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MORE ON GEOMETRIC MORPHISMS BETWEEN REALIZABILITY
TOPOSES

ERIC FABER AND JAAP VAN OOSTEN

Abstract. Geometric morphisms between realizability toposes are studied in terms
of morphisms between partial combinatory algebras (pcas). The morphisms inducing
geometric morphisms (the computationally dense ones) are seen to be the ones whose
‘lifts’ to a kind of completion have right adjoints. We characterize topos inclusions
corresponding to a general form of relative computability. We characterize pcas whose
realizability topos admits a geometric morphism to the effective topos.

Introduction

The study of geometric morphisms between realizability toposes was initiated by John
Longley in his thesis [12]. Longley started an analysis of partial combinatory algebras
(the structures underlying realizability toposes; see section 1.1) by defining a 2-categorical
structure on them.

Longley’s “applicative morphisms” characterize regular functors between categories of
assemblies that commute with the global sections functors to Set. Longley was thus able
to identify a class of geometric morphisms with adjunctions between partial combinatory
algebras. The geometric morphisms thus characterized satisfy two constraints:

1) They are regular, that is: their direct image functors preserve regular epimorphisms.

2) They restrict to geometric morphisms between categories of assemblies.

Restriction 1 was removed by Pieter Hofstra and the second author in [4], where a new
class of applicative morphisms was defined, the computationally dense ones; these are
exactly those applicative morphisms for which the induced regular functor on assemblies
has a right adjoint (but the morphism itself need not have a right adjoint in the 2-category
of partial combinatory algebras).

Restriction 2 was removed by Peter Johnstone in his recent paper [7], where he proved
that every geometric morphism between realizability toposes satisfies this condition.

Moreover, Johnstone gave a much simpler formulation of the notion of computational
density.
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In the present paper we characterize the computationally dense applicative morphisms
in yet another way: as those which, when “lifted” to the level of order-pcas, do have a
right adjoint. We also have a criterion for when the geometric morphism induced by a
computationally dense applicative morphism is an inclusion.

In a short section we collect some material on total combinatory algebras, and formu-
late a criterion for when a partial combinatory algebra is isomorphic to a total one.

We prove that every realizability topos which is a subtopos of Hyland’s effective topos is
on a partial combinatory algebra of computations with an “oracle” for a partial function on
the natural numbers. We employ a generalization of this “computations with an oracle for
f” construction to arbitrary partial combinatory algebras, described in [16] and denoted
A[f ]. Generalizing results by Hyland ([5]) and Phoa ([13]), we show that the inclusion of
the realizability topos on A[f ] into the one on A corresponds to the least local operator
“forcing f to be realizable”.

The paper closes with some results about local operators in realizability toposes. We
characterize the realizability toposes which admit a (necessarily essentially unique) ge-
ometric morphism to the effective topos, as those which have no De Morgan subtopos
apart from Set.

In an effort to be self-contained, basic material is collected in section 1, which also
establishes notation and terminology.

1. Background

1.1. Partial Combinatory Algebras. A partial combinatory algebra (or, as John-
stone calls them in [8, 7], Schönfinkel algebra) is a structure with a set A and a partial
binary function on it, which we denote by a, b 7→ ab. This map is called application; the
idea is that every element of A encodes a partial function on A, and ab is the result of
the function encoded by a applied to b.

The motivating example is the structure K1 on the set of natural numbers, where ab
is the outcome of the a-th Turing machine with input b.

Partial functions give rise to partial terms. In manipulating these we employ the
following notational conventions:

1) The expression t↓ means that the term t is defined, or: denotes an element of A.
We intend t↓ to also imply that s↓ for every subterm s of t.

2) We employ association to the left: abc means (ab)c. This economizes on brackets,
but we shall be liberal with brackets wherever confusion is possible.

3) The expression s � t means: whenever t denotes, so does s; and in that case, s and
t denote the same element of A. We write s ' t for the conjunction of s � t and
t � s. The expression t = s means s ' t and t↓.

With these conventions, we define:
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1.2. Definition. A set A with a partial binary map on it is a partial combinatory algebra
(pca) if there exist elements k and s in A which satisfy, for all a, b, c ∈ A:

i) kab = a

ii) sab↓

iii) sabc � ac(bc)

This definition is mildly nonstandard, since most sources require ' instead of � in
clause iii). However, in our paper [3] we show that in fact, every pca in our sense is
isomorphic to a pca in the stronger sense (where the isomorphism is in the sense of
applicative morphisms, see section 1.4), so the two definitions are essentially the same.

It is a consequence of definition 1.2 that for any term t which contains variables
x1, . . . , xn+1, there is a term 〈x1 · · ·xn+1〉t without any variables, which has the following
property: for all a1, . . . an+1 ∈ A we have

(〈x1 · · ·xn+1〉t)a1 · · · an↓

(〈x1 · · ·xn+1〉t)a1 · · · an+1 � t(a1, . . . , an+1)

Every pca A has pairing and unpairing combinators: there are elements π, π0, π1 of A
satisfying π0(πab) = a and π1(πab) = b.

Moreover, every pca has Booleans T and F and a definition by cases operator: an
element u satisfying uTab = a and uFab = b; such an element u is seen as operating on
three arguments v, a, b, which operation is often denoted by

if v then a else b

In this paper we assume that T = k and F = k(skk), so Tab = a and Fab = b.
Finally, we mention that every pca A comes equipped with a copy {n |n ∈ N} of the

natural numbers: the Curry numerals. For every n-ary partial computable function F ,
there is an element aF ∈ A, such that for all n-tuples of natural numbers k1, . . . kn in the
domain of F , aFk1 · · · kn = F (k1, . . . , kn). For more background on pcas we refer to [17],
chapter 1.

1.3. Assemblies and Realizability Toposes. Every pca determines a category of
assemblies on A, denoted Ass(A). An object of Ass(A) is a pair (X,E) where X is a set
and E associates to each element x of X a nonempty subset E(x) of A. A morphism
(X,E) // (Y, F ) between assemblies on A is a function f : X // Y of sets, for which
there is an element a ∈ A which tracks f , which means that for every x ∈ X and every
b ∈ E(x), ab↓ and ab ∈ F (f(x)).

