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COMPLETION, CLOSURE, AND DENSITY

RELATIVE TO A MONAD, WITH EXAMPLES IN

FUNCTIONAL ANALYSIS AND SHEAF THEORY

RORY B. B. LUCYSHYN-WRIGHT

Abstract. Given a monad T on a suitable enriched category B equipped with a
proper factorization system (E ,M ), we define notions of T-completion, T-closure, and
T-density. We show that not only the familiar notions of completion, closure, and density
in normed vector spaces, but also the notions of sheafification, closure, and density with
respect to a Lawvere-Tierney topology, are instances of the given abstract notions. The
process of T-completion is equally the enriched idempotent monad associated to T (which
we call the idempotent core of T), and we show that it exists as soon as every morphism
in B factors as a T-dense morphism followed by a T-closed M -embedding. The latter
hypothesis is satisfied as soon as B has certain pullbacks as well as wide intersections
of M -embeddings. Hence the resulting theorem on the existence of the idempotent core
of an enriched monad entails Fakir’s existence result in the non-enriched case, as well as
adjoint functor factorization results of Applegate-Tierney and Day.

1. Introduction

Examples of monads abound throughout mathematics, particularly since every adjunction
determines one, yet monads play also a seemingly more narrow role as theories of algebraic
structure, each monad T on a category B determining a category BT of T-algebras.
Working in the context of the theory of categories enriched over a symmetric monoidal
closed category V , we show herein that, on the other hand, every monad T on any suitable
category B also gives rise to concepts that are seemingly more ‘topological’ in nature,
namely, canonical notions of closure, density, completeness, completion, and separatedness
with respect to T. As a guiding example, we show that when B is the category of normed
or semi-normed vector spaces and T is the monad given by taking the double-dual, the
resulting notions with respect to T coincide with the familiar notions. As an example
of a very different sort, we show that when B is an (elementary) topos equipped with a
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Lawvere-Tierney topology j and we take T to be the double-dualization monad for Ωj, we
recover the notions of j-closure, j-density, j-sheaf, j-sheafification, and j-separatedness.

In more detail, let T be a monad on a V -category B equipped with a proper V -
enriched factorization system (E ,M ) ([21]), and refer to the morphisms in M as em-
beddings. Using techniques of enriched factorization systems and orthogonality, we define
notions of T-dense morphism, T-closed embedding, and T-complete object. Next, we make
the following assumption, which is satisfied as soon as B is complete and well-powered
with respect to M :

Every morphism in B factors as a T-dense
morphism followed by a T-closed embedding.

(1.0.i)

Under this assumption, the T-dense morphisms and T-closed embeddings constitute an
enriched factorization system, and we obtain an operation of T-closure of M -subobjects.
We then show that the full subcategory B(T) of B consisting of the T-complete objects

is reflective in B, and the resulting idempotent monad T̃ on B we call the T-completion
monad. The T-completion T̃B of an object B ∈ B is gotten as in the example of normed
vector spaces: We take T̃B to be the T-closure of the (E ,M )-image of the unit morphism
ηB : B → TB.

The resulting T-completion monad T̃ is an idempotent V -enriched monad on B that
inverts (i.e., sends to isomorphisms) exactly the same morphisms as T and so is the
idempotent core1 of T, studied in the context of non-enriched categories by Casacuberta
and Frei [3] (under the name of the idempotent approximation of T), by Hébert [14,
Proposition 14], and earlier by Fakir [11], who had shown that the idempotent core of
a monad on an ordinary category B exists as soon as B is complete and well-powered.
Our construction of the T-completion monad shows that the V -enriched idempotent core
T̃ of T exists as soon as the factorization assumption (1.0.i) is satisfied, and Fakir’s
result is recovered as a corollary. Note that our result applies even in the absence of
set-indexed limits and so applies, for example, in constructing the j-sheafification monad
for a Lawvere-Tierney topology j on an arbitrary (elementary) topos.

After recalling some preliminary material on monads and adjunctions in 2-categories
(§2.1), enriched categories (§2.2), enriched factorization systems (§2.3), and closure oper-
ators (§2.4), we treat aspects of enriched orthogonal subcategories needed in the sequel
(§3). Next, we treat the basic theory of the idempotent core of an enriched monad (§4), as
no such treatment exists in the literature; in particular, we consider the universal property
of the idempotent core T̃, we establish several equivalent characterizations of T̃ and of its
existence, and we examine the relation of the enriched idempotent core to the ordinary.
Next we show that the completion monad on normed (resp. seminormed) vector spaces
is the enriched idempotent core of the double-dualization monad (§5); as a corollary, we
show that the full subcategory consisting of all Banach spaces is the enriched reflective
hull of the space of scalars (R or C). In §6 we then define the notions of T-density, T-

closure, etc., and we prove our general result on the existence of the idempotent V -core T̃,

1Terminology suggested by F. W. Lawvere.
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Theorem 6.25. In §7 we return to the example of normed and seminormed vector spaces
and show that the notions of T-density and T-closure there coincide with the familiar
notions. In §8 we treat the example of j-sheafification, j-closure, and j-density for a
Lawvere-Tierney topology j on a topos X , and we show that the category of j-sheaves
is the X -enriched reflective hull of Ωj in X ; note that Lambek and Rattray had shown
in [19] that the j-sheafication monad can be obtained by Fakir’s construction.

In treating the basic theory of the idempotent core T̃ of an enriched monad T on a
V -category B, we show in 4.15 that if F a G : C → B is an arbitrary V -adjunction
inducing T, then T̃ exists if and only if F a G factors as a composite V -adjunction

B
K

> 33B′9
Y

J
ss

F ′
> 33 C
G′

ss

with J a V -reflective full subcategory inclusion and F ′ conservative. Hence our Theorem
6.25 on the existence of T̃ yields a generalization on results of Applegate and Tierney [1]
and Day [6] to the effect that any adjunction F a G on a suitable category factors in
such a way. An important point that was not made by these authors is that the resulting
reflective subcategory B′ depends only on the monad T induced by F a G. Cassidy,
Hébert, and Kelly later proved in the non-enriched context a variant of Day’s adjoint-
factorization result ([5, Theorem 3.3]), and in the second paragraph of their proof they
make use of an instance of what we now call here the (T-dense, T-closed embedding)-
factorization system, there written as (N ↑,N ).

We consider also the following refinement of the theory of T-completeness, T-density,
etc.: Given an enriched monad T on a V -category B equipped with a proper V -prefactor-
ization-system (E ,M ) ([21]), together with a given class Σ consisting of morphisms in-
verted by T , we define notions of Σ-dense morphism, Σ-closed embedding, and Σ-complete
object, and again assuming that every morphism in B factors as a Σ-dense morphism
followed by a Σ-closed embedding, we show that those Σ-complete objects B ∈ B that
are also T-separated (meaning that ηB : B → TB is an embedding) constitute a V -

reflective subcategory B(T,Σ) of B (6.20), so that we obtain an idempotent monad T̃Σ,
the T-separated Σ-completion monad. This reflectivity is related to Day’s result [6, Corol-
lary 2.3]. The ‘T-’ rather than ‘Σ-’ notions are recovered when Σ := T−1(Iso), and in the
latter case it is notable that every T-complete object is necessarily T-separated, provided
(E ,M )-factorizations exist.

The given notions of completeness, closure, and density with respect to an enriched
monad T and/or a class of morphisms Σ were employed in the author’s recent Ph.D. the-
sis [20], in which they were applied with regard to R-module objects in a cartesian closed
category (and generalizations thereupon) in providing a basis for abstract functional anal-
ysis in a closed category. In such a context, the usual notions of completeness, closure,
and density familiar from functional analysis are not typically available, and so one may
instead employ the above ‘T-’ notions, with respect to the double-dualization monad T,
and these we call functional completeness, functional closure, and functional density.



COMPLETION, CLOSURE, AND DENSITY RELATIVE TO A MONAD 899

2. Preliminaries

2.1. 2-categorical preliminaries.

2.1.1. Given an object B in a 2-category K , there is a category MndK (B) whose
objects are monads on B and whose morphisms θ : (T, η, µ)→ (T ′, η′, µ′) (called maps of
monads in [18]) consist of a 2-cell θ : T → T ′ such that θ ·η = η′ and µ′ ·(θ◦θ) = θ ·µ. The
identity monad 1B is an initial object in MndK (B), since for each monad T = (T, η, µ)
on B, the 2-cell η is the unique monad morphism η : 1B → T.

2.1.2. Given a monad T = (T, η, µ) on B in a 2-category K , a T-algebra (B, β) in
K ([18, 3.1]) consists of a 1-cell B : A → B equipped with an action of T on B, i.e.
a 2-cell β : TB → B with β · ηB = 1B and β · Tβ = β · µB. Given a morphism of
monads θ : T → T′ = (T ′, η′, µ′), it is shown in [18, (3.8), (3.9)] that the composite

β := (TT ′
θT ′−−→ T ′T ′

µ′−→ T ′) is an action of T on T ′ and that θ can be expressed in terms

of β as the composite T
Tη′−−→ TT ′

β−→ T ′.

2.1.3. Recall that a monad S = (S, ρ, λ) on B in K is said to be idempotent if λ : SS →
S is an isomorphism (from which it then follows that λ−1 = Sρ = ρS). If S is idempotent,
then for any S-algebra (B, β) (2.1.2), the 1-cell β : SB → B is an isomorphism with
inverse ρB.

2.1.4. Given objects A , B in a 2-category K , there is a category AdjK (A ,B) whose

objects are adjunctions F ε
η
G : B → A in K and whose morphisms (φ, ψ) : (F ε

η

G) → (F ′
ε′
η′

G′) consist of 2-cells φ : F → F ′ and ψ : G → G′ such that (ψ ◦ φ) · η = η′

and ε′ · (φ ◦ ψ) = ε.
There is a functor AdjK (A ,B) → MndK (A ) sending an adjunction to its induced

monad and a morphism (φ, ψ) : (F ε
η
G) → (F ′

ε′
η′

G′) to the morphism ψ ◦ φ : T →
T′ between the induced monads. Hence, in particular, isomorphic adjunctions induce
isomorphic monads.

