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NOTES ON COMMUTATION OF LIMITS AND COLIMITS

MARIE BJERRUM, PETER JOHNSTONE, TOM LEINSTER, WILLIAM F. SAWIN

Abstract. We show that there are infinitely many distinct closed classes of colimits
(in the sense of the Galois connection induced by commutation of limits and colimits in
Set) which are intermediate between the class of pseudo-filtered colimits and that of all
(small) colimits. On the other hand, if the corresponding class of limits contains either
pullbacks or equalizers, then the class of colimits is contained in that of pseudo-filtered
colimits.

1. Introduction

The fact that colimits over filtered categories commute with finite limits in the category
of sets (and in many related categories) is very well known, and most students encounter
it as part of a first course in category theory (cf. [5], section IX 2). In what follows we
shall restrict ourselves to limits and colimits in Set. The relation ‘limits over I commute
with colimits over J’ gives rise to a Galois connection between classes of small categories
regarded as limit-shapes and the same classes regarded as colimit-shapes: if we set

Ir = {J | lim→ J commutes with lim← I for all I ∈ I}

and
J l = {I | lim→ J commutes with lim← I for all J ∈ J }

then we say I (resp. J ) is a closed class of limits (resp. colimits) if I = Irl (resp.
J = J lr). It is also well known that the class of filtered colimits is closed in this sense
(filtered colimits are precisely those which commute with all finite limits — cf. Lemma 2.1
below), but the class of finite limits is not: any category admitting an initial functor from
a finite category (in the sense of [5], p. 218) is in the closure of the latter class.

There is a proper class of distinct closed classes: for any regular cardinal κ, the class
of κ-filtered colimits is closed (being the class of colimits which commute with all κ-small
limits), and these classes are all distinct. Nevertheless, it seems not unreasonable to
hope that we might be able to classify all the closed classes of colimits which contain
that of filtered colimits (equivalently, for which the corresponding closed class of limits
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is generated by its finite members). There are seven such classes which are more or less
well known: in addition to filtered colimits and all colimits, we have the class of pseudo-
filtered colimits (also called weakly filtered colimits) which are precisely those colimits
commuting with all finite connected limits; a category is pseudo-filtered iff each of its
connected components is filtered. The class of sifted colimits (‘colimites tamisantes’ in
French [3]), being the class of colimits which commute with all finite products, is also
reasonably well known by now. Three more classes arise from the anomalous behaviour
of the empty set (the empty colimit does not commute with the empty limit, but does
commute with all nonempty ones): we may add the empty colimit to the class of filtered
colimits or the class of sifted colimits, to obtain the classes which commute with all
nonempty finite limits (resp. with nonempty finite products), and by cutting down the
class of all colimits to the class of connected colimits, we obtain the class which commutes
(with all conical limits and) with the empty limit.

Incidentally, we say a category I is conical if the identity functor I→ I has a cone over
it. It is easy to see that this is equivalent to saying that I has an initial idempotent in either
of two possible senses: (a) that the idempotent-completion of I has an initial object, and
(b) that there is an initial functor E → I where E is the ‘free living idempotent’, i.e. the
two-element monoid {1, e} with e2 = e. It follows easily that conical limits are absolute
(that is, preserved by all functors), and that they are precisely the limits which commute
with all colimits in Set (again, this follows from Lemma 2.1 below, taking J = Iop).

It is tempting to conjecture that these seven classes might be the only ones containing
all filtered colimits, and indeed the first author of the present paper claimed at one stage
to have a proof of this. However, the conjecture is false, and the counterexamples are
surprisingly easy to describe. An infinite family of counterexamples was discovered by
the second author in December 2013, and improved by the third author the following day,
when he showed that they could be reduced to commutation of limits and colimits over
groups of coprime orders, considered as categories with one object. The fourth author, in
response to a query by the third on the MathOverflow website [6], provided a necessary
and sufficient condition for limits over one group to commute with colimits over another.
The purpose of this note is to present both (some of) the evidence in favour of the
conjecture accumulated by the first author, and the group-theoretic counterexamples; we
do not claim to be anywhere near a complete classification of the closed classes of colimits
containing filtered colimits, and indeed we suspect that such a classification would be very
hard to obtain.