The category Ass(A) has finite limits and colimits, is locally cartesian closed (hence
regular), has a natural numbers object and a strong-subobject classifier (which is called
a weak subobject classifier in [6]); hence it is a quasitopos.
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There is an adjunction Set oo
Γ

∇
// Ass(A), Γ a ∇: here Γ is the global sections functor

(or the forgetful functor (X,E) 7→ X) and ∇ sends a set X to the assembly (X,E) where
E(x) = A for every x ∈ X.

The category Ass(A) is, except in the trivial case A = 1, not exact. Its exact com-
pletion as a regular category (sometimes denoted Ass(A)ex/reg) is a topos, the realizability
topos on A, which we denote by RT(A) with only one exception: the topos RT(K1) is
called the effective topos and denoted Eff . The effective topos was discovered by Martin
Hyland around 1979 and described in the landmark paper [5]. The notation Eff serves
both to underline the special place of the effective topos among realizability toposes (as
we shall see in this paper) and the special place of K1 among pcas, and to acknowledge
the seminal character of Hyland’s work.

1.4. Morphisms of Pcas. In his thesis [12], John Longley laid the groundwork for the
study of the dynamics of pcas, by defining a useful 2-category structure on the class of
pcas.

1.5. Definition. Let A and B be pcas. An applicative morphism A // B is a total
(or, as some people prefer, ‘entire’) relation from A to B, which we see as a map γ from
A to the collection of nonempty subsets of B, which has a realizer, that is: an element
r ∈ B satisfying the following condition: whenever a, a′ ∈ A are such that aa′↓, and
b ∈ γ(a), b′ ∈ γ(a′), then rbb′↓ and rbb′ ∈ γ(aa′).

Given two applicative morphisms γ, δ : A // B we say γ ≤ δ if some element s of B
satisfies: for every a ∈ A and b ∈ γ(a), sb↓ and sb ∈ δ(a).

Pcas, applicative morphisms and inequalities between them form a preorder-enriched
category. Applicative morphisms have both good mathematical properties and a compu-
tational intuition: if a pca is thought of as a model of computation, then an applicative
morphism is a simulation of one model into another.

A functor Ass(A)
F // Ass(B) between categories of assemblies is called a Γ-functor

if the diagram

Ass(A)

Set

Γ

��?
??

??
??

??
??

?
Ass(A) Ass(B)// Ass(B)

Set

Γ

����
��
��
��
��
��

commutes up to isomorphism.
Mathematically, applicative morphisms correspond to regular Γ-functors between cat-

egories of assemblies. To be precise, we have the following theorem:

1.6. Theorem. [Longley] There is a biequivalence between the following two 2-categories:

1 ) the category of pcas, applicative morphisms and inequalities between them;
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2 ) the category of categories of the form Ass(A), regular Γ-functors and natural trans-
formations.

One side of the biequivalence is given as follows: if γ : A //B is an applicative morphism,
the functor γ∗ : Ass(A) // Ass(B) which sends (X,E) to (X, γ ◦ E) (composition of
relations) is the corresponding regular Γ-functor.

Since RT(A) is the ex/reg completion of Ass(A), any functor of the form γ∗ extends
essentially uniquely to a regular functor RT(A) // RT(B), which we also denote by γ∗.
So it makes sense to study geometric morphisms RT(A) // RT(B) from the point of
view of applicative morphisms A //B: since the inverse image functor of any geometric
morphism is regular, in order to study geometric morphisms RT(B) // RT(A) one looks
at those applicative morphisms γ : A //B for which γ∗ has a right adjoint.

The following definition is from [4]. Let us extend our notational conventions about
application a bit: for a ∈ A,α ⊆ A we write aα↓ if ax↓ for every x ∈ α, and in this case
we write aα for the set {ax |x ∈ α}.

1.7. Definition. An applicative morphism γ : A //B is computationally dense if there
is an element m ∈ B such that the following holds:

For every b ∈ B there is an a ∈ A such that for all a′ ∈ A: if bγ(a′)↓, then aa′↓ and
mγ(aa′)↓ and mγ(aa′) ⊆ bγ(a′).

1.8. Theorem. [4] An applicative morphism γ : A //B induces a geometric morphism
RT(B) // RT(A) precisely when it is computationally dense.

Obvious drawbacks of this theorem are the logical complexity of the definition of ‘com-
putationally dense’ and the fact that, prima facie, the theorem only says something about
geometric morphisms which are induced by a Γ-functor between categories of assemblies,
in other words: geometric morphisms RT(B) //RT(A) for which the inverse image func-
tor maps assemblies to assemblies. Both these issues were successfully addressed in Peter
Johnstone’s paper [7]:

1.9. Theorem. [Johnstone] An applicative morphism γ : A // B is computationally
dense if and only if there exist an element r ∈ B and a function g : B // A satisfying:
for all b ∈ B and all b′ ∈ γ(g(b)), rb′ = b.

We might, extending the notation for inequalities between applicative morphisms,
express the last property as: γg ≤ idB.

1.10. Theorem. [Johnstone]

i) For any geometric morphism f : RT(B) // RT(A), the diagram

RT(B) RT(A)
f
//

Set

RT(B)
��

Set Setid // Set

RT(A)
��
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(where the vertical arrows embed Set as the category of ¬¬-sheaves) is a bipullback
in the 2-category of toposes and geometric morphisms.

ii) For every geometric morphism f : RT(B) // RT(A), the inverse image functor f ∗

preserves assemblies.

We shall be saying more about this theorem in section 2. For the moment, we continue
out treatment of material from the literature, inasmuch it is relevant for our purposes.

1.11. Definition. A geometric morphism is called regular if its direct image functor is
a regular functor.

Clearly, by theorems 1.6 and 1.10, a regular geometric morphism RT(B) // RT(A)
arises from an adjunction in the 2-category of pcas; and therefore Longley studied such
adjunctions in his thesis. First, he distinguished a number of types of applicative mor-
phisms:

1.12. Definition. [Longley]Let γ : A //B be an applicative morphism.

i) γ is called decidable if there is an element d ∈ B such that for all b ∈ γ(TA),
db = TB, and for all b ∈ FA, db = FB.

ii) γ is called discrete if γ(a) ∩ γ(a′) = ∅ whenever a 6= a′.

iii) γ is called projective if γ is isomorphic to an applicative morphism which is single-
valued.