2.1.5. Proposition. Let F ε
η
G : B → A be an adjunction in a 2-category K . Then

there is an associated monoidal functor [F,G] := K (F,G) : K (B,B)→ K (A ,A ) with

the following property: For any adjunction F ′
ε′
η′

G′ : C → B with induced monad T′ on
B, the monad [F,G](T′) on A is equal to the monad induced by the composite adjunction

A
F

η ε> 33B
G

ss

F ′

η′ ε′> 33 C .
G′

ss

Proof. The monoidal structure on the functor [F,G] consists of the morphisms GHεKF :
GHFGKF → GHKF in K (A ,A ) (for all objects H, K in K (B,B)) and the mor-
phism η : 1A → GF in K (A ,A ). The verification is straightforward.
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2.1.6. Proposition. Let F ε
η
G and F ′

ε′
η′

G be adjunctions, having the same right
adjoint G : B → A , in a 2-category K . Then these adjunctions are isomorphic and
hence induce isomorphic monads on A .

Proof. The 2-cell φ := εF ′ · Fη′ : F → F ′ has inverse ε′F · F ′η ([13], I,6.3), and one
checks that (φ, 1G) serves as the needed isomorphism of adjunctions.

2.1.7. Proposition. Let A
F

η ε> 33B
G

ss

F ′

η′ ε′> 33 C
G′

ss and A
F ′′

η′′ ε′′> 33 C
G′′

ss be ad-

junctions in a 2-category K , with respective induced monads T, T′, T′′, and suppose that
GG′ = G′′. Then there is an associated monad morphism T→ T′′.

Proof. Let Fc εc

ηc
G′′ be the composite adjunction, and let Tc be its induced monad. By

2.1.5, we have that Tc = [F,G](T′), whereas T = [F,G](1B). By applying [F,G] to the
monad morphism η′ : 1B → T′, we obtain a monad morphism

Gη′F = [F,G](η′) : T = [F,G](1B)→ [F,G](T′) = Tc .

Also, by 2.1.6, there is an isomorphism of monads ξ : Tc → T′′, and we obtain a composite

morphism of monads T Gη′F−−−→ Tc
ξ−→ T′′.

2.2. Preliminaries on enriched categories.

In what follows, we work in the context of the theory of categories enriched in a symmetric
monoidal category V , as documented in the seminal paper [10] and the comprehensive
references [17], [9]. We shall include an explicit indication of V when employing notions
such as V -category, V -functor, and so on, omitting the prefix V only when concerned with
the corresponding notions for non-enriched or ordinary categories. When such ordinary
notions and terminology are applied to a given V -category A , they should be interpreted
relative to the underlying ordinary category of A . In the absence of any indication to the
contrary, we will assume throughout that V is a closed symmetric monoidal category, and
in this case we denote by V the V -category canonically associated to V , whose underlying
ordinary category is isomorphic to V ; in particular, the internal homs in V will therefore
be denoted by V (V1, V2). We do not assume that any limits or colimits exist in V .

2.2.1. The ordinary categories C considered in this paper are not assumed locally
small—that is, they are not necessarily Set-enriched categories. Rather, we assume that
for each category C under consideration, there is a category SET of classes in which
lie the hom-classes of C , so that C is SET-enriched, but SET is not assumed cartesian
closed.

2.2.2. A morphism m : B1 → B2 in a V -category B (i.e., in the underlying ordi-
nary category of B) is a V -mono(morphism) if B(A,m) : B(A,B1) → B(A,B2) is a
monomorphism in V for each object A ∈ B. A V -epi(morphism) is a V -mono in Bop. We
denote the classes of all V -monos and V -epis in B by MonoV B and EpiV B, respectively.
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2.2.3. A V -limit in a V -category B is a conical V -enriched limit in the sense of [17]
§3.8, equivalently a limit (in the underlying ordinary category of B) that is preserved
by each (ordinary) functor B(A,−) : B → V (A ∈ B). In particular, we obtain the
notions of V -product, V -fibre-product, etc. V -colimits in B are V -limits in Bop. Any
V -fibre-product m : A→ B of a family of V -monos (mi : Ai → B)i∈I is again a V -mono
([21] 2.7); we then say that m is a V -intersection of the mi.

2.2.4. Proposition. Let G : C → B be a V -functor, and suppose that for each B ∈ B
we are given an object FB in C and a morphism ηB : B → GFB in B such that for each
C ∈ C , the composite

φBC :=
(
C (FB,C)

GFBC−−−→ B(GFB,GC)
B(ηB ,GC)−−−−−−→ B(B,GC)

)
is an isomorphism in V . Then the given morphisms ηB constitute the unit η of a V -
adjunction F

η
G in which F acts in the given way on objects and is given on homs by

formula (6) of Ch. 0 of [9].

Proof. Fixing an object B ∈ B, the weak Yoneda lemma ([17], 1.9) yields a bijection
between morphisms B → GFB and V -natural transformations C (FB,−)→ B(B,G−),
under which ηB corresponds to φB− := (φBC)C∈C . In particular, φB− : C (FB,−) →
B(B,G−) is thus a V -natural isomorphism, showing that B(B,G−) : C → V is a rep-
resentable V -functor. Since this holds for all B ∈ B, the result follows from Proposition
0.2 of [9].

2.2.5. Let B be a V -category. A V -reflective-subcategory of B is a full replete sub-V -
category B′ of B for which the inclusion V -functor J : B′ ↪→ B has a left V -adjoint
K. Any such V -adjunction K

ρ
J : B′ ↪→ B is called a V -reflection (on B). Given

an idempotent V -monad S = (S, ρ, λ) (2.1.3) on B, we let B(S) denote the V -reflective-
subcategory of B consisting of those objects B for which ρB is iso.

2.2.6. Proposition. There is a bijection ReflV (B) ∼= IdmMndV -CAT(B) between the
class ReflV (B) of all V -reflections on B and the class IdmMndV -CAT(B) of all idempotent
V -monads on B, which associates to each V -reflection on B its induced V -monad. The
V -reflective-subcategory associated to a given idempotent V -monad S via this bijection is
B(S).

2.3. Enriched factorization systems.

Given morphisms e : A1 → A2, m : B1 → B2 in a V -category B, we say that e is
V -orthogonal to m, written e ↓V m, if the commutative square

B(A2, B1)
B(A2,m) //

B(e,B1)

��

B(A2, B2)

B(e,B2)

��
B(A1, B1)

B(A1,m) //B(A1, B2)

(2.3.i)
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is a pullback in V . Given classes E , M of morphisms in B, we define associated classes
of morphisms as follows:

E ↓V := {m | ∀e ∈ E : e ↓V m}, M ↑V := {e | ∀m ∈M : e ↓V m}.

The pair (E ,M ) is called a V -prefactorization-system on B if condition 1 below holds,
and (E ,M ) is called a V -factorization system if conditions 1 and 2 both hold:

1. E ↓V = M and M ↑V = E .

2. Each morphism in B factors as a morphism in E followed by a morphism in M .

For ordinary categories, with V = SET one obtains the familiar notion of factorization
system; in this case, we drop the indication of V from the notation. The relation of
V -factorization-systems to ordinary factorization systems is elaborated in [21], where
theorems on the existence of V -factorization-systems are proved as well.

2.3.1. Given a V -prefactorization-system (E ,M ) on B, the following stability properties
of E and M are established in [21, 4.4]. The class M is closed under composition,
cotensors, arbitrary V -fibre-products, and V -pullbacks along arbitrary morphisms in B.
Further, if g · f ∈ M and g ∈ M , then f ∈ M . Also, if E = H ↑V for some class of
V -epimorphisms H , then whenever g · f ∈ M , it follows that f ∈ M . Since (M ,E )
is a V -prefactorization-system in Bop, one obtains stability properties for E that are
exactly dual to the above properties of M . Analogous stability properties hold for a
prefactorization system on an ordinary category B, even when B is not locally small; cf.
[12, 2.1.1].

2.3.2. Given a V -prefactorization-system (E ,M ) on B with M a class of V -monos
in B, we say that B is M -subobject-complete (as a V -category) if B is cotensored and
has V -intersections (2.2.3) of arbitrary (class-indexed) families of M -morphisms, as well
as V -pullbacks of M -morphisms along arbitrary morphisms. By [21, 7.4], if B is M -
subobject-complete, then the following hold:

1. (E ,M ) is a V -factorization-system on B.

2. For any class Σ of morphisms in B, if we let N := Σ↓V ∩M , then (N ↑V ,N ) is a
V -factorization-system on B.

2.3.3. A V -prefactorization-system (E ,M ) on B is said to be V -proper if every mor-
phism in E is a V -epimorphism in B and every morphism in M is a V -monomorphism. A
V -strong-mono(morphism) in B is a V -mono to which each V -epi in B is V -orthogonal,
and a V -strong-epi(morphism) in B is a V -strong-mono in Bop. We denote the classes
of all such by StrMonoV B and StrEpiV B, respectively. In a tensored and cotensored
V -category, these notions reduce (by [21, 6.8]) to the familiar notions of strong monomor-
phism (resp. strong epimorphism), applied to the underlying ordinary category of B. For
any V -proper V -prefactorization-system (E ,M ), we have StrMonoV B ⊆ E ↓V = M and
similarly StrEpiV B ⊆ E ; hence, since every section is a V -strong-mono ([21, 6.3]), every
section therefore lies in M , and dually, every retraction lies in E .
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2.3.4. Proposition. If either of the following conditions holds, then
(EpiV B, StrMonoV B) is a V -factorization-system on B and B is M -subobject-complete
for M = StrMonoV B.

1. B is cotensored, well-powered with respect to V -strong-monos, and has small V -
limits and V -cokernel-pairs.

2. B is cotensored and tensored, well-powered with respect to strong monos, and has
small limits.

If either of the following conditions holds, then (StrEpiV B,MonoV B) is a V -factorization-
system and B is M -subobject-complete for M = MonoV B.

