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THE ACCESSIBILITY RANK OF WEAK EQUIVALENCES

G. RAPTIS AND J. ROSICKY

ABSTRACT. We study the accessibility properties of trivial cofibrations and weak equiv-
alences in a combinatorial model category and prove an estimate for the accessibility
rank of weak equivalences. In particular, we show that the class of weak equivalences
between simplicial sets is finitely accessible.

1. Introduction

A well-known and useful property of combinatorial model categories is that their classes
of weak equivalences are accessible. Although each of the various proofs of this result
can also give some estimate for the accessibility rank, these estimates are generally not
the best possible. The purpose of this paper is to address the issue of determining good
estimates for the accessibility rank of weak equivalences in cases of interest. Our main
result is the following theorem.

1.1. THEOREM. [see Theorem 4.2] Let M be a k-combinatorial model category. Suppose
that the following are satisfied:

(i) there is a set A of k-presentable cofibrant objects such that every object in M is a
k-filtered colimit of object in A.

(ii) every k-presentable cofibrant object in A has a (not necessarily functorial) cylinder
object which is again k-presentable.

(iii) if a composite morphism i = qi is a cofibration between cofibrant objects, then i is
a formal cofibration.

Then the full subcategory W of M™ spanned by the class of weak equivalences is k-

accessible.

The k-accessibility of W in M™ means the following: first, W is closed under -
filtered colimits and, secondly, given a weak equivalence f: X — Y in M and a morphism
g: K — L between k-presentable objects, then every commutative square

K——X

Pl

L—Y
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admits a factorization
K— K —X

Pkl

L——IL'——=Y

where h: K’ — L’ is weak equivalence between k-presentable objects. The first claim is
the easy part of the theorem and its proof does not require the additional assumptions (i)—
(iii). The proof of the second claim is more difficult and requires the auxiliary assumptions
(1)—(iii).

So far, proofs of the accessibility of the weak equivalences in a general combinatorial
model category have made essential use of the Pseudopullback Theorem. The Pseudopull-
back Theorem, which will be recalled in more detail in Section 2, says that pseudopullbacks
of accessible categories and functors are again accessible categories. In addition, the proof
of this theorem can be used to infer an estimate for the accessibility rank of the pseu-
dopullback based on the accessibility data of the diagram. By expressing the category
of weak equivalences WV as such a pseudopullback, it is then possible to obtain estimates
for its accessibility rank. Using this method, it is not difficult to show, for example, that
the category of weak equivalences of simplicial sets, W C SSet™, is Nj-accessible. More
generally, applying this method to get an estimate for the accessibility rank of the weak
equivalences in a k-combinatorial model category will generally produce a regular cardinal
strictly greater than .

Our proof uses different methods which we think are also of independent interest.
An important ingredient is the fat small-object argument which was introduced in [18].
Based on this, we first prove in Section 3 that every trivial cofibration in a k-combinatorial
model category is a k-directed colimit of trivial cofibrations between k-presentable objects
(Corollary 3.3). This is also the first step towards the proof of the main theorem (Theorem
4.2) in Section 4.

In Section 5 we discuss examples to which our theorem applies. These include the
following;:

e the category of weak equivalences of simplicial sets is finitely accessible (Corol-
lary 5.1). This generalizes easily to combinatorial model categories whose underly-
ing category is a Grothendieck topos and the cofibrations are the monomorphisms
(Corollary 5.2). We note that a different proof of the finite accessibility of the weak
equivalences of simplicial sets appeared subsequently in [5].

e the category of quasi-isomorphisms of chain complexes of R-modules is finitely ac-
cessible if R is semi-simple (Corollary 5.3).

e the category of stable isomorphisms of R-modules is finitely accessible if R is a
Noetherian Frobenius ring (Corollary 5.5).

Naturally, the accessibility rank is especially interesting in the cases where it happens to
be Ny, however, our main result will generally predict estimates in other cases too. We
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end Section 5 with some comments on the cases of diagram model categories and left
Bousfield localizations.

Acknowledgements. We are grateful to the referee for pointing out a simplification of
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our original assumptions. The first-named author would like to warmly acknowledge the
hospitality of the Department of Mathematics in Brno, which he enjoyed during several
visits while this work was being done. The second-named author was supported by GACR
201,/11,/0528.