Among other things, Longley proved the statements in the following theorem:

1.13. Theorem. [Longley] Let A oo
δ

γ
//B be a pair of applicative morphisms.

i) If γδ ≤ idB then γ is decidable and δ is discrete.

ii) If γ a δ then γ is projective.

iii) If γ a δ and δγ ' idA then both δ and γ are discrete and decidable.

iv) γ is decidable if and only if γ∗ preserves finite sums, if and only if γ∗ preserves the
natural numbers object.

v) γ is projective if and only if γ∗ preserves regular projective objects.

vi) γ is discrete if and only if γ∗ preserves discrete objects.

vii) There exists, up to isomorphism, exactly one decidable applicative morphism K1
//A,

for any pca A.

From theorem 1.13 and theorem 1.10 we can draw some immediate inferences:
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1.14. Corollary. Let γ : A //B be an applicative morphism.

i) If γ is computationally dense, then γ is decidable.

ii) If γ is computationally dense and the geometric morphism RT(B) //RT(A) induced
by γ is regular, then γ is projective.

iii) There exists, up to isomorphism, at most one geometric morphism RT(A) // Eff ;
and there is one if and only if the essentially unique decidable morphism from K1

to A is computationally dense.

Example 2.6 exhibits a computationally dense applicative morphism which is not pro-
jective, and therefore cannot have a right adjoint on the level of pcas. Theorem 3.5 gives
a criterion for iii) to hold, in terms of local operators on realizability toposes.

Let us draw one more corollary from theorem 1.13:

1.15. Corollary. Let γ be computationally dense. Then the geometric morphism in-
duced by γ is regular, if and only if γ has a right adjoint in PCA, if and only if γ is
projective.

Proof. The first equivalence was already stated after definition 1.11, and is a direct
consequence of the biequivalence expressed by theorem 1.6. For the second equivalence,
if γ a δ then γ is projective by 1.13ii); conversely, if γ is projective then by 1.13v), the
functor γ∗ preserves regular projective objects, which, given that categories of assemblies
always have enough regular projectives, is the case if and only if the right adjoint of γ∗

preserves regular epimorphisms, and is therefore induced by some applicative morphism
δ, which by 1.6 must be right adjoint to γ in PCA.

1.16. Order-pcas. Although most of our results are about ordinary pcas, the general-
ization to order-pcas, first defined in [15] and elaborated on in [4], has its advantages for
the formulation of some results.

1.17. Definition. An order-pca is a partially ordered set A with a partial binary appli-
cation function (a, b) 7→ ab; there are also elements k and s, and the axioms are:

i) If ab↓, a′ ≤ a and b′ ≤ b then a′b′↓ and a′b′ ≤ ab

ii) kab ≤ a

iii) sab↓ and whenever ac(bc)↓, sabc↓ and sabc ≤ ac(bc)

1.18. Definition. An applicative morphism of order-pcas A // B is a function f :
A //B satisfying the following requirements:

i) There is an element r ∈ B such that whenever aa′↓ in A, rf(a)f(a′)↓ in B, and
rf(a)f(a′) ≤ f(aa′).
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ii) There is an element u ∈ B such that whenever a ≤ a′ in A, uf(a)↓ and uf(a) ≤ f(a′)
in B.

Just as for pcas, we have an order on applicative morphisms, which is analogously
defined.

Every order-pca A determines a category of assemblies: objects are pairs (X,E) where
X is a set and E(x) is a nonempty, downward closed subset of A, for each x ∈ X;
morphisms are set-theoretic functions which are tracked just as in the definition for pcas.

On the 2-category of order-pcas there is a 2-monad T , which at the same time gives
the prime examples of interest of genuine order-pcas: T (A) is the order-pca consisting of
nonempty, downward closed subsets of A, with the inclusion ordering; for α, β ∈ T (A), we
say αβ↓ if and only if for all a ∈ α and b ∈ β, ab↓ in A; if that holds, αβ is the downward
closure of the set {ab | a ∈ α, b ∈ β}.

Note that when we consider applicative morphisms f to order-pcas of the form T (A),
we may assume that f is an order-preserving function; since the element u of 1.18ii) allows
us to find an isomorphism between f and the map x 7→

⋃
y≤x f(y).

The category of assemblies on the order-pca T (A) has enough regular projectives: a
T (A)-assembly (X,E) is regular projective if and only if (up to isomorphism) E(x) is a
principal downset of T (A) for each x; i.e., E(x) = {α ⊆ A |α ⊆ β} for some β ∈ T (A).
It is now easy to see that the full subcategory of Ass(T (A)) on the regular projectives is
equivalent to Ass(A), and applying a criterion due to Carboni ([2]), one readily verifies

1.19. Theorem. The category of assemblies on T (A) is the regular completion of the
category Ass(A).

1.20. Relative recursion. We also need to recall a construction given in [16]. Given
a pca A and a partial function f : A // A, we say that f is representable w.r.t. an
applicative morphism γ : A //B, if there is an element b ∈ B which satisfies: for each a
in the domain of f and each c ∈ γ(a), bc↓ and bc ∈ γ(f(a)). We say that f is representable,
or representable in A, if f is representable w.r.t. the identity morphism on A.

There is a pca A[f ] and a decidable applicative morphism ιf : A //A[f ] such that f
is representable w.r.t. ιf and ιf is universal with this property: whenever γ : A // B is
a decidable applicative morphism w.r.t. which f is representable, then γ factors uniquely
through ιf .

It follows that this property determines A[f ] up to isomorphism, and hence, if f is
representable in A then A and A[f ] are isomorphic.

The applicative morphism ιf is computationally dense and induces an inclusion of
toposes: RT(A[f ]) // RT(A). Moreover, ιf , being the identity function on the level of
sets, is projective as applicative morphism.

2. Geometric morphisms between realizability toposes

We start by formulating a variation on Longley’s theorem 1.6. Recall the definition of
order-pcas and the monad T from section 1.16. We wish to characterize finite limit-



882 ERIC FABER AND JAAP VAN OOSTEN

preserving Γ-functors between categories of assemblies.

2.1. Definition. Let A,B be pcas. A proto-applicative morphism from A to B is an
applicative morphism of order-pcas from T (A) to T (B).