2. Colimits commuting with pullbacks or equalizers

If one considers the Hasse diagram of the seven closed classes of colimits mentioned in
the Introduction, it soon becomes clear that the only interval where one might expect to
find further closed classes is that between (pseudo-filtered colimits) and (all colimits). For
example, there can be no closed class intermediate between (filtered or empty colimits) and
(pseudo-filtered colimits), because as soon as one adds a single non-connected category
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to the list of limit shapes with which J-colimits must commute, one forces J to have at
most one connected component. In what follows, we therefore concentrate our attention
on this interval.

The following necessary condition for commutation of limits and colimits is well-known
(and has already been invoked in the Introduction).

2.1. Lemma. Suppose I-limits commute with J-colimits in Set. Then J has cocones over
all diagrams of shape Iop.

Proof. Suppose given such a diagram D : Iop → J. Consider the functor F : I× J→ Set
sending (i, j) to J (Di, j); it is easy to see that lim→ JF (i,−) ∼= 1 for all i, so that
lim← I lim→ JF ∼= 1. But elements of lim← IF (−, j) correspond to cocones over D with ver-
tex j; so if there are no such cocones then lim→ J lim← IF is empty.

The next lemma is much less well-known; it is due to F. Foltz [1].

2.2. Lemma. Suppose that I-limits commute with J-colimits in Set, and that I is con-
nected but not conical. Then J has cocones over diagrams of shape (• ← • → •).

Proof. Suppose not; let (j1
β← j0

γ→ j2) be a diagram of the indicated shape with no
cocone over it. Consider the functor F : I× J→ Set defined by

F (−,−) =

(( ∐
i∈ob I

I (i,−)

)
× J (j0,−)

)/
∼

where ∼ is the equivalence relation (clearly a congruence) which identifies all pairs
(α, δ), (α′, δ) for which α and α′ have the same codomain and δ factors through either β
or γ. It is easy to see that, for fixed j, F (−, j) may be written as

∐
δ∈A

( ∐
i∈ob I

I (i,−)

)
q
∐
δ∈B

1

where A is the set of maps δ : j0 → j which do not factor through β or γ, and B is the set
of those which do; but lim← I preserves coproducts since I is connected, and lim← II (i,−) = ∅
since I is not conical, so lim← IF (−, j) ∼= B. In other words, lim← IF is the subfunctor of
J (j0,−) which is the union of the images of J (β,−) and J (γ,−); and the latter union
is disjoint since there is no cocone over (β, γ). It follows easily that lim→ J lim← IF has two
elements. On the other hand, it is not hard to see that lim→ JF (i,−) has just one element
for any i, since any two elements (α, δ) and (α′, δ′) can be linked by a zigzag of the form

(α, δ)← (α, 1j0)→ (α, β) ∼ (α′, β)← (α′, 1j0)→ (α′, δ′) .

So lim← I lim→ JF is a singleton, which provides the required contradiction.
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2.3. Corollary. If colimits of shape J commute with equalizers in Set, then J is pseudo-
filtered.

Proof. By the two previous lemmas, J has cocones over diagrams of shapes (•⇒ •) and
(• ← • → •); but these suffice for pseudo-filteredness.

For completeness, we also record

2.4. Lemma. If colimits of shape J commute with pullbacks in Set, then J is pseudo-
filtered.

Proof. This follows from the well-known fact ([2], A1.2.9) that if C is a category with
all finite limits then any functor C → D which preserves pullbacks preserves all finite
connected limits.

Since both pullbacks and equalizers are required to generate the class of finite con-
nected limits (in the sense that a category has all finite connected limits iff it has pullbacks
and equalizers, though it can have either pullbacks or equalizers without possessing the
other), the fact that either pullbacks or equalizers suffice to generate the closure of finite
connected limits (in the sense of the Galois connection mentioned in the Introduction) is
striking.