2. Background material and preliminaries

Combinatorial model categories were defined by J. H. Smith to be model categories
M which are locally presentable and cofibrantly generated. The latter means that both
cofibrations and trivial cofibrations are cofibrantly generated by a set of morphisms. There
is always a regular cardinal x such that M is locally k-presentable and the generating
cofibrations and trivial cofibrations are morphisms between k-presentable objects. In this
case we say that M is k-combinatorial. For instance, the standard model category of
simplicial sets, denoted SSet, is finitely combinatorial (= Ry-combinatorial).
In a k-combinatorial model category M, the ‘replacement-by-fibration’ functor

Rgp: M7 — M7 that arises from the (trivial cofibration, fibration)-factorization, as
given by the small-object argument, preserves k-filtered colimits but it does not preserve
r-presentable objects in general. By the Uniformization Theorem (see [16, 2.4.9], or [2,
2.19]), there is a regular cardinal A > k such that Rg, preserves A-presentable objects.
This cardinal is important because it makes the category of fibrations A-accessible - any
fibration is a A-filtered colimit in M™ of fibrations between A-presentable objects. To
see this, consider a fibration p: X — Y in M and express it as a A-filtered colimit of
morphisms f;: X; — Y; between A-presentable objects. Then Rg,(p) is a A-filtered colimit
of fibrations between A\-presentable objects. Since p is a retract of Rg(p), it follows that
p can also be expressed in this way (see the proof of [16, 2.3.11]).

2.1. EXAMPLE. Let M = SSet and Rg,: SSet™ — SSet™ the standard replacement
by a fibration as given by the small-object argument. The functor Ry, preserves filtered
colimits and sends finitely presentable objects to N;-presentable ones. It follows that Rgy,

preserves Ni-presentable objects since every Ni-presentable object is an N;-small filtered
colimit of finitely presentable objects (see [16, 2.3.11], [2, 2.15]).

Analogously, one can consider instead the ‘replacement-by-trivial fibration’ functor
Rygin: M~ — M7 that comes from the standard (cofibration, trivial fibration)-factor-
ization in M and ask for the smallest regular cardinal A such that Rygp, preserves A-filtered
colimits and A-presentable objects. In SSet, the smallest such A is again Ny, which then
shows that the category F N W of trivial fibrations in S§Set™ is N;-accessible.

Combining these observations, the accessibility of the class of weak equivalences, and
an estimate for the accessibility rank, can be deduced from the following theorem.
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2.2. PSEUDOPULLBACK THEOREM. Let A be a reqular cardinal and KC, £ and M X-
accessible categories which admit k-filtered colimits for some k < X. Let F': K — L
and G: M — L be functors which preserve k-filtered colimits and \-presentable objects.
Consider the pseudopullback

P M
G
K—F L

Then P is A-accessible and has k-filtered colimits.

This theorem is essentially shown in [7, 3.1]. Although the statement of [7, 3.1] includes
stronger accessibility properties, exactly the same proof applies here too. H.-E. Porst has
recently informed us that this theorem follows from the unpublished paper [21].

The category of weak equivalences can be expressed as a pullback

w FNw
G
M R M~

where G is the full embedding of the trivial fibrations. Since G is transportable, this pull-
back is equivalent to a pseudopullback (see [16, 5.1.1]). Then the above Pseudopullback
Theorem applied to this pseudopullback gives an estimate for the accessibility rank of W.
Let us add that the accessibility of W was claimed by J. H. Smith and proofs (also using
the Pseudopullback Theorem) can be found in [15, Corollary A.2.6.6] and [20].

2.3. PROPOSITION. Let M be a k-combinatorial model category and A\ > k a reqular
cardinal such that both Rgy, and Rygy, preserve A-presentable objects. Then the category
W of weak equivalences, as a full subcategory of M™, is A-accessible and admits k-filtered
colimits.

2.4. EXAMPLE. The discussion above and the last proposition show that the full subcat-
egory W of weak equivalences in SSet™ is Nj-accessible.