Note, that every applicative morphism A //B induces a proto-applicative morphism;
and the proto-applicative morphisms which arise in this way are exactly the maps of T -
algebras. In this context, γ : T (A) // T (B) is a map of T -algebras if γ (is isomorphic to
a map which) preserves unions of subsets of A.

2.2. Theorem. There is a biequivalence between the following two 2-categories:

1 The category of pcas, proto-applicative morphisms and inequalities between them

2 The category of categories of the form Ass(A) for a pca A, finite limit-preserving
Γ-functors and natural transformations

This biequivalence restricts to the biequivalence of Longley’s theorem 1.6: regular Γ-
functors correspond to T -algebra maps.

Proof. Let γ : T (A) // T (B) be an applicative morphism, realized by r ∈ B. Define
γ∗(X,E) = (X, γ ◦ E). If f : (X,E) // (Y,E ′) is tracked by t ∈ A, then

rγ({t})γ(E(x)) ⊆ γ(E ′(f(x)))

so whenever s ∈ γ({t}), rs tracks f as morphism (X, γ ◦ E) // (Y, γ ◦ E ′). So γ∗ is a
Γ-functor.

It is immediate that γ∗ preserves terminal objects and equalizers; that γ∗ preserves
finite products is similar to the proof of theorem 1.6 (for which the reader may consult
either [12] or [17].

If γ ≤ δ : T (A) // T (B) is realized by β ∈ T (B) and b ∈ β, then b tracks every
component of the unique natural transformation γ∗ ⇒ δ∗. Conversely, suppose there is a
natural transformation γ∗ ⇒ δ∗, consider its component at the object (T (A), i) where i
is the identity function. Any element of B which tracks this component realizes γ ≤ δ.

Now suppose that F : Ass(A) // Ass(B) is a finite-limit preserving Γ-functor. We
may well suppose that F is the identity on the level of sets, as any Γ-functor is isomorphic
to a functor having this property. Consider again the object (T (A), i) of Ass(A) and its
F -image (T (A), F̃ ) in Ass(B), for some map F̃ : T (A) // T (B). We wish to show that
F̃ is a proto-applicative morphism A //B.

Let P = {(α, β) ∈ T (A)× T (A) |αβ↓}. For (α, β) ∈ P put E(α, β) = παβ (where π
is the pairing combinator in A). Then (P,E) is a regular subobject of (T (A), i)×(T (A), i)
in Ass(A) so by assumption on F , F (P,E) is a regular subobject of (T (A), F̃ )×(T (A), F̃ );
we may assume that F (P,E) = (P, Ê) with Ê(α, β) = ρF̃ (α)F̃ (β) (where ρ is the pairing
combinator in B). There is an application map app : (P,E) // (T (A), i), hence we have
a map app : (P, Ê) // (T (A), F̃ ). Modulo a little fiddling with realizers, any element of
B tracking this map realizes F̃ as applicative morphism T (A) // T (B).
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Furthermore, since any natural transformation between the sort of functors we consider
is the identity on the level of sets, if we have a natural transformation F ⇒ G then we
have a tracking for the identity function as morphism (T (A), F̃ ) // (T (A), G̃); such a
tracking realizes F̃ ≤ G̃.

It is immediate that γ̃∗ = γ. For the proof that (F̃ )∗ ' F , we recall two basic facts
from Longley’s thesis:

1) Between any two Γ-functors F,G : Ass(A) //Ass(B) there exists at most one natural
transformation (whose components are identity arrows modulo the isomorphisms
between F and G and functors which are the identity on the level of sets)

2) Any Γ-functor F ; Ass(A) // Ass(B) satisfies F◦∇A ' ∇B, where ∇A,∇B are,
respectively, right adjoint to ΓA : Ass(A) // Set, ΓB : Ass(B) // Set.

Since we assume that F is the identity on the level of sets, we have F∇A = ∇B and
therefore, by the first fact above, for each A-assembly (X,E) we have

F (η(X,E)) = ηF (X,E) : F (X,E) //∇B(X)

where η is the unit of the adjunction Γ a ∇.
Consider an object (X,E) of Ass(A). There is an obvious map E : (X,E) //(T (A), i)

and the diagram

∇A(X) ∇A(T (A))
E
//

(X,E)

∇A(X)

η

��

(X,E) (T (A), i)E // (T (A), i)

∇A(T (A))

η

��

is a pullback. Similarly, for the map E : (X, F̃◦E) // (T (A), F̃ ) the naturality square for
η is a pullback diagram. Since F preserves pullbacks, we have therefore pullback diagrams

∇B(X) ∇B(T (A))
E
//

F (X,E)

∇B(X)

η

��

F (X,E) F (T (A), i)E // F (T (A), i)

∇B(T (A))

η

��
∇B(X) ∇B(T (A))

E
//

(X, F̃◦E)

∇B(X)

η

��

(X, F̃◦E) (T (A), F̃ )E // (T (A), F̃ )

∇B(T (A))

η

��

Since (T (A), F̃ ) = F (T (A), i) by definition of F̃ , we see that (F̃ )∗(X,E) = (X, F̃◦E) is
naturally isomorphic to F (X,E), as desired.

In order to see how Longley’s biequivalence is a restriction of ours, first note that
if γ : A // B is an applicative morphism (i.e. the induced proto-applicative morphism
T (A) // T (B) is a T -algebra map) then γ∗ is a regular Γ-functor, as Longley showed.

Conversely, suppose F is a regular Γ-functor. We wish to show that F̃ : T (A) //T (B)
is a T -algebra map, which means that it commutes with unions. Consider the object
El = (|El|, E) where

|El| = {(a, S) | a ∈ S ⊆ A}
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and E(a, S) = {a}. We have a second projection π2 : El // (T (A), i) which is a regular
epimorphism. Since by assumption F ' (F̃ )∗ preserves regular epimorphisms, the map

(F̃ )∗(El) (F̃ )∗(T (A), i) = (T (A), F̃ )
π2 //

is regular epi, but this means that, up to isomorphism of proto-applicative morphisms,
F̃ (α) =

⋃
a∈α F̃ ({a}), so F̃ commutes with unions and is induced by an applicative

morphism A //B.

We can now give another characterization of computationally dense applicative morphisms
of pcas. Every applicative morphism γ : A //B of pcas is also an applicative morphism
A // T (B) of order-pcas and hence induces an applicative morphism γ̃ : T (A) // T (B)
(and the functors γ∗ from 1.6 and (γ̃)∗ of 2.2 coincide); by the biequivalence in the latter
theorem, we have the following corollary:

2.3. Corollary. For an applicative morphism γ : A //B the following statements are
equivalent:

i) γ is computationally dense

ii) γ̃ has a right adjoint (in the 2-category of order-pcas)

iii) there is an applicative morphism δ : B // A such that γδ ≤ idB

Proof. i)⇒ii): if γ is computationally dense then it induces a geometric morphism
RT(B) // RT(A) which, by 1.10, restricts to an adjunction between Γ-functors on the
categories of assemblies; by 2.2 this is induced by an adjunction between proto-applicative
morphisms.
ii)⇒iii): let δ : T (B) // T (A) be right adjoint to γ̃. Define δ̄ : B // T (A) by

δ̄(b) = δ({b})

Then δ̄ is an applicative morphism A //B and γδ̄ ≤ idB since γδ̄(b) = γ̃δ({b}) and γ̃ a δ.
iii)⇒i): this is immediate from 1.9.

Another corollary is the following:

2.4. Corollary. The following data are equivalent:

i) a geometric morphism RT(B) // RT(A)

ii) an adjunction Ass(B) oo
f∗

f∗
// Ass(A), f ∗ a f∗, and f ∗ preserving finite limits

iii) an adjunction T (B) oo
γ∗

γ∗
// T (A), γ∗ ` γ∗, in the 2-category of order-pcas

iv) a computationally dense applicative morphism A //B
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Proof. By 1.8 and 1.10, i) and iv) are equivalent and imply ii); the equivalence between
ii) and iii) is theorem 2.2. Suppose we have an adjunction as in ii). Then f∗ is always
a Γ-functor, since Γ is represented by 1 and f ∗ preserves 1. So f∗ is, by 2.2, induced by
a proto-applicative morphism; and f∗ commutes with ∇ (as we saw in the proof of 2.2),
whence its left adjoint commutes with Γ, and we have an adjunction of Γ-functors, hence
an adjunction of proto-applicative morphisms, hence a computationally dense morphism
A //B.

In the same way we can characterise which computationally dense γ : A // B induce
geometric inclusions:

2.5. Corollary. A computationally dense applicative morphism γ : A //B induces an
inclusion of toposes: RT(B) // RT(A) if and only if there is an applicative morphism
δ : B // A such that γδ ' idB.

We conclude this section with the promised example of a computationally dense ap-
plicative morphism which is not projective:

2.6. Example. Consider the pca Krec
2 (see [17], 1.4.9) and the applicative morphism

Krec
2

//K1 which sends every total recursive function to the set of its indices ([17], p. 95).
For recursion-theoretic reasons, this can not be isomorphic to a single-valued relation, so
this is an example of a geometric morphism Eff // RT(Krec

2 ) which is not regular.

2.7. Intermezzo: total pcas. In this small section we include some material on total
pcas; it contains a characterization of the pcas which are isomorphic to a total one.

A pca A is called total if for all a and b, ab↓. The following results have been established
about total pcas:

• The topos Eff is not equivalent to a realizability topos on a total pca ([9]). In fact,
the proof of that paper shows that if A is total and B is decidable (see definition 2.8
below), then RT(A) and RT(B) cannot be equivalent.

• Every total pca is isomorphic to a nontotal one ([16]).

• Every realizability topos is covered (in the sense of a geometric surjection) by a
realizability topos on a total pca ([18]).

2.8. Definition. Call an element a of a pca A total if for all b ∈ A, ab↓. Call a pca
A almost total if for every a ∈ A there is a total element b ∈ A such that for all c ∈ A,
bc � ac.

A pca is called decidable if there is an element d ∈ A which decides equality in A, that
is: for all a, b ∈ A,

dab =

{
T if a = b
F if a 6= b

2.9. Proposition. A nontrivial decidable pca is never almost total.
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Proof. We present a direct, elementary proof of this fact, although it also follows from
the next proposition (2.10) by the Johnstone-Robinson result quoted above.

Let A be nontrivial and decidable. Choose e ∈ A such that for all x ∈ A, ex ' xk. Pick
elements a 6= b ∈ A. Suppose that g is a total element for e as in definition 2.8. By the
recursion theorem for A ([17], 1.3.4) there is h ∈ A satisfying for all y ∈ A:

hy ' d(gh)aba

Then hy = b if gh = a, and hy = a otherwise (recall that Txy = x,Fxy = y). Since h is
total, we have eh = hk. But now,

eh = hk =

{
b if gh = a
a if gh 6= a

=

{
b if eh = a
a if eh 6= a

A clear contradiction.

2.10. Proposition. Let A be a pca. The following four conditions are equivalent:

i) A is almost total.

ii) There is an element g ∈ A such that for all e ∈ A, ge is total and for all x, gex � ex.

iii) A is isomorphic to a total pca.

Proof. i)⇒ii): assume A is almost total. Pick f ∈ A such that for all y, fy ' π0y(π1y)
(recall that π, π0, π1 are the pairing and unpairing combinators in A). By assumption
there is a total element h for f as in definition 2.8. Let g be such that gxy ' h(πxy).

Then for every e ∈ A, ge is a total element and if ex↓ then

gex = h(πex) = f(πex) = ex

so gex � ex as required.
ii)⇒iii): assume A satisfies condition ii). Define a binary function ∗ on A by putting
a ∗ b = gab. We have

k ∗ a ∗ b = g(gka)b = kab = a

and if s′ = 〈xyz〉g(gxz)(gyz) then

s′ ∗ a ∗ b ∗ c = g(g(gs′a)b)c = g(〈z〉g(gaz)(gbz))c
= g(gac)gbc) = a ∗ c ∗ (b ∗ c)

So, (A, ∗) is a total pca. The identity function A // A is an applicative morphism
A // (A, ∗), realized by s′ ∗ k ∗ k in (A, ∗), and in the other direction it is realized by
g ∈ A. So A is isomorphic to (A, ∗).
iii)⇒i): suppose A is isomorphic to B and B is total. By 1.13ii) we may assume that the
isomorphism is given by functions f : A // B and g : B // A which are each other’s
inverse; suppose r ∈ B realizes f as applicative morphism, and s ∈ A realizes g.
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For a ∈ A let a′ = s(sg(r)gf(a)). For any x ∈ A we have:

a′x = s(sg(r)gf(a))x = s(g(rf(a))x
= s(g(rf(a)))gf(x) = g(rf(a)f(x)

So, a′x↓, and if ax↓ then a′x = gf(ax) = ax. So A is almost total, as desired.

2.11. Discrete computationally dense morphisms. We employ the following con-
vention for a parallel pair of geometric morphisms α, β between realizability toposes: we
write α ≤ β if there is a (necessarily unique) natural transformation α∗ ⇒ β∗.

2.12. Theorem. Let γ : A // B be a discrete, computationally dense applicative mor-
phism.

i) There is a pca of the form A[f ] such that the geometric morphism RT(B) //RT(A)
factors through the inclusion RT(A[f ]) // RT(A) by a geometric morphism α :
RT(B) // RT(A[f ])

ii) Moreover, there is a geometric morphism β : RT(A[f ]) // RT(B) satisfying αβ ≤
idRT(A[f ]) and idRT(B) ≤ βα.

iii) If γ induces an inclusion of toposes, then βα ' idRT(B), so RT(B) is a retract of
RT(A[f ]).

iv) If γ is projective then αβ ' idRT(A[f ]), so RT(A[f ]) is a retract of RT(B).

v) Hence, if γ is projective and induces an inclusion, RT(B) is equivalent to RT(A[f ]).

Proof. By 2.3ii), γ̃ : T (A) //T (B) has a right adjoint δ. Let us write δ′ for the morphism
δ̄ from the proof of 2.3: δ′(b) = δ({b}). Assume, as we may, that δ preserves inclusions.
This means that δ̃′ ≤ δ as morphisms T (B) //T (A). We have γδ′ ≤ idB, so δ′ is discrete
by 1.13i).

Since both γ and δ′ are discrete, so is δ′γ and we have a partial function f : A // A
defined by: f(a) = b if and only if a ∈ δ′γ(b). The partial function f is representable w.r.t.
γ, for if ε ∈ B realizes γδ′ ≤ idB and f(a) = b, c ∈ γ(a), then a ∈ δ′γ(b) so c ∈ γδ′γ(b) so
εc ∈ γ(b); hence ε represents f w.r.t. γ. Since, by section 1.20, γ factors through ιf , the
geometric morphism RT(B) //RT(A) factors through the inclusion RT(A[f ]) //RT(A).
This proves i). The geometric morphism α is induced by (γf )

∗ a δf on the level of
assemblies; here γf and δf are the same relations on the level of sets as γ, δ respectively.

We can regard δ′ also as applicative morphism B //A[f ]. Now in A[f ], δ′γf ≤ idA[f ], since
if u represents f in A[f ] then u realizes this inequality. This means that δ′ : B //A[f ] is
computationally dense, by 2.3. So there is a geometric morphism β : RT(A[f ]) //RT(B);
let ζ : T (A[f ]) // T (B) be the right adjoint to δ̃′. We have the following diagram of
order-pcas:

T (B) oo
γ̃

δ
// T (A[f ]) oo

δ̃′

ζ
// T (B)
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We have γ̃δ̃′ ≤ γ̃δ ≤ idT (B) and δ̃′γ̃ ≤ idT (A[f ]), so this proves ii).

If γ induces an inclusion then γδ′ ' idB so βα ' idRT(B) and RT(B) is a retract of
RT(A[f ]).

If γ is projective then δ̃′ ' δ so δγ̃ ' δ̃′γ̃ ≤ idT (A[f ]) ≤ δγ̃, so αβ is isomorphic to the
identity on RT(A[f ]) and this topos is a retract of RT(B).

v) is obvious.

2.13. Corollary. If A is a decidable pca, then every realizability topos which is a subto-
pos of RT(A) is a retract of RT(A[f ]) for some partial function f : A // A.

Every realizability topos which is a subtopos of Eff is equivalent to one of the form
RT(K1[f ]) for some partial function on the natural numbers.

Proof. Both statements follow from theorem 2.12, since if A is decidable, then for every
computationally dense applicative morphism γ : A // B we have that γ∗(A, {·}) is de-
cidable in Ass(B), hence discrete; and therefore γ is discrete. For the second statement,
note that the essentially unique decidable applicative morphism K1

//B is discrete and
projective.

3. Local Operators in Realizability Toposes

Local operators (j-operators, Lawvere-Tierney topologies) in the Effective topos have
been studied in [5, 14, 11, 19]. We quickly recall some basic facts which readily generalize
to arbitrary realizability toposes.

Let A be a pca. For subsets U, V of A we denote by U ⇒ V the set of all elements
a ∈ A which satisfy: for every x ∈ U , ax↓ and ax ∈ V . We write U ∧ V for the set
{πab | a ∈ U, b ∈ V }. The powerset of A is denoted P(A).

Every local operator in RT(A) is represented by a function J : P(A) // P(A) for
which the sets

i)
⋂
U⊆A U ⇒ J(U)

ii)
⋂
U⊆A JJ(U)⇒ J(U)

iii)
⋂
U,V⊆A(U ⇒ V )⇒ (J(U)⇒ J(V ))

are all nonempty. A map J for which just the set iii) is nonempty, is said to represent
a monotone map on Ω. Abusing language, we shall just speak of “local operators” and
“monotone maps” when we mean the maps representing them.

3.1. Example. Important examples of local operators are:

1) The identity map on P(A); this is the least local operator, and denoted by J⊥. Its
category of sheaves is just RT(A) itself.
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2) The constant map with value A. This is the largest local operator, denoted J>; its
category of sheaves is the trivial topos.

3) The map which sends every nonempty set to A, and the empty set to itself. This is
the ¬¬-operator, and we shall also denote it by ¬¬. Its category of sheaves is Set.

4) Suppose γ : A // B is a computationally dense applicative morphism, inducing
γ̃ : T (A) // T (B) and its right adjoint δ by the theory of section 2. The map
J : P(A) //P(A) which sends the empty set to itself, and every nonempty U ⊆ A
to δγ̃(U), is a local operator; its category of sheaves is the image of the geometric
morphism RT(B) // RT(A) induced by γ.

There is a partial order on local operators: J ≤ K iff the set⋂
U⊆A

J(U)⇒ K(U)

is nonempty (strictly speaking this gives a preorder on representatives of local operators).
Every local operator is represented by a map J which preserves inclusions ([11], Remark
2.1). If M : P(A) // P(A) is a monotone map, there is a least local operator JM such
that M ≤ JM : it is given by

JM(U) =
⋂
{Q ⊆ A | {T} ∧ U ⊆ Q and {F} ∧M(Q) ⊆ Q}

It is a general fact of topos theory that for any monomorphism m in a topos there
is a least local operator which “inverts m”, i.e. for which the sheafification of m is an
isomorphism. In RT(A), every object is covered by an A-assembly, so we need only
consider monos into assemblies. Here, we restrict ourselves to two types of monos:

1. Consider an assembly (X,E) and the mono (X,E) //∇(X). Let M be the mono-
tone map sending U ⊆ A to the set⋃

x∈X

E(x)⇒ U

Then JM is the least local operator inverting the mono (X,E) //∇(X).

2. Consider a partial function f : A //A with domain B ⊆ A. We have the assemblies
(B, {·}) and (B,E) where E(b) = {πbf(b)}. The identity onB is a map of assemblies
(B,E) // (B, {·}), tracked by π0. The least local operator inverting this mono
(“forcing f to be realizable”) is JM , where M is the monotone map

U 7→ {πbe | ef(b) ∈ U}

The following theorem generalizes a result by Hyland and Phoa ([5, 13]).
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3.2. Theorem. The category of sheaves for the local operator of type 2 above, is RT(A[f ]).

Proof. We refer to [16] for details on A[f ]. The underlying set of A[f ] is A; the appli-
cation map of A[f ] is denoted a, b 7→ a·fb.

It follows from the construction of the elements k and s in A[f ], that if t(x, a1, . . . , an)
is a term built from variable x, parameters a1, . . . , an ∈ A and the application of A[f ],
that the element 〈x〉t(x,~a) of A[f ] can be obtained computably in A from the parameters
~a.

The computationally dense applicative morphism ιf : A // A[f ] is just the identity
function, and the right adjoint δ : T (A[f ]) // T (A) is given by

δ(U) = {πae | e·fa ∈ U}

Indeed, idT (A) ≤ δι̃f = δ because we can find, A-computably in a, an element ξa satisfying
ξa·fx = a for all x. Also, δ = ι̃fδ ≤ idT (A[f ]) by simply evaluating in A[f ]. We need to see
that δ is applicative; but if U ·fV is defined in T (A[f ]) and πae ∈ δ(U), πbc ∈ δ(V ) then

π(πab)(〈x〉(e·f (π0x))·f (c·f (π1x)))

is an element of δ(U ·fV ) and we noted that this element can be obtained A-computably
from a, e, b, c.

So, by Example 3.1, item 4, the local operator on RT(A) for which the category of
sheaves is RT(A[f ]), sends U to {πae | e·fa ∈ U}. Let us call this map Jf .

On the other hand, the least local operator which forces the partial function f to be
realizable, is the map JM where M is the monotone map

U 7→ {πbe | ef(b) ∈ U}

We need to prove JM ≤ Jf and Jf ≤ JM .
By [a1, . . . , an] we denote some standard coding in A of the n-tuple a1, . . . , an. We

write [ ] for the code of the empty tuple. The symbol ∗ is used for (A-computable)
concatenation of tuples: so

[a1, . . . , an] ∗ [b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm]

The definition of a·fb = c is as follows:

a·fb = c if and only if either a[b] = πTc, or there is a sequence a1, . . . , an such that
a[b] = πFd for some d such that f(d) = a1, and for all 1 < k ≤ n, a[b, a1, . . . , ak−1] =
πFd for some d such that f(d) = ak, and moreover, a[b, a1, . . . , an] = πTc

Let us call such a sequence a1, . . . , an a computation sequence for a·fb.
Now clearly, if a ∈ A satisfies ae[b] = πFb and ae[b, c] ' ec for all e, b, c, then we have

ae·fb ' ef(b). Hence, M ≤ Jf and therefore JM ≤ Jf by definition of JM .
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For the converse, let α ∈
⋂
U⊆A U ⇒ JM(U) and ζ ∈

⋂
U⊆AM(JM(U))⇒ JM(U). By

the recursion theorem in A, there is an element γ ∈ A such that for all e, a, σ:

γeaσ � If π0(e([a] ∗ σ))
then α(π1(e([a] ∗ σ)))
else ζ(π(π1(e([a] ∗ σ)))〈x〉γea(σ ∗ [x]))

We claim: if e·fa ∈ U , and a1, . . . , an is a computation sequence for e·fa, then for all
0 ≤ k ≤ n,

γea[a1, . . . , ak] ∈ JM(U)

For k = 0, [a1, . . . , ak] is [ ].
Of course, γea[a1, . . . , an] = e·fa since e[a, a1, . . . , an] = πT(e·fa). Hence by assump-

tion that e·fa ∈ U , we have γea[a1, . . . , an] = α(e·fa) ∈ JM(U).
Now suppose k < n and γea[a1, . . . , ak+1] ∈ JM(U). Let e[a, a1, . . . , ak] = πFuk. We

have
γea[a1, . . . , ak] = ζ(πukε)

where ε = 〈x〉γea(σ ∗ [x]). Moreover, f(uk) = ak+1. We see that

εf(uk) = γea[a1, . . . , ak+1] ∈ JM(U)

so πukε ∈M(JM(U)), whence ζ(πukε) ∈ JM(U). This proves the claim.
We conclude that whenever πae ∈ Jf (U), that is e·fa ∈ U , we have γea[ ] ∈ JM(U);

so Jf ≤ JM as desired.

As an example of a monomorphism of type 1, we consider the inclusion of assemblies
2 //∇(2). It is a result of Hyland, that the least local operator in Eff inverting this mono,
is ¬¬; we shall see whether this holds for arbitrary realizability toposes. The following
lemma is from [5] and generalizes to arbitrary realizability toposes in a straightforward
way.

3.3. Lemma. Let J be a local operator. Then ¬¬ ≤ J if and only if the set
⋂
a∈A J({a})

is nonempty.

We can represent the object 2 in RT(A) as the assembly ({0, 1}, E) with E(0) = {0}
and E(1) = {1} (recall that 0, 1 are the first two Curry numerals). Therefore the least
local operator inverting 2 //∇(2) is JM where

M(U) = ({0} ⇒ U) ∪ ({1} ⇒ U)

Note, that M is also the least monotone map with the property that M({0}) ∩M({1})
is nonempty, and therefore JM is the least local operator J for which J({0}) ∩ J({1}) is
nonempty.

3.4. Lemma. The least local operator which inverts the inclusion 2 // ∇(2) is (up to
isomorphism) the map J which sends U ⊆ A to

⋃
n∈N({n} ⇒ U).
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Proof. Martin Hyland showed in [5], 16.4, that whenever J is a local operator in Eff
such that J({0}) ∩ J({1}) is nonempty, then

⋂
n∈N J({n}) is nonempty. Since the tools

for this proof were basic recursion theory, this proof generalizes to an arbitrary pca A to
yield: whenever J is a local operator in RT(A) such that J({0}) ∩ J({1}) is nonempty,
then

⋂
n∈N J({n}) is nonempty.

Now the least monotone map M such that
⋂
n∈NM({n}) is nonempty, is the map J in

the statement of the lemma. So it remains to show that this is a local operator. Clearly,
it is a monotone map, and certainly 〈xy〉x is an element of U ⇒ J(U) for all U ⊆ A. As
to J(J(U))⇒ J(U), we note that we have uniform isomorphisms

J(J(U)) ∼=
⋃
n({n} ⇒

⋃
m({m} ⇒ U))

∼=
⋃
m,n({m} ∧ {n} ⇒ U)

∼=
⋃
k({k} ⇒ U) = J(U)

The last isomorphism is because there exists a recursive pairing on the natural numbers
which is a bijection from N × N to N, and which is representable in A, as well as its
unpairing functions.

3.5. Theorem. For a pca A the following three statements are equivalent:

i) The least local operator inverting 2 //∇(2) is ¬¬.

ii) There is an element h ∈ A such that for every a ∈ A there is a natural number n
satisfying hn = a.

iii) There exists a (necessarily essentially unique) geometric morphism RT(A) // Eff .

Proof. This is now a triviality: given the characterizations of Lemma 3.3 and Lemma 3.4,
we have the equivalence of i) and ii). But clearly, ii) is equivalent to the statement that
the essentially unique decidable applicative morphism K1

//A, which is the map sending
n to n, is computationally dense. And that is equivalent to iii).

3.6. Remark. We are grateful to Peter Johnstone for the following remark. As pointed
out by Olivia Caramello in [1], the least local operator inverting 2 // (2)¬¬ (where (2)¬¬
denotes the ¬¬-sheafification of 2), is also the least local operator for which the category
of sheaves is a De Morgan topos (A topos is De Morgan if 2 is a ¬¬-sheaf).

This yields another proof of iii)⇒i) in Theorem 3.5: if f : RT(A) // RT(B) is a
geometric morphism, then f restricts to a geometric morphism RT(A)dm

// RT(B)dm

(where Edm denotes the largest De Morgan subtopos of E). This is immediate, because f ∗

preserves both 2 and ∇(2). This means that if RT(B)dm = Set, then also RT(A)dm = Set.
This follows from 1.3 of [7].

3.7. Example. Peter Johnstone has suggested the terminology effectively numerical for
a pca A satisfying ii) of 3.5. Clearly, if a pca is effectively numerical, it must be countable.
The pca Krec

2 is effectively numerical.
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In order to see a countable pca which is nevertheless not effectively numerical, consider
a nonstandard model of Peano Arithmetic A. A is a pca if we define ab = c to hold
precisely if the formula ∃x(T (a, b, x) ∧ U(x) = c) is true in A (here T and U are Kleene’s
well-known computation predicate and output function; these things can be expressed in
the language of Peano Arithmetic, hence interpreted in A). A will then satisfy the axioms
for a pca, since these are consequences of Peano Arithmetic. In A, the Curry numerals
can be identified with the standard part of A. Now consider, for an arbitrary parameter
a ∈ A, the following N-indexed family of formulas in one variable x:

Φa(x) = {∀y(T (a, n, y) // U(y) 6= x) |n ∈ N}

By [10], Theorem 11.5, A is saturated for types like this: there is an element ξ ∈ A such
that Φa(ξ) holds in A. That means, there is no n such that an = ξ. Since a is arbitrary,
we see that A cannot be effectively numerical.

We conclude this paper with a characterization of those local operators in RT(A)
for which the category of sheaves is RT(A[f ]) for some partial function f on A. From
Theorem 2.12 we know that if γ : A // B is discrete and projective and induces an
inclusion, then this inclusion is of the form RT(A[f ]) //RT(A). Moreover, we know then
that the local operator J corresponding to this inclusion has the following properties:

1) J({a}) ∩ J({b}) = ∅ whenever a 6= b (we may call J discrete)

2) J preserves unions.

3.8. Proposition. Suppose J is a discrete local operator which preserves unions. Then
there is a partial function f on A such that J is isomorphic to Jf , the least local operator
forcing f to be realizable.

Proof. Define f by: f(a) = b if and only if a ∈ J({b}). This is well-defined since J
is discrete. Let M be the monotone map of the proof of Theorem 3.2, so M(U) =
{πae | ef(a) ∈ U} and Jf is the least local operator majorizing M . Let g realize the
monotonicity of J :

g ∈
⋂

U,V⊆A

(U ⇒ V )⇒ (JU ⇒ JV )

Now if πea ∈ M(U), then e ∈ {f(a)} ⇒ U so ge ∈ J({f(a)}) ⇒ J(U), so ge ∈ {a} ⇒
J(U) (since a ∈ J({f(a)})), so gea ∈ J(U). This shows that M ≤ J and hence Jf ≤ J .

Conversely, if a ∈ J(U) then since J preserves unions, we have a ∈ J({x}) for some
x ∈ U , which means f(a) ∈ U , which implies that πai (where i is such that ib = b for all
b ∈ A) is an element of M(U). So J ≤M ≤ Jf . Note that we actually prove that M is a
local operator in this case!
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