3. Some new classes of commuting limits and colimits

By Foltz’s Lemma 2.2, if we wish to find a closed class of colimits lying between (pseudo-
filtered colimits) and (all small colimits) (equivalently, a closed class of limits lying between
(conical limits) and the closure of (finite connected limits)), we must consider colimits
over categories which have cocones over diagrams of shape (• ← • → •), but not over
those of shape (• ⇒ •). In trying to construct such a category, one might be led to
the following example: the objects of J are the natural numbers, there is one (identity)
morphism n → n for each n, and two morphisms n ⇒ m (labelled 0 and 1) for each
n < m, and composition of non-identity morphisms is defined by addition of labels mod
2, i.e. the composite of two morphisms with the same label is labelled 0 and that of two
morphisms with different labels is labelled 1. And indeed, there are non-conical limits
which commute with colimits over this category; specifically, limits over the cyclic group
of order 3 (or, more generally, any nontrivial group of odd order) considered as a category.
(More generally still, if we modify J so that it has k > 1 morphisms n → m whenever
n < m, with labels 0 to k − 1 and composition given by addition mod k, then colimits
over J commute with limits over any group of order prime to k.)

But it is not necessary for the colimit category J to have more than one object; we
can take it to be a group, too. Of course, any group satisfies the condition that it has
cocones over diagrams of shape (• ← • → •) (semigroup-theorists call this the left Ore
condition), but no nontrivial group has cocones over diagrams of shape (•⇒ •). We may
now prove



NOTES ON COMMUTATION OF LIMITS AND COLIMITS 531

3.1. Lemma. Let G and H be finite groups of coprime orders, considered as categories.
Then limits over G commute with colimits over H in Set.

Proof. Of course, a functor G → Set is just a set equipped with an action of G; its
limit is its set of G-fixed points, and its colimit is the set of G-orbits. So we need to
show that, if G×H acts on a set A, then the H-orbits which are fixed under the induced
action of G on these orbits are exactly the orbits which contain (equivalently, consist of)
G-fixed elements of A. But this is easy: if a is any element of such a fixed orbit, then
for any g ∈ G we have (g, 1)a = (1, h)a for some h ∈ H, and then since (g, 1) and (1, h)
commute we have (gn, 1)a = (1, hn)a for all n. In particular, the least n > 0 such that
(gn, 1)a = a must divide both the order of g and that of h; but these two are coprime,
and so (g, 1)a = a.

In fact, by an (only slightly) more sophisticated argument, we may obtain a necessary
and sufficient condition on a pair of groups G,H for limits over G to commute with
colimits over H.

3.2. Lemma. Given two groups G and H, limits over G commute with colimits over H
in Set iff no nontrivial quotient group of G is isomorphic to a subquotient group of H.

Proof. Since any (G × H)-set is the coproduct of its orbits (and lim← G and lim→ H both
preserve coproducts), it suffices to consider a single (G × H)-orbit, i.e. a (G × H)-set
isomorphic to the set (G×H) : S of left cosets of a subgroup S of G×H. By Goursat’s
Lemma [4], any subgroup S ≤ G ×H is of the form {(g, h) ∈ K1 ×K2 | θ(gL1) = hL2}
where L1 CK1 ≤ G, L2 CK2 ≤ H and θ : K1/L1 → K2/L2 is an isomorphism. It is easy
to see that the H-orbits of (G × H) : S form a single G-orbit, which may be identified
with G : K1; so there is a G-fixed H-orbit iff K1 = G. On the other hand, (G ×H) : S
has G-fixed points iff L1 = G (in which case S is simply G× L2); so the given condition
is equivalent to saying that every transitive (G×H)-set has either a G-fixed point or no
G-fixed H-orbits.

In particular, we may conclude that there are infinitely many closed classes of colimits
intermediate between pseudo-filtered colimits and all small colimits: for each finite simple
group G, the class of colimits which commute with limits over G contains colimits over
all groups which do not have G as a subquotient, but not over G itself. Thus the problem
of classifying all closed classes of colimits which contain all pseudo-filtered colimits is at
least as hard as that of classifying finite simple groups.
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