This means that the estimate that we can get with this method for the accessibility
rank of W in a k-combinatorial model category M is going to be strictly greater than k.
A way of improving this estimate was opened in [18] where the idea of good colimits from
[15] was used to prove that every cofibrant object in a k-combinatorial model category is
a r-directed colimit of k-presentable cofibrant objects. In Section 3, we will show how this
can be used to prove that every trivial cofibration in a x-combinatorial model category
is a k-directed colimit of trivial cofibrations between k-presentable objects. This is the
first step of the proof of our main theorem in Section 4, but the rest of the proof requires
more assumptions on M.
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2.5. REMARK. It was shown in [19] that for every combinatorial model category M there
is an accessible functor F': M — SSet such that a morphism f in M is a weak equivalence
if and only if F(f) is a weak equivalence in SSet. Then the accessibility of W follows
from the Pseudopullback Theorem and the accessibility of the weak equivalences in SSet.
We like to point out and correct a small error in the construction of F' in [19]. We recall
that F' was defined by a composition of functors as follows,

M E MG SSetC 4 SSetC - SSet,

where R is an accessible fibrant replacement functor, G is the right Quillen functor associ-
ated with a small presentation of M [10], u* is the restriction functor and the last functor
is an accessible functor that detects the (pointwise) weak equivalences of (pointwise) Kan
fibrant objects. The last functor was wrongly chosen in [19] to be the product functor:
this functor does not detect the weak equivalences when the empty (simplicial) set ap-
pears in the product! However, there are clearly other functors that have the required
property, e.g., the coproduct.

3. Trivial cofibrations

Combinatorial categories, introduced in [17], are locally presentable categories K equipped
with a class of morphisms cof(K), called cofibrations, which is cofibrantly generated by
a set of morphisms. This basic categorical structure is inspired by combinatorial model
categories, which can be viewed as combinatorial categories in (at least) two different
ways, and the aim is to analyze through this generalization the abstract properties of
cofibrant generation by focusing on a single cofibrantly generated class of morphisms.

In analogy with combinatorial model categories, we say that a combinatorial category
(KC, cof (K)) is k-combinatorial if it is locally k-presentable and there is a set of generating
cofibrations I between rk-presentable objects. In what follows, I, will denote the full
subcategory of IC consisting of k-presentable objects. Every locally presentable category
carries the trivial combinatorial structure where every morphism is a cofibration. The
following result is [17, 2.4] but we will recall the proof.

3.1. LEMMA. Let IC be a locally k-presentable category. Then the trivial combinatorial
structure on IC is k-combinatorial.

PRrOOF. If a morphism ¢ has the right lifting property with respect to all morphisms
between k-presentable objects then g is both a k-pure monomorphism and a k-pure epi-
morphism. Thus ¢ is both a regular monomorphism and an epimorphism (see [1], [3]),
which means that g is an isomorphism. Hence any morphism has the left lifting property
with respect to g. n

We say that an object K of a combinatorial category is cofibrant if the unique mor-
phism 0 — K from an initial object is a cofibration. One of the main results of [18§]
shows that every cofibrant object in a k-combinatorial category is a k-directed colimit of
r-presentable cofibrant objects [18, 5.1]. A consequence of this is the next theorem.
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3.2. THEOREM. Let IC be a k-combinatorial category. Then every cofibration is a k-
directed colimit of cofibrations between k-presentable objects.

PROOF. Let T C K7 be a generating set of cofibrations. Consider the following sets of
morphisms in 7:

xi={(d: A A) ¥4 Gd: B B): ge K7}

and
Yo ={(d: A A) Y . A B):ieT)

Then the set x; U x2 generates a k-combinatorial structure on . By [18, 5.1], it suffices
to show that its cofibrant objects are precisely the cofibrations in K. It is easy to see
that every cofibrant object in ™ is a cofibration in IC. Conversely, let f: X — Y be a
cofibration in K. An immediate consequence of Lemma 3.1 is that the object (id: X — X)
is cofibrant with respect to x;. Moreover, the morphism in K7:

(id, f): (id: X - X) — (f: X = Y)

is a cofibration with respect to ys. Therefore f is a cofibrant object with respect to x1Ux»
and the result follows. ]

3.3. COROLLARY. Let M be a k-combinatorial model category. Then every trivial cofi-
bration in M s a k-directed colimit of trivial cofibrations between rk-presentable objects.

PROOF. It suffices to apply Theorem 3.2 to the k-combinatorial category defined by the
locally presentable category M together with the class of trivial cofibrations of the model
structure on M. n

3.4. REMARK. We point out that the proof of Corollary 3.3 does not require the existence
of a generating set of cofibrations between k-presentable objects. A related argument
that uses this assumption but has some other advantages is as follows. Let Z denote a
generating set of cofibrations between k-presentable objects and replace y; with

Xi={(d: A > 4) Y4 (id: B> B): i e T}

Then (id: X — X) is xj-cofibrant if X is cofibrant in M. The same argument as
above then shows that a trivial cofibration f: X — Y between cofibrant objects is a k-
directed colimit of a diagram F': P — M™ whose values are trivial cofibrations between
r-presentable cofibrant objects. Another advantage of this argument is that if X and f
are cellular or x is uncountable, then F' can be chosen so that for all p € P, the morphism
F(p) — f in M is given by cofibrations (see [18], esp. the proofs of 5.1 and 5.2). We
recall that a morphism in a combinatorial category, cofibrantly generated by a set X,
is called cellular if it can be obtained from A& by transfinite compositions of pushouts.
Cofibrations are then retracts of cellular morphisms.

Corollary 3.3 has the following consequence which may be useful in concrete situations.
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3.5. COROLLARY. Let M be a k-combinatorial model category and

K—=X

b

L—2sY

a commutative square where 1 is a cofibration between k-presentable objects and f is a
weak equivalence. Then there is a factorization

K— K —X

)

L——1——=Y

where j is a trivial cofibration between k-presentable objects.

PROOF. Let

fox—Iaz Py

be a (trivial cofibration, fibration)-factorization of f. Then fs is also a weak equivalence.
Since ¢ is a cofibration, there is a morphism [ : L — Z making the diagram commutative

fiu

-7

K
l/ fz
L

v
—_

Thus, we get a morphism (u,l): i — f; in M~. By Corollary 3.3, there is a factorization

K- K-22.X

b

Lot g

where u = usuq, | = l3l; and j is a trivial cofibration between k-presentable objects. Thus

K- K -2-X

N

L I L/ f2l2 Y

is the required factorization. [
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4. Weak Equivalences

Let M be a k-combinatorial model category. Trivial cofibrations in M are not closed
under s-filtered colimits in general. On the other hand, weak equivalences are accessibly
embedded, as follows from the arguments of Section 2 and Proposition 2.3. These argu-
ments required that both cofibrations and trivial cofibrations are cofibrantly generated
by sets of morphisms between k-presentable objects. A more direct proof can be found
in [10, Proposition 7.3]. We include a slightly improved version of that proof which only
requires this for the cofibrations. Furthermore, the proof that follows does not require
that M is locally presentable.

4.1. PROPOSITION. Let M be a combinatorial model category and Z a generating set of
cofibrations between k-presentable objects. Then the class of weak equivalences in M is
closed under k-filtered colimits in M™.

PROOF. Let C be a small s-filtered category and consider the category of C-diagrams M
with the projective model structure where weak equivalences and fibrations are defined
pointwise. Then the colimit functor

colimg: MY = M

is a left Quillen functor. It is required to show that the colimit functor preserves weak
equivalences. Every weak equivalence in M¢ can be written as a composition of a projec-
tive trivial cofibration and a pointwise trivial fibration. The colimit of a projective trivial
cofibration is a trivial cofibration in M because colim¢ is left Quillen. Since both domains
and codomains of the morphisms in Z are k-presentable, it follows that the class of trivial
fibrations ZU is closed under s-filtered colimits. This means that colim¢ preserves trivial
fibrations too, and then the result follows. [

We now discuss our main result on an accessibility estimate for the class of weak
equivalences. The proof of this requires additional assumptions on the combinatorial
model category.

First, we recall that given an object X in a model category, a cylinder object for X is
a factorization of the codiagonal morphism

X|_|X _ Gom) Cyl(X) 22— X

such that (ig,7;) is a cofibration and p is a weak equivalence. Cylinder objects produce
factorizations of morphisms via the classical mapping cylinder construction. In detail,
given a morphism f : X — Y between cofibrant objects, the mapping cylinder M; is

defined as the pushout
X
] X

X—>Cyl(X —>Mf—>Y
\_/
fr
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and X 1% M [ 15 Y is the mapping cylinder factorization of f into a cofibration followed
by a weak equivalence.

Secondly, we introduce some terminology. We say that a morphism i : A — B in a
model category is a formal cofibration if every pushout diagram

A"~ pB

Lol

X—Y

where X is cofibrant, is also a homotopy pushout. In particular, if f is a weak equivalence,
then so is g. It is well-known that every cofibration with cofibrant domain is a formal
cofibration (see, e.g., [15, Proposition A.2.4.4]). Moreover, if the model category is left
proper, then every cofibration is a formal cofibration.

4.2. THEOREM. Let M be a k-combinatorial model category. Suppose that the following
are satisfied:

(i) there is a set A of k-presentable cofibrant objects such that every object in M is a
k-filtered colimit of object in A.

(ii) every r-presentable cofibrant object in A has a (not necessarily functorial) cylinder
object which is again k-presentable.

(iii) if a composite morphism i' = qi is a cofibration between cofibrant objects, then i is
a formal cofibration.

Then the full subcategory W of M™ spanned by the class of weak equivalences is k-
accessible.

PRrOOF. By Proposition 4.1, the class of weak equivalences in M admits k-filtered colim-
its. Thus, it suffices to show that every weak equivalence is a k-filtered colimit of weak
equivalences between k-presentable objects.

Let f be a weak equivalence. Let M denote the full subcategory of morphisms
between k-presentable objects in M ™, M<°f the full subcategory of morphisms between
r-presentable cofibrant objects, and wM,’ the full subcategory of weak equivalences
between k-presentable objects. There are inclusions of slice categories as follows,

(ML)
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where F'is the canonical diagram of f with respect to M. This diagram is s-filtered and
has colimit f. By (i), it is easy to see that the functor U is cofinal. Then the composite
diagram F o U is k-filtered and also has f as a colimit. Analogously, it suffices to show
that V' is cofinal.

More precisely, it suffices to show that every commutative square

K%~ X (*)

Pl

L—2sY

where K and L are k-presentable and f is a weak equivalence, admits a factorization as

follows
K—K —X

ookl

L——I——=Y
where h is a weak equivalence between k-presentable objects. The difference with Corol-
lary 3.5 is that g is not necessarily a cofibration.

In fact, we can assume that the objects K and L are in A. To see this, note that
having a square (), we can use (i) to factorize

w K — 5 K —2 3 X

where K7 is k-presentable and in A. Then L’ in the pushout

K-> K,
bo]
L.

is k-presentable with a unique morphism w : L' — Y such that wu; = v and wg = fus.
Using (i) again, we get a factorization

w w
w: L' s Ly 2 Y

where L, is k-presentable and in A. For ¢’ = wig, we get a factorization

Thus, we may restrict to squares (%) with K and L in A. Then consider the mapping
cylinder factorization of g : K — L,

K- M, :=Cyl(K)Ux L% L.
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Since K and L are cofibrant, ¢ is a cofibration and ¢ is a weak equivalence. Moreover, by
(ii), M, is k-presentable and cofibrant.

There are functorial (cofibration, trivial fibration)-factorizations of the maps u and vq
and therefore a factorization of the morphism (u,vq) : i — f,

K" X' s X (I)
[l
Mty sy

where v’ and [’ are cofibrations. By the “2-out-of-3” property, the morphism f’ is again
a weak equivalence. By Corollary 3.5, there is a factorization

K K2 X/ (11)
Li lj lf’
M, —>L’ Y’

where u' = wusuy, I’ = lyly and j is a trivial cofibration between k-presentable objects.
Therefore we have a diagram as follows,

K2 K -2 X' -~ X (I11)

RN

Oyl(K) LM, Loy~ y

lp g qu

L v

where the square on the left is a pushout. To obtain the required factorization, it remains
to extend the factorization (II) along the weak equivalence g : M, — L. We consider the
pushout L":

Cyl(K) —= M, 2~ I (Iv)
1IN
K L L Y

Since ' : M, — L' — Y is a cofibration between cofibrant objects, by construction, it
follows by (iii) that the morphism iy : My, — L’ is a formal cofibration. Therefore the
morphism j’ is again a weak equivalence.

Therefore we obtain the required factorization

K2 K —=X (V)

b

L1 —-Y
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4.3. REMARK. (acyclic objects) Under certain assumptions, it was shown in [18, 5.6]
that every acyclic (=weakly trivial) object in a x-combinatorial model category M is a
r-directed colimit of k-presentable acyclic objects, i.e., that the category of acyclic objects
is k-accessible. The assumptions were that the terminal object 1 is k-presentable and the
canonical morphism X — 1 splits by a cofibration for every acyclic object X in M. In
SSet, this recovers a theorem of Joyal and Wraith [13] — any acyclic simplicial set is a
directed colimit of finite acyclic simplicial sets. It seems that this result about objects
is easier to prove than the result about weak equivalences, but at the same time, the
former result does not follow from the latter. This can be demonstrated by the following
elementary example: let Set be the category of sets and consider the category Set””
with the discrete model structure where every morphism is a cofibration and the weak
equivalences are the isomorphisms. This model category is finitely combinatorial and the
terminal object 1 is the only acyclic object. Since 1 is not finitely presentable in Set*””, it
cannot be a directed colimit of finitely presentable acyclic objects. On the other hand, the
identity morphism of 1 is clearly a directed colimit of weak equivalences between finitely
presentable objects.

5. Examples

We mention some immediate corollaries of Theorem 4.2. First, we consider the stan-
dard model category of simplicial sets SSet (see, e.g., [12]). The cofibrations are the
monomorphisms, the weak equivalences are the maps whose geometric realizations are
weak homotopy equivalences and the fibrations are the Kan fibrations.

5.1. COROLLARY. The full subcategory W of SSet™ spanned by the class of weak equiv-
alences is finitely accessible.

PROOF. It is well-known that the model category is finitely combinatorial and the standard
cylinder functor X — X x A! preserves finitely presentable objects. The cofibrations are
the monomorphisms and therefore every object is cofibrant. Then the assumptions of
Theorem 4.2 are clearly satisfied and the claim follows. n

The same argument applies more generally to Cisinski model categories. A Cisin-
ski model category is a combinatorial model category whose underlying category is a
Grothendieck topos and whose cofibrations are the monomorphisms. A systematic study
of these model structures can be found in [8]. We note that every Grothendieck topos K
is locally presentable and its class of monomorphisms is cofibrantly generated by a set of
morphisms (see [8, 1.29], [6, 1.12]). The following is an immediate application of Theorem
4.2 to general Cisinski model categories.

5.2. COROLLARY. Let M be a Cisinski model category. Suppose that M is k-combi-
natorial and there is a cylinder functor Cyl : M — M which preserves k-presentable
objects. Then the full subcategory Waq of M™ spanned by the class of weak equivalences
18 K-accessible.
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For a ring R, let Ch(R) denote the projective model category of chain complexes of
(left) R-modules [12, Theorem 2.3.11]. The weak equivalences are the quasi-isomorphisms
and the fibrations are the surjections. A map is a cofibration if it is degreewise a split
monomorphism and has cofibrant cokernel. Every bounded chain complex of finitely
generated projective R-modules is finitely presentable and cofibrant. We refer to [12] for
the proofs of these assertions.

We recall the classical cylinder construction in Ch(R). Let C(A'), denote the chain
complex which is concentrated in degrees 0 and 1 and defined by

C(AYy:=R&R

C(AY, =R
9: C(AY), — C(AYy, z+ (2,—2).

Let S°(R). denote the chain complex concentrated in degree 0 and defined by R. We
have an obvious factorization of the codiagonal,

S°(R)y ® S°(R), — C(AY)y — S°(R)..

More generally, given a chain complex C,, there is a factorization of the codiagonal as
follows,

Co®Co 5 Cyl(C) = C(AY)e® Cy 5 C, (Cyl)

where ® is the tensor product of chain complexes. More explicitly, Cyl(Cl,), is the R-
module C,, & C,_1 ® C,, and the boundary map is defined by

a(cna Cn—1, C;) = (a(cn) + Cn—1, _8(07171)7 a(cn) - Cnfl)-

The difficulty with the application of Theorem 4.2 in this case is that cofibrant objects
do not generate the whole category in general. As a result, we can conclude the finite
accessibility of quasi-isomorphisms only for special cases of rings.

5.3. COROLLARY. Let R be a semi-simple ring. