the vanishing of the difference of the values of the paths in a well-formed labeling of a di-
rected polygon (we call such a polygon equipped with its well-formed labeling an axiomatic
polygon), and which, moreover satisfy

P1 The vanishing of each direct summand of the cocycle is precisely the cocycle-type
condition associated to the axiomatic polygon indexing the direct summand.

P2 Each direct summand of the mth order obstruction is the obstruction-type expression
associated to the axiomatic polygon indexing the direct summand.

P3 The cobounding condition for the extension of a deformation to the next degree is the
direct sum of the cobounding-type conditions associated to the axiomatic polygons.

P4 The coboundary of an obstruction admits a direct sum decomposition in which each
direct summand is a signed sum of expressions specified by labeling whiskered poly-
gons with the polygon labeled by the obstruction, and the whiskers labeled by oper-
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ations of T(D) (degree 0 labels in the system of parallels naming the deformation
terms).

We are now in a position to state a theorem which encapsulates Shrestha’s polygonal
method for our purposes:

5.16. Theorem. If T(D) is the theory of a pasting diagram, or an extension thereof, and
admits a polygonizable deformation theory, then all obstructions are cocycles, provided for
each direct summand of the coboundary of the obstruction, there exists a tiled sphere, and
a well-formed labeling of the tiled sphere with the properties

S1 Each whiskered polygon naming a summand in the signed sum of P4 occurs exactly
once in the tiled sphere – either in the domain (resp. codomain) if its sign is positive
(resp. negative), or with its domain and codomain swapped and in the codomain
(resp. domain) if its sign is positive (resp. negative).

S2 Every 2-cell which is not part of the whiskered polygons of S1 is trivial in the sense
of Proposition 5.14

Proof. This follows immediately from Propositions 5.10, 5.12, 5.13 and 5.14.

Figures 4 through 9 then establish the following:

5.17. Theorem. If D is a pasting diagram with a single instance of composing two
natural transformations or of composing a natural transformation with a functor, then all
obstructions to its deformation are cocycles.

In principal, it appears, one could apply the polygonal method to directly show that
obstructions to the deformation of any given (arbitrarily complicated) pasting diagram
are cocycles – however a metatheorem to this effect has proved to be beyond the authors’
capabilities. Instead, we will approach the general problem indirectly by reducing the
deformations of any pasting diagram to deformations of a related pasting diagram all of
whose cells are one of a small finite set of forms, provided one can specify that certain
cells are deformed trivially: the composition-free pasting diagrams for which the result
was established in [8], those of 5.17 and a short list of diagrams in which specified cells are
deformed trivially: triangles and solid tetrahedra all of whose faces are identity natural
transformations and are deformed trivially, and two diagrams derived from those of Ex-
amples 3.5 and 3.6 by replacing the (degenerate) square labeled by τ with a bigon whose
edged are labeled by the composite functors and two triangles labeled with the identity
arrows of the composite functors, which must be deformed trivially.
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6. Partially trivial deformations

In [8] deformations of a functor F (resp. a natural transformation σ : F ⇒ G) in
which the source and target are left undeformed, or to say the same thing differently
deformed trivially in the strong sense that all parallels giving the deformation terms
consist entirely of zero maps, were shown to be governed by the Hochschild complex
C•(F ) (resp. C•(F,G)).

For the desired reduction we will need to consider deformations of pasting diagrams
in which a natural transformation (in particular the identity natural transformation) is
deformed trivially in the same sense – the parallels representing its deformation terms
consist entirely of zero maps – while its domains and codomains are deformed, possibly
nontrivially.

As a warm-up and for potential use in other applications, let us consider first the
problem of deforming the (pasting) diagram D consisting of two categories A and B and
a functor F : A → B, subject to the requirement that F be deformed trivially.

Without the restriction that F be deformed trivially, a(n nth order) deformation would
be determined by a family of parallels for the set of operations {µ, ν, F}, the composi-
tions in A and B and the arrow-part of F satisfying the usual cocycle and cobounding
conditions. The restriction that F be deformed trivially requires that all of the positive
order parallels to F be zero.

Cohomologically, the triples of degree k parallels (µ(k), ν(k), F (k)) (in the absence of
the triviality requirement) lie in C•(D), the mapping cone on −F∗(p1) +F ∗(p2) : C•(A)⊕
C•(B) → C•(F ) and satisfy cocycle (k = 1) and cobounding (k > 1) conditions. The
requirement that F (1) = 0 together with the coboundary condition thus implies that
(µ(1), ν(1)) lies in ker(−F∗(p1) + F ∗(p2)).

In fact we have

6.1. Proposition. First order deformations of the (pasting) diagram D consisting of
two categories A and B and a functor F : A → B, subject to the requirement that F be
deformed trivially are classified by the second cohomology of ker(−F∗(p1)+F ∗(p2)). More-
over all obstructions to deforming D with F deformed trivially are cocycles in the third
cochain group of ker(−F∗(p1) + F ∗(p2)) and an nth order deformation with F deformed
trivially can be extended to an (n + 1)st order deformation with F deformed trivially if
and only if there is a degree 2 cochain in ker(−F∗(p1) + F ∗(p2)) cobounding the degree n
obstruction.

Proof. The classification of first order deformations follows from the remarks above. The
rest of the proposition follows from the corresponding result in [8] without the triviality
restriction once it is shown that all obstructions, which a priori lie in the cone on

−F∗(p1) + F ∗(p2),

lie in the kernel (considered as a subcomplex under the obvious inclusion).
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As observed above, (µ(1), ν(1)) lies in ker(−F∗(p1)+F ∗(p2)). So suppose as an induction
hypothesis that for all k < n (µ(k), ν(k)) lies in ker(−F∗(p1) +F ∗(p2)) (or equivalently and
more usefully F (µ(k)) = ν(k)(F, F )).

The degree n obstruction ω(n) in the cone then has coordinates∑
k,`<n

k+`=n

[µ(k)(µ(`)(−,−),−)− µ(k)(−, µ(`)(−,−))],

∑
k,`<n

k+`=n

[ν(k)(ν(`)(−,−),−)− ν(k)(−, ν(`)(−,−))],

and ∑
k,`<n

k+`=n

F (k)(µ(`))−
∑

k,`,m<n

k+`+m=n

ν(k)(F (`), F (m))

The last vanishes since each term involves F (k) = 0 for some k > 0 (and in the latter
sum all the ν(k) are bilinear). It thus remains only to show that F∗ of the first coordinate
equals F ∗ of the second.

Computing

F (
∑
k,`<n

k+`=n

[µ(k)(µ(`)(−,−),−)− µ(k)(−, µ(`)(−,−))])

=
∑
k,`<n

k+`=n

[ν(k(F (µ(`)(−,−), F (−))− ν(k(F (−), F (µ(`)(−,−)))]

=
∑
k,`<n

k+`=n

[ν(k)(ν(`)(F (−), F (−)), F (−))− ν(k)(F (−), ν(`)(F (−), F (−)))]

In each case the equality holds by the induction hypothesis, and in the second case
the bilinearity ν(k) for each k. Thus the proposition holds.

A similar result holds for deformations of a diagram consisting of two parallel functors
F,G : A → B and a natural transformation σ : F ⇒ G between them which is to be
deformed trivially: without the triviality restriction, the deformation complex is the cone
on σ‡. With the restriction, ker(σ‡) becomes the deformation complex:

6.2. Proposition. First order deformations of the pasting diagram D consisting of two
categories a pair of parallel functors F,G : A → B, their sources and target and a natural
transformation σ : F ⇒ G subject to the requirement that σ be deformed trivially are
classified by the second cohomology of ker(σ‡). Moreover all obstructions to deforming
D with σ deformed trivially are cocycles in the third cochain group of ker(σ‡) and an
nth order deformation with σ deformed trivially can be extended to an (n + 1)st order
deformation with σ deformed trivially if and only if there is a degree 2 cochain in ker(σ‡)
cobounding the degree n obstruction.
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Proof. The argument is essentially identical to that for the previous proposition, except
for the calculation showing that obstructions, which a priori lie in the full deformation
complex of D lie in ker(σ‡).