3. B is cotensored, well-powered with respect to V -monos, and has small V -limits and
V -cokernel pairs.

4. B is cotensored and tensored, well-powered, and has small limits.

Proof. In each case, the statement that the pair (E ,M ) in question is a V -factorization-
system under the given condition is part of Theorem 7.14 of [21]. In cases 1 and 3, it
is clear that B is M -subobject-complete. In cases 2 and 4, we deduce that B is M -
subobject-complete by [21, 2.4, 6.8].

2.4. Closure operators in categories.

Let (E ,M ) be a prefactorization system on a category B with M ⊆ MonoB. For
each object B of B, denote by SubM (B) the preordered class of all M -morphisms with
codomain B. Suppose that for each f : A → B in B and m ∈ SubM (B), the pullback
f−1(m) of m along f exists; by 2.3.1, f−1(m) then lies in SubM (A). Under these as-
sumptions, we shall recall some basic results concerning the notion of idempotent closure
operator defined in [7] and, in more general settings, in [8, 25].

2.4.1. An idempotent closure operator on M in B is an assignment to each object B of
B a monotone map (−) : SubM (B)→ SubM (B) such that

1. m ≤ m and m ≤ m for each m ∈M , and

2. for each f : A→ B in B and each n ∈ SubM (B), f−1(n) ≤ f−1(n).

An M -morphism m ∈ SubM (B) is said to be closed with respect to (−) if m ∼= m in
SubM (B), whereas m is said to be dense if m ∼= 1B. By 1, each M -morphism m : M → B

factors as M
dm−→ M

m−→ B for a unique morphism dm, and by 2.3.1, dm ∈ M . We say
that (−) is weakly hereditary if for each m ∈M , dm is dense.
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2.4.2. Suppose that (E ,M )-factorizations exist. For all morphisms f : A → B and
m : M → A with m ∈M , denote by f(m) the second factor of the (E ,M )-factorization

of the composite M
m−→ A

f−→ B. Then condition 2 above is equivalent to the following
condition:

2′. f(m) ≤ f(m).

Given a weakly hereditary idempotent closure operator (−) on M in B, we obtain an
associated factorization system (Dense,ClEmb) on B, where ClEmb is the class of all closed
M -morphisms and Dense is the class of all dense morphisms, i.e. those f : A→ B in B
whose image f(1A) is a dense M -morphism.

2.4.3. Given a factorization system F = (D ,C ) with C ⊆ M , we obtain a weakly

hereditary idempotent closure operator (−)
F

on M in B by defining the closure mF

of each m ∈ M to be the second factor of the (D ,C )-factorization of m. Supposing as
in 2.4.2 that (E ,M )-factorizations exist, the class of closed M -morphisms (resp. dense

morphisms) determined by (−)
F

is then equal to C (resp. D). In the case that F =
(D ,C ) is the factorization system associated to a given closure operator (−) on M (2.4.2),
we find that mF ∼= m in SubM (B) for all m ∈ SubM (B), B ∈ B.

2.4.4. Proposition. Let (Dense,ClEmb) be the factorization system determined by a
weakly hereditary idempotent closure operator (−) on M in B. Then

ClEmb = DenseEmb↓ ∩M ,

where DenseEmb := M ∩ Dense.

Proof. Since (Dense,ClEmb) is a prefactorization system and DenseEmb ⊆ Dense we
know that ClEmb = Dense↓ ⊆ DenseEmb↓ and hence ClEmb ⊆ DenseEmb↓ ∩M . For the
converse inclusion, suppose that m : M → B lies in DenseEmb↓ ∩M . Then, taking the

(Dense,ClEmb)-factorization M
d−→ C

c−→ B of m, we find by 2.3.1 that d lies in M and
hence lies in DenseEmb, so d ↓ m. Therefore, there is a unique morphism k such that the
diagram

M

d
��

M

m
��

C c
//

k

==

B

commutes, whence c ∼= m in SubM (B), so that m is closed as c is so.

3. Orthogonality, adjunctions, and reflections

The following notion of orthogonality in the enriched context was employed in [6].
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3.1. Definition. Let B be a V -category, let Σ be a class of morphisms in B, and let
C be a class of objects in B.

1. For a morphism f : A1 → A2 in B and an object B in B, we say that f is
V -orthogonal to B, written f⊥V B, if B(f,B) : B(A2, B)→ B(A1, B) is an iso-
morphism in V .

2. We define Σ⊥V := {C ∈ ObB | ∀f ∈ Σ : f⊥V C}. We let BΣ be the full sub-V -
category of B whose objects are those in Σ⊥V .

3. We define C >V := {f ∈ MorB | ∀C ∈ C : f⊥V C}.

4. We say that (Σ,C ) is a V -orthogonal-pair in B if Σ⊥V = C and C >V = Σ.

5. Given a functor F : B → C , we denote by ΣF the class of all morphisms in B
inverted by F (i.e. sent to isomorphisms in C ).

3.2. Remark. For an ordinary category B, with V = SET we obtain the familiar notions
of orthogonality [12] and orthogonal pair [4], for which we omit the indication of V and
employ the unadorned symbols ⊥, >. Enriched orthogonality clearly implies ordinary
orthogonality.

3.3. Remark. For any class of morphisms Σ in B, (Σ⊥V >V ,Σ⊥V ) is a V -orthogonal-pair
in B. For any class of objects C in B, (C >V ,C >V ⊥V ) is a V -orthogonal-pair in B.

3.4. Remark. If B has a V -terminal object 1, then it is easy to show that f⊥V B iff
f ↓V !B, where !B : B → 1.

3.5. Proposition. Let (Σ,C ) be a V -orthogonal-pair in a V -category B. Then

1. Σ is closed under V -enriched weighted colimits in B. I.e., given a V -natural-
transformation h : B ⇒ B′ : J → B whose components lie in Σ, if
W : J op → V is a V -functor for which weighted colimits W ⊗ B and W ⊗ B′

exist in B, then the induced morphism W ⊗ h : W ⊗B → W ⊗B′ lies in Σ.

2. C is closed under V -enriched weighted limits in B. I.e., given V -functors C : J →
B and W : J → V for which a weighted limit [W,C] in B exists, if Cj ∈ C for
all j ∈J , then [W,C] ∈ C .

Proof. 1. For each object C ∈ C , we have an isomorphism

B(W ⊗ h,C) ∼= [J op,V ](W,B(h−, C)) =

∫
j∈J

V (Wj,B(hj, C))

in the arrow category of V , but each B(hj, C) is iso and hence B(W ⊗ h,C) is iso,
showing that W ⊗ h ∈ C >V = Σ. 2. For each h ∈ Σ, we have an isomorphism

B(h, [W,C]) ∼= [J ,V ](W,B(h,C−)) =

∫
j∈J

V (Wj,B(h,Cj))

in the arrow category of V , but each B(h,Cj) is iso and hence B(h, [W,C]) is iso, showing
that [W,C] ∈ Σ⊥V = C .
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3.6. Proposition. Let B be a V -category, Σ ⊆ MorB, C ⊆ ObB.

1. If B is tensored and Σ is closed under tensors in B, then Σ⊥V = Σ⊥.

2. If B is cotensored and C is closed under cotensors in B, then C >V = C >.

Proof. 1. Given C ∈ Σ⊥ and h ∈ Σ, it suffices to show that h⊥V C. Letting B0 denote
the underlying ordinary category of B, we have that for each V ∈ V , V (V,B(h,C)) ∼=
B0(V ⊗h,C) in the arrow category of SET, and the latter morphism is iso. Hence B(h,C)
is an isomorphism in V . 2 is proved analogously.

3.7. Proposition. For a V -category B, (ObB)>V = IsoB = (MorB)↑V .

Proof. IsoB is clearly included in both the rightmost and leftmost classes. Also,
the inclusion (MorB)↑V ⊆ IsoB follows from [21, 3.7]. Lastly, if h : B1 → B2 lies
in (ObB)>V , then the V -natural transformation B(h,−) : B(B2,−) → B(B1,−) is
an isomorphism; but by the weak Yoneda lemma ([17, 1.9]), the (ordinary) functor
Y : Bop → V -CAT(B,V ) given by Y B = B(B,−) is fully faithful, so h is iso.

3.8. Proposition. Let B be a V -category and Σ a class of morphisms in B. Then for
any morphisms e : A1 → A2 in Σ and m : B1 → B2 in BΣ, we have that e ↓V m in B.

Proof. Since e⊥V B1 and e⊥V B2, the left and right sides of the commutative square
(2.3.i) are isomorphisms, so the square is a pullback.

In the non-enriched context, the first of the following equivalences appears in the proof
of Lemma 4.2.1 of [12], and variants of both equivalences are given in [23].

3.9. Proposition. Let F a G : C → B be a V -adjunction, f : B1 → B2 a morphism
in B, g : C1 → C2 a morphism in C , and C an object of C .

1. Ff ↓V g ⇐⇒ f ↓V Gg.

2. Ff⊥V C ⇐⇒ f⊥V GC.

Proof. 1. Via the given V -adjunction, the commutative diagram

C (FB2, C1)
C (FB2,g) //

C (Ff,C1)

��

C (FB2, C2)

C (Ff,C2)

��
C (FB1, C1)

C (FB1,g) // C (FB1, C2)

is isomorphic to the commutative diagram

B(B2, GC1)
B(B2,Gg) //

B(f,GC1)

��

B(B2, GC2)

B(f,GC2)

��
B(B1, GC1)

B(B1,Gg) //B(B1, GC2) .

2. C (Ff,C) ∼= B(f,GC) in the arrow category [2,V ].
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In the non-enriched setting, the first of the following equations is noted in [5, 3.3] and
specializes [12, 4.2.1].

3.10. Corollary. Let F a G : C → B be a V -adjunction. Then

(G(MorC ))↑V = ΣF = (G(ObC ))>V .

Hence, in particular, (ΣF ,Σ
↓V
F ) is a V -prefactorization-system on B, and (ΣF ,Σ

⊥V
F ) is

a V -orthogonal-pair in B.

Proof. By 3.9 and 3.7, we may compute as follows:

(G(MorC ))↑V = F−1((MorC )↑V ) = F−1(IsoC ) = ΣF ;

(G(ObC ))>V = F−1((ObC )>V ) = F−1(IsoC ) = ΣF .

Clearly any sub-V -category of B of the form BΣ is replete. The following proposition
shows that every V -reflective-subcategory of B is of the form BΣ for each of two canonical
choices of Σ:

3.11. Proposition. Let K
ρ
J : C ↪→ B be a V -reflection.

1. C = BΣK
= BΣ, where Σ := {ρB | B ∈ B}.

2. (MorC )↑V = ΣK = (ObC )>V , where the right- and leftmost expressions are evalu-
ated with respect to B.

3. (ΣK ,Σ
↓V
K ) is a V -prefactorization-system on B, and (ΣK ,C ) is a V -orthogonal-pair

in B.

Proof. 2 follows from 3.10. Regarding 1, first observe that Σ ⊆ ΣK , so that BΣK
⊆ BΣ.

Also, by 2, ObBΣK
= (ΣK)⊥V = (ObC )>V ⊥V ⊇ ObC . Hence it now suffices to show

BΣ ⊆ C . Suppose B ∈ BΣ. Since we also have that KB ∈ C ⊆ BΣ, the morphism
ρB : B → KB lies in BΣ, so since ρB ∈ Σ we deduce by 3.8 that ρB ↓V ρB. Hence by [21,
3.7], ρB is iso, so B ∈ C . Lastly, observe that 3 follows from 3.10 and 1.

3.12. Proposition. Let C be a reflective subcategory of the underlying ordinary category
of a V -category B, and suppose that B is cotensored and C is closed under cotensors in
B. Then C is a V -reflective-subcategory of B.

Proof. For all B ∈ B, the reflection morphism ρB : B → KB lies in C >, but by 3.6,
C > = C >V , so ρB⊥V C for all C ∈ C and the result follows by 2.2.4.
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3.13. Definition. Given a full sub-V -category C of a V -category B, the V -reflective
hull of C (in B), if it exists, is the smallest V -reflective-subcategory of B containing C .

3.14. Proposition. Let C be a full sub-V -category a V -category B.

1. Any V -reflective-subcategory of B that contains C must also contain C >V ⊥V .

2. Hence, if C >V ⊥V is a V -reflective-subcategory of B, then the V -reflective-hull of
C in B exists and equals C >V ⊥V .

Proof. If C ↪→ D ↪→ B and the latter inclusion has left V -adjoint K : B → D , then
C >V ⊥V ⊆ D>V ⊥V = Σ⊥V

K = D by 3.11 2 & 1.

3.15. Corollary. Let F a G : C → B be a V -adjunction. Then if BΣF
↪→ B is a

V -reflective-subcategory, it follows that the V -reflective-hull of G(ObC ) ↪→ B exists and
equals BΣF

.

Proof. (G(ObC ))>V ⊥V = Σ⊥V
F = BΣF

by 3.10, so the result follows from 3.14 2.

4. Definition and characterizations of the idempotent core

4.1. Lemma. Let S = (S, ρ, λ) and T = (T, η, µ) be monads on an object B of 2-category
K , and suppose that S is idempotent. Then

1. A 2-cell α : S → T is a morphism of monads S→ T if and only if α · ρ = η.

2. If a morphism of monads S→ T exists, then it is unique.

Proof. One of the implications in 1 is trivial; for the other, suppose that α · ρ = η.
We must show that µ · (α ◦ α) = α · λ. But λ is an isomorphism with λ−1 = ρS, and
µ ·(α◦α) ·ρS = µ ·αT ·Sα ·ρS = µ ·αT ·ρT ·α = µ ·ηT ·α = α. Regarding 2, let α : S→ T
be a morphism of monads. By 2.1.2, the 1-cell T carries the structure of an S-algebra

(T, β) where β is the composite ST
αT−→ TT

µ−→ T . But by 2.1.3, since S is idempotent, β
is an isomorphism with inverse ρT : T → ST . Hence by 2.1.2, α = β ·Sη = (ρT )−1 ·Sη, so
we have expressed α in terms of S and T, showing that α is the unique monad morphism
S→ T.

4.2. Definition. Let T be a V -monad on a V -category B.

1. If T̃ is an idempotent V -monad on B for which there exists a (necessarily unique,

4.1) morphism ιT : T̃→ T satisfying the following condition, then we say that T̃ is
a terminal idempotent V -monad over T:

For each morphism of V -monads α : S → T with S idempotent, there is a
unique morphism α] : S→ T̃ with ιT · α] = α.

2. If T̃ is an idempotent V -monad on B whose underlying endofunctor T̃ inverts the
same morphisms as T , then we say that T̃ is an idempotent (V -)core of T.
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4.3. Remark. A terminal idempotent V -monad over T is equally a terminal object in the
category of idempotent V -monads over T and so is unique, up to isomorphism, if it exists.
We will see in 4.15 that any idempotent core of T is in particular a terminal idempotent
V -monad over T. Hence, an idempotent core of T is unique, up to isomorphism, if it
exists, in which case any terminal idempotent V -monad over T is an idempotent core.

4.4. Remark. If for every V -monad T on B, the terminal idempotent V -monad over
T exists, then the full subcategory IdmMndV -CAT(B) of MndV -CAT(B) consisting of all
idempotent V -monads is a coreflective subcategory.

4.5. Lemma. Suppose given a V -adjunction F ε
η
G : C → B and a V -reflection K

ρ

J : B′ ↪→ B such that the image of G lies in B′. Then there is a V -adjunction F ′
ε′
η′

G′ : C → B′ with JG′ = G, F ′K ∼= F , F ′ = FJ , Jη′ = ηJ , and ε′ = ε. Hence by 2.1.6,
the adjunction F ε

η
G is isomorphic to the composite of the V -adjunctions K

ρ
J and

F ′
ε′
η′

G′.

Proof. G′ is just the corestriction of G, the components of η′ are just those of η; the
V -naturality of η′ is immediate, and the triangular equations are readily verified.

4.6. Definition. Given data as in 4.5, we say that F ε
η
G factors through B′, and,

equivalently, that F ε
η
G factors through K

ρ
J .

4.7. Proposition. Let T be a V -monad, and let F ε
η
G : C → B be any V -adjunction

inducing T. Let S be an idempotent V -monad on B, with associated V -reflection K
ρ

J : B′ ↪→ B. Then the following are equivalent:

1. There exists a (necessarily unique, 4.1) morphism of V -monads α : S→ T.

2. B′ contains each object TB (with B ∈ B).

3. F ε
η
G factors through K

ρ
J .

Proof. Observe that 2 is equivalent to the statement that the Kleisli V -adjunction for
T factors through K

ρ
J . Hence it suffices to prove that 1 ⇔ 3, for then the equivalence

1⇔ 2 follows as a special case. If 3 holds, then the existence of a morphism of V -monads
α : S → T is guaranteed by 2.1.7. For the converse implication, let us assume 1 and
prove that 3 holds. Working with only the underlying ordinary monad morphism and
adjunction, note that the given adjunction determines a comparison functor C → BT,
and we have also a functor Bα : BT → BS induced by α. Both these functors commute
with the forgetful functors to B, and so too does their composite C → BT → BS ∼= B′.
Hence, applying this composite functor to any given C ∈ C , we find that the carrier GC
of the associated S-algebra lies in B′, so 3 holds.
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4.8. Remark. Proposition 4.7 shows in particular that the question of whether a V -
adjunction F ε

η
G factors through a given V -reflection depends only on the V -monad T

induced by F ε
η
G.

4.9. Corollary. Suppose S = (S, ρ, λ) and T = (T, η, µ) are V -monads on a V -category
B with S idempotent, and let α : S → T be a morphism of V -monads. Then for each
B ∈ B, αB : SB → TB is the unique morphism such that αB · ρB = ηB.

Proof. By 4.7, we know that TB lies in the reflective subcategory B′ ↪→ B determined
by S, so αB is the unique extension of ηB : B → TB along the reflection unit component
ρB : B → SB.

4.10. Given a V -category B, the class ReflV (B) (2.2.6) of all V -reflections on B ac-
quires the structure of a preordered class when ordered by inclusion of the associated
V -reflective-subcategories.

4.11. Corollary. Let B be a V -category.

1. The full subcategory IdmMndV -CAT(B) of MndV -CAT(B) is a preordered class iso-
morphic to (ReflV (B))op via the bijection given in 2.2.6.

2. Given a V -monad T on B, the isomorphism in 1 restricts to an isomorphism be-
tween the full subcategories determined by the following objects:

(a) Idempotent V -monads S on B for which a (necessarily unique, 4.1) morphism
of V -monads α : S→ T exists.

(b) V -reflections on B whose associated V -reflective-subcategory contains each ob-
ject TB (B ∈ B).

Proof. We shall prove 1, and then 2 follows by 4.7. By 4.1, IdmMndV (B) is a preorder,
and it suffices to show that the bijection ReflV (B)→ IdmMndV (B) (2.2.6) and its inverse
are contravariantly functorial (i.e. order-reversing). But this follows from 4.7, since the
given preorder relation on ReflV (B) may equally be described as

(K ′
ρ′

J ′) 6 (K
ρ
J) ⇐⇒ K ′

ρ′

J ′ factors through K
ρ
J .

4.12. Theorem. Let T be a V -monad on a V -category B, and let F a G : C → B be
any V -adjunction inducing T. Then the following are equivalent:

1. The terminal idempotent V -monad over T exists.

2. The full sub-V -category T (ObB) ↪→ B has a V -reflective hull.

3. The full sub-V -category G(ObC ) ↪→ B has a V -reflective hull.

4. There is a smallest V -reflective-subcategory through which F a G factors.
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Further, given an idempotent V -monad T̃ on B with associated V -reflective-subcat-
egory B′, T̃ is a terminal idempotent V -monad over T if and only if B′ is a V -reflective
hull of T (ObB), resp. G(ObC ), equivalently, a smallest V -reflective-subcategory through
which F a G factors.

Proof. A terminal idempotent V -monad over T is by definition a terminal object of the
preordered class described in 4.11 2(a), so the result follows from 4.11 2 and 4.7.

4.13. Lemma. Given an (ordinary) adjunction F
η
G : C → B with induced endofunc-

tor T on B, ΣF = ΣT . Hence all left adjoints inducing a given monad T invert the same
morphisms.

Proof. One inclusion is immediate. For the other, suppose f : B → B′ in B is inverted
by T . Then Tf has an inverse (Tf)−1 : TB′ → TB, and one easily shows that the

transpose FB′ → FB of the composite B′
ηB′−−→ GFB′

(Tf)−1

−−−−→ GFB under the given
adjunction serves as inverse for Ff .

4.14. Corollary. Let T be a V -monad on a V -category B. Then (ΣT ,Σ
↓V
T ) is a V -

prefactorization-system on B, and (ΣT ,Σ
⊥V
T ) is a V -orthogonal-pair in B.

Proof. Taking any V -adjunction F a G inducing T (e.g., the Kleisli V -adjunction), we
have that ΣT = ΣF by 4.13, and the result follows from 3.10.

4.15. Theorem. Let T be a V -monad on a V -category B, and let F a G : C → B be
any V -adjunction inducing T. Then the following are equivalent:

1. The idempotent core of T exists.

2. The terminal idempotent V -monad over T exists, and its underlying endofunctor
inverts the same morphisms as T .

3. BΣT
(= Σ⊥V

T ) is a V -reflective-subcategory of B.

4. F a G factors through a V -reflection K a J : B′ ↪→ B in such a way that the in-
duced left V -adjoint F ′ : B′ → C (4.6) is conservative (i.e. reflects isomorphisms).

Further, given an idempotent V -monad T̃ on B with associated V -reflective-subcategory
B′, the following are equivalent: (i) T̃ is an idempotent core of T, (ii) T̃ is a terminal
idempotent V -monad over T and inverts the same morphisms as T , (iii) B′ = BΣT

,
(iv) F a G factors through B′ ↪→ B in such a way that the induced left V -adjoint F ′ is
conservative.
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Proof. We prove the equivalence of (i)-(iv), from which the equivalence of 1-4 follows.

Let K a J : B′ → B be the V -reflection determined by T̃. The implication (ii) ⇒ (i)
is immediate. To see that (i) ⇒ (iii), observe that if (i) holds then ΣT = ΣT̃ = ΣK ,
and so BΣT

= BΣK
= B′ by 3.11 1. Regarding the implication (iv) ⇒ (iii), we reason

that if (iv) holds then we have that ΣK = ΣF ′K since F ′ is conservative, but F ′K ∼= F
by 4.5 and ΣF = ΣT by 4.13; therefore ΣK = ΣF ′K = ΣF = ΣT , and using 3.11 1 we
deduce that B′ = BΣK

= BΣT
. It now suffices to prove the implications (iii) ⇒ (ii) and

(iii) ⇒ (iv). Assuming (iii), we have that B′ = BΣT
= BΣF

= Σ⊥V
F , since ΣT = ΣF

by 4.13. Hence since B′ is a V -reflective-subcategory of B we deduce by 3.15 that the
V -reflective-hull of G(ObC ) exists and equals B′, so by 4.12, T̃ is a terminal idempotent
V -monad over T and F a G factors through K a J . Using 3.11 1, we know that
Σ⊥V
K = B′ = Σ⊥V

F , so since (ΣK ,Σ
⊥V
K ) and (ΣF ,Σ

⊥V
F ) are V -orthogonal-pairs by 3.10,

we deduce that ΣT̃ = ΣK = ΣF = ΣT . But from this it follows also that F ′ : B′ → C is
conservative, since if F ′f is iso (for some morphism f in B′), then since F ′ = FJ (4.5)
and ΣF = ΣK we find that KJf is iso, but KJ ∼= 1B′ and hence f is iso.

4.16. Proposition. Let T̃ be an idempotent V -core of a V -monad T on B. Then the
underlying ordinary monad of T̃ is an idempotent core of the underlying ordinary monad
of T. Hence, whereas in general, V -orthogonality implies ordinary orthogonality, we have
in this case an equation Σ⊥V

T = Σ⊥T .

Proof. The underlying ordinary monad of T̃ is an idempotent monad which inverts the
same morphisms as T and hence is an ordinary idempotent core of T. Its associated
reflective subcategory is Σ⊥T and yet has same objects as the V -reflective-subcategory

determined by T̃, which is Σ⊥V
T .

4.17. Theorem. Let T be a V -monad on a tensored and cotensored V -category, and
suppose that the idempotent core of the underlying ordinary monad of T exists. Then the
idempotent V -core of T exists.

Proof. By 4.14 and 3.5, ΣT is closed under tensors in B, so by 3.6, Σ⊥V
T = Σ⊥T . The

latter is a reflective subcategory of B (by an application of 4.15 to the underlying ordinary
monad of T). But Σ⊥V

T is closed under cotensors by 3.5 and hence by 3.12 is a V -reflective-
subcategory of B, so the result follows by 4.15.

4.18. Example (Double-dualization monads). Let V be a symmetric monoidal closed
category and R ∈ V an object. For each object V of V , we shall call the internal hom
V ∗ := V (V,R) the dual of V with respect to R. We obtain a V -adjunction

V
(−)∗
> 22 V op

(−)∗

ss

which we call the dualization V -adjunction (for R); it is an instance of a ‘hom-cotensor’
V -adjunction [17, (3.42)]. We call the induced V -monad T (on V ) the double-dualization
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V -monad ; its underlying V -functor (−)∗∗ sends each V ∈ V to the double-dual V ∗∗ of

V . Since V is tensored and cotensored, 4.17 entails that the idempotent V -core T̃ of T
exists as soon as the idempotent core of the underlying ordinary monad of T exists. In
this case, the V -reflective-subcategory B′ determined by T̃ is the V -reflective-hull of the
single object R in V . Indeed, by 4.12, B′ is the V -reflective-hull of {V (V,R) | V ∈ V }
in V , but any V -reflective-subcategory of V containing R is closed under cotensors in V
and hence contains each cotensor V (V,R) of R.

4.19. Example (Completion of normed vector spaces). We shall show in 5 that the
double-dualization V -monad T on the category V of normed or seminormed vector spaces
(over R = R or C) has an idempotent V -core T̃ that associates to each (semi-)normed
vector space V the (Cauchy-)completion of V . The V -reflective-subcategory of V deter-

mined by T̃ is the category of Banach spaces, which therefore is the V -reflective-hull of
R in V (by 4.18).

4.20. Example (Sheafification for a Lawvere-Tierney topology). Given an (elementary)
topos X and a Lawvere-Tierney topology j on X , let Ωj be the associated retract of the
subobject classifier Ω, and let T be the double-dualization V -monad for Ωj. We show in

8.8 that the idempotent V -core T̃ of T is the j-sheafification X -monad, whose associated
X -reflective-subcategory of X consists of the j-sheaves. Hence the X -category of j-
sheaves is by 4.18 the X -reflective-hull of Ωj in X .

5. Example: Completion of normed vector spaces

Let SNorm1 be the category of seminormed vector spaces over R = R or C with nonex-
pansive linear maps (i.e. bounded linear maps of seminorm 6 1), and let Norm1 be the
full subcategory consisting of normed vector spaces.

Letting V be either SNorm1 or Norm1, it is well-known that V is symmetric monoidal
closed; e.g. see [2] §3.4. Indeed, in both categories, the internal hom V (V,W ) (V,W ∈ V )
is the vector space of all bounded linear maps V → W , equipped with the usual operator
(semi)norm. Given seminormed (resp. normed) spaces V,W , the monoidal product V ⊗W
in SNorm1 (resp. Norm1) is the algebraic tensor product, equipped with the projective
seminorm (resp. norm) ||x|| = inf{

∑
i ||vi||||wi|| | x =

∑n
i=1 vi ⊗ wi}. (In particular, the

projective seminorm is a norm as soon as V and W are normed [24, Ch. III, Exercise
20].)

The dualization V -functor (−)∗ : V op → V (4.18) associates to each V ∈ V the space
V ∗ of all bounded linear functionals on V , and assigns to each morphism h : V1 → V2 in V
the map h : V ∗2 → V ∗1 given by ψ 7→ ψ ·h. The double-dualization V -monad T (4.18) on V
associates to each V ∈ V its double-dual TV = V ∗∗, and the unit morphism ηV : V → TV
is the familiar canonical linear map, which is always isometric (i.e. ||ηV (v)|| = ||v|| for all
v ∈ V ), so that ηV is an isometric embedding (i.e., isometric and injective) as soon as V
is normed.
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In the present section, we show that the double-dualization V -monad T on V has an
idempotent V -core T̃, given by completion.

5.1. The full subcategory Ban1 of V (= SNorm1 or Norm1) consisting of all Banach spaces

is a V -reflective-subcategory of V . Indeed, for an arbitrary morphism ρV : V → Ṽ in V
with Ṽ a Banach space, the following conditions are equivalent, and they characterize (up

to isomorphism) the familiar completion Ṽ of V :

1. ρV : V → Ṽ is dense and isometric.

2. For each Banach space B, the morphism V (ρV , B) : V (Ṽ , B) → V (V,B) in V is
an (isometric) isomorphism.

3. For each morphism f : V → B in V with B a Banach space, there is a unique
morphism f ] : Ṽ → B in V with f ] · ρV = f ; further, ||f ]|| = ||f ||.

Concretely, we can take Ṽ to be the familiar Cauchy-completion of V , or the closure of
the image of ηV : V → TV = V ∗∗.

5.2. Lemma. Let h : V → W in V (= SNorm1 or Norm1). Then h is dense if and only
if h∗ : W ∗ → V ∗ is injective.

Proof. The ‘only if’ part is straightforward. Conversely, suppose h is not dense. Then,
letting C ⊆ W be the closure of the image of h, the Hahn-Banach Extension Theorem
entails that there is some nonzero ψ ∈ W ∗ with ψ|C = 0. But then h∗(ψ) = ψ · h = 0 and
yet ψ 6= 0, showing that h∗ is not injective.

5.3. Proposition. For each morphism h : V → W in V (= SNorm1 or Norm1), the
following are equivalent:

1. h is dense and isometric.

2. h̃ : Ṽ → W̃ is an (isometric) isomorphism.

3. h∗ : W ∗ → V ∗ is an (isometric) isomorphism.

Proof. To show 1 ⇒ 2, suppose that h is dense and isometric. We have a commutative
square

V

h
��

ρV // Ṽ

h̃��

W
ρW // W̃

(5.3.i)

in which both h and ρW are dense and isometric, so that the composite ρW ·h : V → W̃ is a
dense, isometric morphism into a Banach space and hence satisfies the universal property
characterizing the completion of V (5.1). Using this and also the (same) universal property

of ρV , it follows that h̃ is an isomorphism.
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To show 2 ⇒ 3, suppose that h̃ is an isomorphism. Then, applying (−)∗ to the
commutative square (5.3.i), we obtain a commutative square

V ∗ Ṽ ∗
ρ∗Voo

W ∗

h∗

OO

W̃ ∗ρ∗Woo

h̃∗

OO

in which the right side is an isomorphism. But the second characterization of the com-
pletion in 5.1 entails that the top and bottom faces are isomorphisms as well, so h∗ is an
isomorphism.

To show 3⇒ 1, suppose that h∗ is an isomorphism. By 5.2 we deduce that h is dense.
Further, we have a commutative square

V

h
��

ηV // V ∗∗

h∗∗

��
W

ηW //W ∗∗

in which the right side is an isomorphism and the top and bottom sides are isometric,
and it follows that h is isometric.

5.4. Let T̃ be the idempotent V -monad induced by the completion V -adjunction

(̃−)
ρ
J : Ban1 ↪→ V , where V = SNorm1 or Norm1, so that T̃ V = Ṽ is the comple-

tion of V ∈ V .

5.5. Theorem. The completion V -monad T̃ on the category V of normed (resp. semi-
normed) vector spaces is the idempotent V -core of the double-dualization V -monad T on
V . Moreover, ΣT = ΣT̃ is the class of all dense, isometric morphisms in V .

Proof. By 4.13, ΣT = Σ(−)∗ , and by 5.3, the latter class equals ΣT̃ and consists of exactly
the dense, isometric morphisms.

5.6. Corollary. The category Ban1 of Banach spaces is the V -reflective-hull of R (= R
or C) in the category V of normed (resp. seminormed) vector spaces. Moreover, a normed
(resp. seminormed) vector space B is a Banach space if and only if the following equivalent
conditions hold for each morphism h : V → W in V :

1. If h⊥V R, then h⊥V B.

2. If h∗ : W ∗ → V ∗ is an isomorphism (in V ), then V (h,B) : V (W,B)→ V (V,B) is
an isomorphism.
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6. Completion, closure, and density relative to a monad. Existence results
via factorization.

6.1. Given data. In the present section, we work with given data as follows, which we
shall later suppose to satisfy Assumption 6.4 below:

1. Let T = (T, η, µ) be a V -monad on a V -category B.

2. Let Σ ⊆ ΣT be a class of morphisms inverted by T .

3. Let (E ,M ) be a V -proper V -prefactorization-system on B.

We shall refer to the morphisms in M as M -embeddings.

6.2. Definition. Given data as in 6.1, we make the following definitions:

1. An object B of B is Σ-complete if B ∈ BΣ.

2. An object B of B is T-separated if ηB : B → TB is an M -embedding.

3. We denote the full sub-V -category of B consisting of the Σ-complete T-separated
objects by B(T,Σ).

4. We say that an M -embedding m : B1 � B2 in B is Σ-closed if m ∈ Σ↓V . We
denote by Σ-ClEmb := Σ↓V ∩M the class of all Σ-closed M -embeddings in B.

5. We say that a morphism in B is Σ-dense if it lies in Σ-Dense := Σ-ClEmb↑V .

6. If Σ = ΣT , then we replace the prefixes “Σ-” with “T-”, obtaining the notions of
T-complete object, T-closed M -embedding, and T-dense morphism.

6.3. Remark. Observe that (Σ-Dense,Σ-ClEmb) is a V -prefactorization-system on B,
since Σ-ClEmb = Σ↓V ∩ E ↓V = (Σ ∪ E )↓V .

6.4. Assumption. For the remainder of §6, we shall assume that every morphism in B
factors as a Σ-dense morphism followed by a Σ-closed M -embedding.

It then follows by 6.3 that (Σ-Dense,Σ-ClEmb) is a V -factorization-system on B.

6.5. Example. Given data as in 6.1, Assumption 6.4 is satisfied as soon as B is M -
subobject-complete (2.3.2).
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6.6. Example (Normed and seminormed spaces). As we shall show in 7.2, data satisfying
Assumption 6.4 can be obtained as follows. Take V := Norm1 or SNorm1 to be the
category of normed or seminormed vector spaces (5), let B := V , let E consist of all
surjective morphisms in V , and let M consist of all isometric embeddings in V . Let T
be the double-dualization V -monad on V (5), and let Σ := ΣT . Then

1. a (semi)normed space is T-complete if and only if it is a Banach space;

2. a seminormed space is T-separated if and only if it is normed;

3. the T-closed M -embeddings are exactly the closed isometric embeddings;

4. the T-dense morphisms are exactly the dense morphisms in the usual sense;

5. ΣT consists of exactly the dense isometric morphisms in V .

6.7. Example (Sheaves, density, and closed subobjects). Given an (elementary) topos
X and a Lawvere-Tierney topology j on X , we show in 8.8 that data satisfying As-
sumption 6.4 can be obtained as follows. Take V := X , let B := X , and let (E ,M ) :=
(EpiX ,MonoX ). Let T be the double-dualization X -monad for Ωj, and let Σ := ΣT .
Then

1. an object of X is T-complete if and only if it is a j-sheaf;

2. an object of X is T-separated if and only if it is j-separated;

3. the T-closed M -embeddings are exactly the j-closed monomorphisms;

4. the T-dense morphisms are exactly the j-dense morphisms.

Also, given a Grothendieck quasitopos Y , so that (up to equivalence of categories) Y is the
category ofK-separated J-sheaves on a bisite (C , J,K), we show in 8.9 that data satisfying
Assumption 6.4 can be obtained by considering the associated Lawvere-Tierney topologies
j, k on the presheaf topos X := [C op, Set], taking T to be the double-dualization X -
monad for Ωk, and letting Σ consist of all morphisms inverted by the double-dualization
functor for Ωj, so that X (T,Σ) = Y .

6.8. Proposition.

1. Every morphism e ∈ E is Σ-dense.

2. Every morphism in Σ is Σ-dense.

3. If a composite B1
f−→ B2

g−→ B3 is Σ-dense, then its second factor g is Σ-dense.

4. If a composite B1
f−→ B2

g−→ B3 and its second factor g are both Σ-closed M -
embeddings, then the first factor f is a Σ-closed M -embedding.
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5. Every Σ-dense Σ-closed M -embedding is an isomorphism.

6. Σ-ClEmb is closed under composition, cotensors, arbitrary V -intersections, and V -
pullbacks along arbitrary morphisms in B.

7. Σ-Dense is closed under composition, tensors, arbitrary V -cofibre-coproducts, and
V -pushouts along arbitrary morphisms in B.

Proof. 1. e is V -orthogonal to every M -embedding and hence to every Σ-closed M -
embedding. 2. Σ-ClEmb ⊆ Σ↓V , so Σ ⊆ Σ↓V ↑V ⊆ Σ-ClEmb↑V = Σ-Dense. 3-7 follow from
2.3.1.

6.9. Since (Σ-Dense,Σ-ClEmb) is a V -factorization-system and hence an ordinary fac-
torization system (by [21, 5.3]), it determines a weakly hereditary idempotent closure
operator (−) on M in B (2.4.3). For each M -embedding m, we call m the Σ-closure of
m; in the case that Σ = ΣT , we call m the T-closure of m.

6.10. Proposition. Let m : B′ � B be an M -embedding in B, and suppose B is
Σ-complete. Then

B′ is Σ-complete ⇔ m is Σ-closed .

Proof. For each h : B1 → B2 in Σ, we have a commutative square

B(B2, B
′)

B(h,B′)//

B(B2,m)

��

B(B1, B
′)

B(B1,m)

��
B(B2, B)

B(h,B)
//B(B1, B)

in which B(h,B) is iso, so the square is a pullback if and only if B(h,B′) is iso.

For the remainder of this section, let us fix a V -adjunction F a G : C → B inducing
T; for example, one can take F a G to be the Kleisli V -adjunction.

6.11. Proposition. Let C be an object of C . Then GC is Σ-complete.

Proof. For each h : B1 → B2 in Σ, we have a commutative square

B(B2, GC)
B(h,GC)//

o
��

B(B1, GC)

o
��

C (FB2, C)
C (Fh,C)

// C (FB1, C)

whose left and right sides are isomorphisms, and since h ∈ Σ ⊆ ΣT = ΣF by 4.13, the
bottom side is iso, so the top side is iso.
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6.12. Proposition. Let B ∈ B be T-separated. Then

B is Σ-complete ⇔ ηB : B� TB is Σ-closed .

Proof. Since TB = GFB is Σ-complete by 6.11 and ηB is an M -embedding, this follows
from 6.10.

6.13. Proposition. An object B ∈ B is T-separated (resp. Σ-complete and T-separated)
iff there exists an M -embedding (resp. Σ-closed M -embedding) m : B� GC for some
C ∈ C .

Proof. If B is T-separated, then ηB : B → GFB is an M -embedding; if B is also Σ-
complete, then by 6.12, ηB is Σ-closed. Conversely, if m : B � GC is an M -embedding
then we have a commutative triangle

B
ηB //
""

m ""

GFB

Gm]

��
GC

for a unique morphism m] in C , so ηB ∈ M by 2.3.1 (since E ⊆ EpiV B), so B is T-
separated. If the given M -embedding m is also Σ-closed, then since GC is Σ-complete
by 6.11, we deduce by 6.10 that B is Σ-complete.

6.14. Corollary. For each B ∈ B, TB is Σ-complete and T-separated.

Proof. 1TB : TB → TB = GFB is a Σ-closed M -embedding.

6.15. Definition. For each B ∈ B, let

B
ηB //

ρB !!

TB

KB
;; ιB

;;

be the (Σ-Dense,Σ-ClEmb)-factorization of ηB.

6.16. Proposition. For each B ∈ B, KB is Σ-complete and T-separated.

Proof. Since TB = GFB, this follows from 6.13.

The following lemma was inspired by an idea employed in the proof of 3.3 of [5] in the
non-enriched context.

6.17. Lemma. Let f : B1 → B2 be a Σ-dense morphism for which Ff : FB1 → FB2 is
a section. Then Ff is iso.
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Proof. The periphery of the following diagram commutes.

B1

ηB1 //

f
��

GFB1

GFf
��

B2 ηB2

//

k
;;

GFB2

Also, GFf is a section and hence is an M -embedding (by 2.3.3). Further, by 3.10, we
have that GFf ∈ Σ↓VF ⊆ Σ↓V (using the fact that Σ ⊆ ΣT = ΣF ), so GFf is a Σ-closed
M -embedding. Hence, since f is Σ-dense, there is a unique morphism k making the above
diagram commute. In particular, GFf · k = ηB2 ; taking the transposes of both sides of
this equation, with respect to the adjunction F a G, we find that Ff · k] = 1FB2 where
k] : FB2 → FB1 is the transpose of k. Hence Ff is a split epi and hence, being also a
split mono, is iso.

6.18. Proposition. For each B ∈ B, ρB : B → KB is inverted by F .

Proof. Taking the transposes of each side of the equation(
B

ρB−→ KB
ιB−→ GFB

)
= ηB

under the adjunction F ε
η
G, we obtain(

FB
FρB−−→ FKB

FιB−−→ FGFB
εFB−−→ FB

)
= 1FB ,

so FρB is a section, so since ρB is Σ-dense, 6.17 applies, and we deduce that FρB is iso.

6.19. Proposition. Let B,B′ ∈ B and suppose B′ is T-separated and Σ-complete. Then
ρB⊥V B

′.

Proof. We have a commutative diagram as follows.

B(KB,B′)
B(ρB ,B

′) //

B(KB,ηB′ )
��

B(B,B′)

B(B,ηB′ )
��

B(KB,GFB′)
B(ρB ,GFB

′) //

o
��

B(B,GFB′)

o
��

C (FKB,FB′)
C (FρB ,FB

′) // C (FB,FB′)

Since B′ is T-separated and Σ-complete, we have by 6.12 that ηB′ is a Σ-closed M -
embedding, so since ρB is Σ-dense, ρB ↓V ηB′ , so the upper square is a pullback. Also,
FρB is iso by 6.18, so the left, bottom, and right sides of the lower square are iso. Therefore
B(ρB, GFB

′) is iso and hence its pullback B(ρB, B
′) is iso.
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6.20. Theorem. Let T be a V -monad on a V -category B equipped with a V -proper
V -prefactorization-system (E ,M ), and let Σ ⊆ ΣT . Suppose that every morphism in B
factors as a Σ-dense morphism followed by a Σ-closed M -embedding. Then the morphisms
ρB : B → KB (B ∈ B) of 6.15 exhibit the V -category B(T,Σ) of Σ-complete T-separated
objects (6.2) as a V -reflective-subcategory of B.

Proof. For each B ∈ B we have by 6.16 that KB lies in B(T,Σ), and for each B′ ∈ B(T,Σ),

B(T,Σ)(KB,B
′) = B(KB,B′)

B(ρB ,B
′)−−−−−→ B(B,B′)

is iso by 6.19. The result follows by 2.2.4.

6.21. Remark. The hypothesis in 6.20 that (Σ-Dense,Σ-ClEmb)-factorizations exist (i.e.,
Assumption 6.4) is satisfied as soon as B is M -subobject-complete (2.3.2).

6.22. Definition. Given data satisfying the hypotheses of 6.20, we call the idempotent
V -monad T̃Σ on B induced by the resulting V -reflection K

ρ
J : B(T,Σ) ↪→ B the

T-separated Σ-completion V -monad.

6.23. Proposition. Suppose given data satisfying the hypotheses of 6.20.

1. There is a unique morphism of V -monads ι : T̃Σ → T.

2. Each component of ι is a Σ-closed M -embedding.

3. Each component of the unit ρ : 1B → T̃Σ of T̃Σ is a Σ-dense morphism.

4. Each V -adjunction inducing T factors through the V -reflection K a J : B(T,Σ) ↪→ B

determined by T̃Σ.

Proof. 1 and 4 follow from 6.14 and 4.7. By 4.9 and 6.15, the components of the resulting
morphism of V -monads are necessarily the Σ-closed M -embeddings ιB given in 6.15, so
2 holds. 3 is immediate.

6.24. Corollary. Let T be a V -monad on a V -category B equipped with a V -proper
V -factorization-system (E ,M ). Then the full sub-V -category of B consisting of the T-
separated objects is V -reflective in B.

Proof. Taking Σ = ∅, the objects of B(T,Σ) are exactly the T-separated objects of B,
and the hypotheses of 6.20 are satisfied since ∅-ClEmb = M and hence ∅-Dense = E .
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6.25. Theorem. Let T be a V -monad on a V -category B equipped with a V -proper
V -factorization-system (E ,M ), and suppose that every morphism in B factors as a
T-dense morphism followed by a T-closed M -embedding.

1. The idempotent V -core T̃ of T exists.

2. The V -reflective-subcategory of B determined by T̃ consists of the T-complete ob-
jects.

3. Every T-complete object of B is T-separated.

4. Each component of the unique morphism of V -monads ι : T̃ → T is a T-closed
M -embedding.

5. Each component of the unit ρ : 1B → T̃ of T̃ is a T-dense morphism.

6. Every V -adjunction F a G : C → B inducing T factors through the V -reflection
K a J : BΣT

↪→ B determined by T̃, in such a way that the induced left V -adjoint
F ′ : BΣT

→ C (4.6) is conservative.

Proof. 3. By 6.24 we know that the full sub-V -category B(T,∅) of B consisting of the
T-separated objects is V -reflective in B, and we will denote the components of the unit
of the associated V -reflection by σB : B → LB (B ∈ B). Hence, σB is gotten as the
morphism ρB of 6.15 in the case that Σ = ∅. By 6.18 we know that each such component
σB is inverted by F — i.e. σB ∈ ΣF = ΣT . Hence, given any T-complete object B′ ∈ BΣT

,
we have that σB⊥V B

′ for every B ∈ B, so by 3.11, B′ ∈ B(T,∅).
By 3 we know that BΣT

= B(T,ΣT ), and by 6.20 we deduce that B(T,ΣT ) is a V -
reflective-subcategory of B. Hence 1, 2, and 6 follow immediately from 4.15.

4 and 5 follow from 6.23.

6.26. Corollary. Let T be a V -monad on an M -subobject-complete V -category B,
where (E ,M ) is a V -proper V -prefactorization-system on B. Then the idempotent V -

core T̃ of T exists.

Proof. The hypotheses of 6.25 are satisfied (2.3.2, 6.5).

In view of 6.25, we shall extend the notation and terminology of 6.2 as follows:

6.27. Definition. Let data satisfying the hypotheses of 6.25 be given.

1. We call T̃ the T-completion V -monad.

2. For each object B ∈ B, we call T̃B = KB the T-completion of B.

3. We denote by B(T) := BΣT
= B(T,ΣT ) the V -reflective-subcategory of B consisting

of the T-complete objects.
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7. Example: Closure and density in normed spaces

We saw in 5.5 that the completion V -monad on the category V of normed (resp. semi-
normed) vector spaces is the idempotent V -core of the double-dualization V -monad on
V . Further, we shall see that the familiar construction of the completion of a normed
or seminormed vector space V as the closure of V in V ∗∗ is an instance of the general
procedure given in 6.25 for forming the idempotent V -core T̃ of a V -monad T. Indeed,
we will show that the notions of T-closure and T-density in this example coincide with
the familiar notions of closure and density.

Again as in 5, let V be either SNorm1 or Norm1, and let T denote the double-
dualization V -monad on V . Further, let E denote the class of all surjective morphisms
in V , and let M denote the class of all isometric embeddings in V .

7.1. Lemma. (E ,M ) is a V -proper V -factorization-system on the V -category V of
normed (resp. seminormed) vector spaces.

Proof. Each surjective morphism (resp. each isometric embedding) is clearly an epimor-
phism (resp. a monomorphism) in V and hence, by [21, 2.4], is a V -epi (resp. a V -mono)
in V . Since V is a cotensored V -category, it suffices by [21, 5.7] to show that (E ,M )
is an ordinary factorization system on V and that M is closed under cotensors in V .
Clearly every morphism in V factors as a morphism in E followed by a morphism in M .
Moreover, it is easy to check that each morphism e ∈ E is orthogonal to each morphism
m ∈ M . Hence, since E and M are also closed under composition with isomorphisms,
we deduce that (E ,M ) is a factorization system on V (e.g., by [21, 5.2]). Further M is
closed under cotensors in V , since for any isometric embedding m : W1 → W2 in V , it
is readily verified that the induced morphism V (V,m) : V (V,W1)→ V (V,W2) (given by
composing with m) is injective and isometric.

7.2. Theorem. With respect to the double-dualization V -monad T on the category V
of normed (resp. seminormed) vector spaces and the V -factorization-system (E ,M ), the
following hold:

1. A morphism in V is T-dense if and only if it is dense.

2. A morphism in V is a T-closed M -embedding if and only if it is a closed isometric
embedding.

3. Every morphism in V factors as a T-dense morphism followed by a T-closed M -
embedding.

4. The T-closure of a subspace V ↪→ W of a normed (resp. seminormed) vector space
W is the usual closure V ↪→ W of V in W .
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Proof. One sees immediately that the familiar process of taking the closure of a subspace
defines a weakly hereditary idempotent closure operator (−) on M in V (2.4.1). By 2.4.2,
(−) determines an associated factorization system (Dense,ClEmb), consisting of the dense
morphisms and closed M -embeddings, respectively.

Recall from 5.5 that the class ΣT of all morphisms inverted by T = (−)∗∗ consists of
exactly the dense isometric morphisms. By definition, an M -embedding m is T-closed iff
m ∈ Σ↓VT . But since (ΣT ,Σ

⊥V
T ) is a V -orthogonal-pair in V (4.14), we deduce by 3.5 that

ΣT is closed under tensors in V , so by [21, 5.4], Σ↓VT = Σ↓T , whence T-ClEmb = Σ↓T ∩M .
To prove 2, first observe that since ΣT ⊆ Dense, ClEmb = Dense↓ ⊆ Σ↓T and hence

ClEmb ⊆ T-ClEmb. Also, by 2.4.4 we know that ClEmb = DenseEmb↓ ∩ M , where
DenseEmb is the set of all dense isometric embeddings, so that since DenseEmb ⊆ ΣT ,
Σ↓T ⊆ DenseEmb↓ and hence T-ClEmb ⊆ ClEmb.

Since both Σ↓VT and M are closed under cotensors in V (by 2.3.1 and 4.14), their
intersection T-ClEmb = ClEmb is closed under cotensors in V , so the factorization system
(Dense,ClEmb) is a V -factorization-system, by [21, 5.7]. Hence 1 and 3 follow, since
Dense = ClEmb↑V = (T-ClEmb)↑V = T-Dense. Further, 4 follows as well, since the T-
closure operator is by definition the closure operator determined by (T-Dense,T-ClEmb) =
(Dense,ClEmb) (2.4.3), which coincides with (−).

7.3. Remark. By 7.1 and 7.2 3, the data T, (E ,M ) of 7.2 satisfy the hypotheses of

6.25, and the latter theorem entails that the idempotent V -core T̃ of T can be formed
as follows: For each object V ∈ V , ιV : T̃ V ↪→ TV is the T-closure of the image of
ηV : V → TV . But by 7.2, this is simply the usual closure of the image of the canonical
map V → V ∗∗; i.e., T̃ V is the usual completion of V .

8. Example: Sheafification, closure, and density

Let j be a Lawvere-Tierney topology on an (elementary) topos X , let Ωj be the associated
retract of the subobject classifier Ω, let T be the double-dualization X -monad on X
determined by Ωj (4.18), and let (E ,M ) = (EpiX ,MonoX ). We now show by means
of 6.25 that the idempotent X -core of T exists and is given by j-sheafification, and that
moreover, the notions of T-density, T-closure, T-separated object, and T-complete object
coincide with the familiar notions of j-density, j-closure, j-separated object, and j-sheaf.

8.1. The universal closure operator (−) determined by j is, in particular, a weakly
hereditary idempotent closure operator on M in X ; indeed, see [16, A4.3.2, A4.3.3(ii)].
This closure operator determines an associated factorization system (j-Dense, j-ClEmb)
(2.4.2). The elements of j-Dense are called j-dense morphisms and those of j-ClEmb
j-closed monomorphisms. An object Y ∈ X is said to be j-separated (resp., a j-sheaf )
if for every j-dense monomorphism d : D � X, the mapping X (d, Y ) : X (X, Y ) →
X (D, Y ) is a injective (resp. bijective). Hence, letting j-DenseEmb be the class of all
j-dense monomorphisms, the class of all j-sheaves is Shv(X , j) = (j-DenseEmb)⊥. Also,
by 2.4.4, j-ClEmb = (j-DenseEmb)↓ ∩M .
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8.2. Lemma. An object X ∈X is j-separated (resp. a j-sheaf) if and only if there exists
a monomorphism (resp. a j-closed mono) X �X (Y,Ωj) for some Y ∈X .

Proof. If an object X ∈X is j-separated, then by [22, V.3.4] there is a monomorphism
X �X (X,Ωj). If X is moreover a j-sheaf, then since X (X,Ωj) is a j-sheaf by [15, 3.27,
3.24] we deduce by [15, 3.26] that the above monomorphism X �X (X,Ωj) is j-closed.
Conversely, if there is a monomorphism m : X � X (Y,Ωj) for some Y ∈ X , then by
[15, 3.27, 3.24, 3.26], X is j-separated. If the given monomorphism m is j-closed, then
we deduce by [15, 3.27, 3.24, 3.26] that X is a j-sheaf.

8.3. Lemma. The class j-DenseEmb of all j-dense monomorphisms is closed under ten-
sors in X .

Proof. Let d : D → X be a j-dense monomorphism, and let Y ∈X . Then Y × d : Y ×
D → Y ×X is a pullback of d (along the projection Y ×X → X), and (−) commutes (up
to isomorphism) with pullback (e.g., by [16, 4.3.2]), so the object Y × d : Y ×D → Y ×X
of the category SubM (Y ×X) is isomorphic to the pullback Y × d : Y ×D → Y ×X of
d : D → X. But d ∼= 1X in SubM (X) and hence Y × d ∼= Y × d ∼= Y × 1X = 1Y×X in
SubM (Y ×X), so Y × d is a j-dense monomorphism.

8.4. Corollary. Shv(X , j) = (j-DenseEmb)⊥X , and j-ClEmb = (j-DenseEmb)↓X ∩M .

Proof. It was remarked in 8.1 that

Shv(X , j) = (j-DenseEmb)⊥, j-ClEmb = (j-DenseEmb)↓ ∩M ,

so in view of 8.3 the needed equations follow from 3.6 and [21, 5.4].

8.5. Lemma. (j-Dense, j-ClEmb) is an X -factorization-system on X .

Proof. By [21, 2.4], monomorphisms in X are the same as X -enriched monomorphisms
in X , so M = MonoX X and hence by [21, 2.11], M is closed under cotensors in
X . Since (j-DenseEmb↓X ↑X , j-DenseEmb↓X ) is an X -prefactorization-system on X ,
j-DenseEmb↓X is also closed under cotensors in X by 2.3.1. Hence, since j-ClEmb is
the intersection of the classes (j-DenseEmb)↓X and M by 8.4, j-ClEmb is closed under
cotensors in X , so by [21, 5.7], the factorization system (j-Dense, j-ClEmb) is an X -
factorization-system on X .

8.6. Lemma. j-DenseEmb ⊆ ΣT , where ΣT is the class of all morphisms inverted by the
endofunctor T .

Proof. Ωj is a j-sheaf (e.g., by [15, 3.27]), so by 8.4, Ωj ∈ (j-DenseEmb)⊥X . Hence
each morphism d ∈ j-DenseEmb is X -orthogonal to Ωj and therefore is inverted by the
dualization functor X (−,Ωj) : X → X op and hence by the double-dualization functor
T for Ωj.
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8.7. Lemma. ΣT ⊆ j-Dense.

Proof. Suppose h : X1 → X2 lies in ΣT . Since the monad T is induced by the dualization
adjunction X (−,Ωj) a X (−,Ωj) : X op → X (4.18), we know by 4.13 that ΣT =
ΣX (−,Ωj), so X (h,Ωj) : X (X2,Ωj) → X (X1,Ωj) is an isomorphism. But Ωj classifies
j-closed subobjects ([22, V.2.2]), so h−1 : SubM (X2) → SubM (X1) induces a bijection
between the j-closed subobjects of X2 and X1, respectively. Letting h(X1) denote the
image of h, considered as a subobject of X2, we observe that its j-closure h(X1) is a
j-closed subobject of X2 and has inverse image h−1(h(X1)) = X1. But X2 itself is also a
j-closed subobject of X2 with the same inverse image, h−1(X2) = X1, so h(X1) = X2 (as
subobjects of X2), showing that h is j-dense.

8.8. Theorem. Given a Lawvere-Tierney topology j on a topos X , if we take T to be the
double-dualization X -monad for Ωj and let (E ,M ) be the epi-mono factorization system
on X , then the following hold:

1. A morphism is T-dense if and only if it is j-dense.

2. A monomorphism is T-closed if and only if it is j-closed.

3. Every morphism in X factors as a T-dense morphism followed by a T-closed mono-
morphism.

4. The T-closure of a subobject is the same as its j-closure.

5. An object of X is T-complete if and only if it is a j-sheaf.

6. An object of X is T-separated if and only if it is j-separated.

7. The idempotent X -core T̃ of T exists, and its associated X -reflective-subcategory
of X consists of the j-sheaves.

Proof. To prove 2, observe first that by 8.6 and 8.4,

T-ClEmb = Σ↓XT ∩M ⊆ (j-DenseEmb)↓X ∩M = j-ClEmb.

Also, by 8.5 and 8.7,
j-ClEmb = (j-Dense)↓X ⊆ Σ↓XT ,

so T-ClEmb = j-ClEmb and 2 is proved. Now 1, 3, and 4 follow, since by 8.5 and 6.3 we
find that

j-Dense = (j-ClEmb)↑X = (T-ClEmb)↑X = T-Dense .

It now follows by 8.2 that an object X ∈ X is j-separated (resp. a j-sheaf) if and
only if there is an M -embedding (resp. a T-closed M -embedding) X � X (Y,Ωj) for
some Y ∈ X . Hence, since T is induced by the X -adjunction F a G : X op → X with
F = G = X (−,Ωj) (4.18), we deduce 5 and 6 by 6.13, using the fact that by 6.25, every
T-complete object is T-separated.

In view of the above, 7 now follows from 6.25.
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8.9. Let Y be a Grothendieck quasitopos ; equivalently, let Y be the category of K-sep-
arated J-sheaves on a small bisite (C , J,K) ([16, C2.2.13]), so that C is a small category
and J,K are coverages on C with J ⊆ K. Let X := [C op, Set] be the presheaf topos,
and let j, k be the Lawvere-Tierney topologies associated to J,K, respectively. For each
i := j, k, let Ti be the double-dualization X -monad on X for Ωi, and let Σi := ΣTi be the
class of all morphisms inverted by Ti. By 8.8, Y consists of the Tk-separated Tj-complete
(equivalently, Σj-complete) objects of X , i.e Y = X (Tk,Σj). By 4.14, (Σi,Σ

⊥X
i ) is an

X -orthogonal-pair for each i := j, k, and by 8.8 5,

Σ⊥X
k = Shv(C , K) ⊆ Shv(C , J) = Σ⊥X

j ,

so we deduce that Σj ⊆ Σk. Applying 8.8 3 to j, we find that Tk and Σj satisfy the
hypotheses of 6.20, and we deduce that Y = X (Tk,Σj) is an X -enriched reflective sub-
category of X .
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