To see that all obstructions lie in ker(σ‡), consider Figure 5. The condition that the
degree n obstruction lies in ker(σ‡) is precisely the condition that the signed sum of the
degree n obstruction-type expressions associated to the non-trivial faces other than the
three hexagons vanish, when all higher order parallels of σ are instantiated as 0. But
observe that the other faces are all trivial or evaluate to 0, in all degrees greater than
0, trivially under the hypothesis that all higher order parallels of σ are 0, so the result
follows from the general principles of the polygonal method.

Applying the same argument mutatis mutandis to Figure 6 shows

6.3. Proposition. First order deformations of the pasting diagram D consisting of three
categories A,B and C three functors F : A → B, G : B → C and H : A → C and a natural
transformation σ : G(F )⇒ H subject to the requirement that σ be deformed trivially are
classified by the second cohomology of ker(φ), where

φ = [0, 0, (−){σ}, G∗(σ∗), F∗(σ∗),−σ∗] : C•(∂D)→ C•(G(F ), H).

for ∂D the diagram obtained by omitting σ.
Moreover all obstructions to deforming D with σ deformed trivially are cocycles in the

third cochain group of ker(φ) and an nth order deformation with σ deformed trivially can
be extended to an (n+1)st order deformation with σ deformed trivially if and only if there
is a degree 2 cochain in ker(φ) cobounding the degree n obstruction.

In the special case where H = G(F ) and σ = IdG(F ), it is intuitively clear that the
deformations of D in which σ is deformed trivially are completely determined by the

deformation complex of the simpler diagram A F→ B G→ C. In fact we have

6.4. Proposition. In the deformation complex of the pasting diagram D consisting of
three categories A,B and C three functors F : A → B, G : B → C and H = G(F ) : A → C
and the natural transformation σ = IdG(F ) : G(F )⇒ H the complex ker(φ) where φ is as

in Proposition 6.3 is isomorphic to the deformation complex of the subdiagram A F→ B G→
C.

Proof. The obvious quotient map from the deformation complex of ∂D to

C•(G(F ), G(F )) = C•(G(F ))

is split by the obvious inclusion. The kernel of the quotient map is easily seen to be iso-
morphic to ker(φ), while the quotient of the inclusion is easily seen to be the deformation

complex of A F→ B G→ C.
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Combining Propositions 4.2, 6.3 and 6.4 then gives

6.5. Proposition. Let D be a pasting diagram which arises by the following construction:
begin with a computad consisting of a composable 1-pasting diagram with any number of
edges, a single edge with the same domain and codomain as the 1-pasting diagram, a
pair of 2-cells both with the resulting circle as boundary (and a 3-cell, or not). Now,
triangulate each 2-cell in a way corresponding to any parenthesization of the edges of the
original composable 1-pasting diagram. Apply a map of pasting schemes to the underlying
pasting scheme of k − lincat such that the value of every 2-cell is an identity natural
transformation with domain given by two composable functors and codomain given by
their composition.

If D is such a pasting diagram, then the single edge in the initial part of the construc-
tion is labeled with the composition of the original composable 1-pasting diagram, and if,
moreover, Φ is the chain map from the deformations complex C•(D) to the direct sum
indexed by the triangular 2-cells of D whose coordinate for a 2-cell K with edges labeled
by a composable pair of functors F : A → B and G : B → C and their composition
G(F ) is given by projection onto C•(∂K) followed by the map φ of Proposition 6.3 onto
C•(G(F ), G(F ), then ker(Φ) classifies the deformations of D in which all of the iden-
tity natural transformations are deformed trivially, and is isomorphic to the deformation
complex of the original composable 1-pasting diagram.

Proof. The key thing to note here is that because all triangulations of disks are shellable,
the pasting diagram can be constructed out of the trivial triangles of Proposition 6.3 by
iterated pushouts with diagrams previously so constructed until a pushout of the two
triangulated disks along their boundary is made, and that once the triviality condition
are imposed the presence or absence of the 3-cell makes no difference to the kernel.

Note also that a 2-dual form of Proposition 6.5 in which all of the identity natural
transformations have the composition as their domain and two composable functors as
their codomain also holds with the same proof.

The proofs of Propositions 6.3 and 6.4 can be extended to show

6.6. Proposition. Let D be the pasting diagram consisting of three categories A,B, C,
functors F,G : A → B, H : B → C, the composite functors H(F ) and H(G), natural
transformations σ : F ⇒ G, τ : H(F ) ⇒ H(G) labeling bigons, and IdH(F ) and IdH(G)

labeling triangles with two edges labeled by the composands as domain and one edge la-
beled by the composition as codomain, and a single 3-cell asserting the commutativity of
the diagram. Letting Φ be the map with one coordinate for each triangle given by φ of
Proposition 6.3 for that 2-cell, ker(Φ) classifies the deformations of D in which the two
identity natural transformations are deformed trivially, and is isomorphic to the complex
of Example 3.5.

and
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6.7. Proposition. Let D be the pasting diagram consisting of three categories A,B, C,
functors F : A → B, G,H : B → C, the composite functors F (G) and F (H), natural
transformations σ : F ⇒ G, τ : F (G) ⇒ F (H) labeling bigons, and IdF (G) and IdF (H)

labeling triangles with two edges labeled by the composands as domain and one edge la-
beled by the composition as codomain, and a single 3-cell asserting the commutativity of
the diagram. Letting Φ be the map with one coordinate for each triangle given by φ of
Proposition 6.3 for that 2-cell, ker(Φ) classifies the deformations of D in which the two
identity natural transformations are deformed trivially, and is isomorphic to the complex
of Example 3.6.

Observe that the conclusion of both Proposition 6.6 and 6.7 hold regardless of which
part of the boundary (two composable functors or their composition) is the domain and
which is the codomain of each of the triangular faces labeled with identity natural trans-
formations.

7. All obstructions are cocycles

We are now in a position to prove the main result: that the deformations of any pasting
diagram are classified by a deformation complex in which all obstructions to extending a
deformation of order n to a deformation of order n + 1 are cocycles. To do this we will
replace the diagram with a more complex diagram with simpler parts, whose deformation
theory, when some of the 2-cells are required to be deformed trivially, coincides with that
of the original pasting diagram.

7.1. Definition. A pasting diagram is finely divided if every 2-cell is either a bigon or
a triangle labeled with the identity natural transformation, and every 3-cell is of one of
the following forms:

• a composition-free pillow with bigonal cross-section (imposing the equality of two
natural transformations between the same pair of functors)

• a diagram of the form in Proposition 6.5 or its 2-dual

• a ”triangular pillow” as in Example 3.1

• a diagram of the form in Example 3.5

• a diagram of the form in Proposition 6.6

• a diagram of the form in Example 3.6

• a diagram of the form in Proposition 6.7

7.2. Proposition. Every pasting diagram D can be replaced with a finely divided pasting
diagram f(D) whose underlying cell complex is a subdivision of the underlying cell complex
of D and whose deformations when all identity natural transformations labeling triangles
are deformed trivially are equivalent to deformations of D.
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Proof. Begin by subdividing each 2-cell as follows: insert a bigon with 1-cells labeled
by the 1-composition of the domain and codomain of the 2-cell and labeled by the same
natural transformation as the original 2-cell, making the domain (resp. codomain) of the
bigon coincide with that of the original 2-cell if the domain (resp. codomain) consists of
a single 1-cell. Label the complementary cell(s) with identity natural transformations to
be deformed trivially.

Now each of the complementary cells has a domain (resp. codomain) which is a
sequence of 1-cells labeled by functors and a codomain (resp. domain) which is a single
1-cell labeled with their composition. Choose a parenthesization of the composition and
subdivide the 2-cell in the usual way corresponding to a parenthesization, labeling the
new 1-cells with the appropriate pairwise compositions of labels already present and all
2-cells with identity natural transformation (to be deformed trivially).

Now, for each 3-cell which is not already of one of the forms specified in the proposition,
choose an order of pasting composition for the domain (resp. codomain), and use this to
create a subdivision of the 3-cell as follows:

Iteratively, for each 1-composition of a natural transformation with a functor, insert
a diagram of the form in Proposition 6.6 or 6.7 as appropriate and for each binary 2-
composition, insert a triangular pillow. When this has been done for both the domain
and codomain, there will be bigons labeled with the pasting composition of the domain
and codomain of the original 3-cell. Identify their domains (resp. codomains). The 3-
cells of the resulting subdivision are now those explicitly inserted in the construction, a
composition-free pillow with bigonal cross-section, and, we claim, 3-cells all of the form
in Proposition 6.5.

Verifying the claim is a matter of keeping track of the triangular faces in such a way as
to organize them into the pairs of triangulated disks with appropriate boundaries: Note
that immediately after the subdivision of 2-cells into a bigon and triangles, the triangu-
lated cell(s) (if any – the original 2-cell could have been a bigon) are of the desired form:
they have a domain (resp. codomain) consisting of a composable 1-pasting diagram and
codomain (resp. domain) consisting of a single edge labeled with the composition. Call
such a triangulated 2-cell a “nicely triangulated 2-cell”. Thus the remainder of the con-
struction begins with the original 2-cells decomposed into a family of nicely triangulated
2-cells and family of bigons. Throughout the rest of the construction the family of nicely
triangulated 2-cells will be iteratively replaced with families with fewer nicely triangulated
2-cells (but with more triangles in the newer ones). For addition of a 3-cell of the forms in
Propositions 6.6 or 6.7, the triangles will have as two of their edges the single edge labeled
with the composition from previously constructed nicely triangulated 2-cells. For each of
the triangles, replace these two nicely triangulated 2-cells with the union of the triangle
and the two nicely triangulated 2-cells, noticing that it is nicely triangulated. When the
triangular pillows and the bigonal pillow are adjoined, the family of nicely triangulated
2-cells is unchanged.

Thus, when the construction ends, the remaining 3-cells in the decomposition must
each be bounded by the union of two nicely triangulated 2-cells.
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We can now prove the main result (recalling the dimension conventions of [8] which
leaves the deformation cohomology of a pasting diagram in dimension −1) :

7.3. Theorem. For any pasting diagram D of k-linear categories, k-linear functors and
natural transformations, the deformations of D are classified by the −1-cohomology of
the ker(Φ), where Φ is the map from the deformation complex C•(f(D)) given by the
same description as in Proposition 6.5, and all obstructions to extension of a degree n
deformation to a degree n+ 1 deformation are 0-cocycles.

Proof. For the classification statement, first observe that the proof of Proposition 4.2
applies equally well to taking unions of pasting diagrams in which some 2-cells have been
specified as deforming trivially (provided that cells in the intersection are specified as
deforming trivially in both pasting diagrams of which the union is being taken). The
isomorphisms of Propositions 6.5, 6.6 and 6.7 then combine by universal property of
pushouts to give an isomorphism between C•(D) and ker(Φ) in the category of chain
complexes.

That all obstructions are cocycles is a condition local to each cell together with its
boundary, and all cells of f(D) are either deformed trivially, so that the obstruction
vanishes by triviality, or are of the forms which were shown to have vanishing obstructions
in Theorem 5.17, or are composition-free and thus have vanishing obstructions by the
results of [8].

8. Concluding remarks

The primary purpose of this paper, to complete the deformation theory for pasting di-
agrams of k-linear categories described in [8], was accomplished by Theorem 7.3. Its
primary importance, however, may lie less in the result than in the techniques used. It is
the authors’ intent to apply the deformation theory of pasting diagrams to the still-open
problem of providing a complete deformation theory for monoidal categories in which all
arrow-valued elements are deformed simultaneously, rather than just the structure maps
as in [9]. This will require using extensions of T(D) hinted at above, in which monoidal
prolongations are included as additional operations, as the basis of the polygonal method.
It will also avoid the difficulties in [6] arising from the need to intuit the correct formulas
for higher differentials in a multicomplex from the scant data provided by the instances
arising in the deformation theory.

Likewise, although for the present purpose there is something unsatisfying about our
detour though finely divided pasting diagrams with specified trivially-deformed identity
cells – we believe the direct result, that all obstructions in the deformation complex of
any pasting diagram as defined in [8] are cocycles, though it is beyond our present ability
to prove – like the polygonal technique, this detour may have other applications. The
difficulty with the direct result was that although 2-categories, and the pieces of them
corresponding to direct summands in deformation complexes are inherently “globular”,
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pasting diagrams are “opetopic”. The reduction of the opetopic to trivial (mostly simpli-
cial) elements and globular elements might well find application in connecting the zoo of
opetopic definitions of weak n-categories with the globular approach of Batanin.
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A. More examples of deformation complexes

First, the other commutative “pillow with square cross-sections”, equating two composi-
tions of composable pairs of natural transformations.

A.1. Example. Consider the pasting diagram given by four functors F,G,G′, H : A → B
and four natural transformations σ : F ⇒ G, τ : G ⇒ H, σ′ : F ⇒ G′ and τ ′ : G′ ⇒ H,
with the obvious 0-, 1- and 2-cells and a single 3-cell enforcing the condition στ = σ′τ ′.

The deformation complex of the pasting diagram is then given by

C•+3(A)⊕ C•+3(B)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(G′)⊕ C•+2(H)⊕ C•+1(F,G)

⊕C•+1(G,H)⊕ C•+1(F,G′)⊕ C•+1(G′, H)⊕ C•(F,H)

with coboundary given by



−dA
−dB

−F∗ F ∗ dF
−G∗ G∗ dG
−G′∗ G′∗ dG′
−H∗ H∗ dH

(·){σ} σ∗ −σ∗ −dF,G
(·){σ′} σ′∗ −σ′∗ −dF,G′
(·){τ} τ∗ −τ ∗ −dG,H
(·){τ ′} τ ′∗ −τ ′∗ −dG′,H
φσ,τ,σ′,τ ′ τ∗ −τ ′∗ σ∗ −σ′∗ dF,H


where φσ,τ,σ′,τ ′ := (·){σ, τ} − (·){σ′, τ ′}

It is easy to compute more examples in which no 1-dimensional compositions occur,
for instance a “pillow” with a pentagonal cross-section with a triple composition equal to
a double composition, by combining the constructions used in Examples 3.1 and A.1.
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A.2. Example. Consider the pasting diagram consisting of three categories A, B and C,
four functors F,G : A → B, H : B → C and K : A → C, and three natural transformations
σ : F ⇒ G, τ : GH ⇒ K and υ : FH → K, with the obvious 0-, 1- and 2- cells and a
single 3-cell enforcing the condition that H(σ)τ = υ.

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)

⊕C•+1(F,G)⊕ C•+1(H(G), K)⊕ C•+1(H(F ), K)⊕ C•(H(F ), K)

with coboundary given by



−dA
−dB

−dC
−F∗ F ∗ dF
−G∗ G∗ dG

−H∗ H∗ dH
−K∗ K∗ dK

(·){σ} σ∗ −σ∗ −dF,G
(·){τ} τ∗(H∗) τ∗(G

∗) −τ∗ −dH(G),K

(·){υ} υ∗(H∗) υ∗(F
∗) −υ∗ −dH(F ),K

ζH,σ,τ τ∗(·{σ}) τ∗(H∗) [H∗(σ)]∗ −Id dH(F ),K


where ζH,σ,τ := (·){H∗(σ), τ}

A.3. Example. Consider the pasting diagram consisting of three categories A, B and
C, four functors F : A → B, G,H : B → C and K : A → C, and three natural
transformations σ : FH ⇒ K, τ : G ⇒ H and υ : FG → K, with the obvious 0-,
1- and 2- cells and a single 3-cell enforcing the condition that τFσ = υ.

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)

⊕C•+1(H(F ), K)⊕ C•+1(G,H)⊕ C•+1(H(G), K)⊕ C•(H(G), K)

with coboundary given by



−dA
−dB

−dC
−F∗ F ∗ dF

−G∗ G∗ dG
−H∗ H∗ dH

−K∗ K∗ dK
(·){σ} σ∗(H∗) σ∗(F

∗) −σ∗ −dH(F ),K

(·){τ} τ∗ −τ∗ −dG,H
(·){υ} υ∗(G∗) υ∗(F

∗) −υ∗ −dH(G),K

ξH,σ,τ [F ∗(τ)]∗ σ∗(F
∗) −Id dH(F ),K


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where ξF,σ,τ := (·){F∗(τ), σ}

A.4. Example. Consider the pasting diagram consisting of three categories A, B and
C, four functors F : A → C, G,H : A → B and K : B → C, and three natural
transformations σ : F ⇒ GK, τ : G ⇒ H and υ : F → HK, with the obvious 0-,
1- and 2- cells and a single 3-cell enforcing the condition that σK(τ) = υ.

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)

⊕C•+1(F,K(G))⊕ C•+1(G,H)⊕ C•+1F,K(H))⊕ C•(F,K(H))

with coboundary given by



−dA
−dB

−dC
−F∗ F ∗ dF
−G∗ G∗ dG
−H∗ H∗ dH

−K∗ K∗ dK
(·){σ} σ∗ −σ∗(K∗) −σ∗(G∗) −dF,G

(·){τ} τ∗ −τ∗ −dH(G),K

(·){υ} υ∗ −υ∗(K∗) −υ∗(H∗) −dH(F ),K

ηK,σ,τ σ∗(·{τ}) [K∗(τ)]∗ σ∗(K∗) −Id dH(F ),K


where ηK,σ,τ := (·){σ,K∗(τ)}

A.5. Example. Consider the pasting diagram consisting of three categories A, B and C,
four functors F : A → C, G : A → B andH,K : B → C, and three natural transformations
σ : F ⇒ GH, τ : H ⇒ K and υ : F → GK, with the obvious 0-, 1- and 2- cells and a
single 3-cell enforcing the condition that σ(τG) = υ.

The deformation complex of the pasting diagram is given by

C•+3(A)⊕ C•+3(B)⊕ C•+3(C)⊕ C•+2(F )⊕ C•+2(G)⊕ C•+2(H)⊕ C•+2(K)

⊕C•+1(F,H(G))⊕ C•+1(H,K)⊕ C•+1F,K(G))⊕ C•(F,K(G))

with coboundary given by
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

−dA
−dB

−dC
−F∗ F ∗ dF
−G∗ G∗ dG

−H∗ H∗ dH
−K∗ K∗ dK

(·){σ} σ∗ −σ∗(H∗) −σ∗(G∗) −dF,H(G)

(·){τ} τ∗ −τ∗ −dH,K
(·){υ} υ∗ −υ∗(K∗) −υ∗(G∗) −dF,K(G)

κG,σ,τ [G∗(τ)]∗ σ∗(G∗) −Id dF,K(G)


where κG,σ,τ := (·){σ,G∗(τ)}
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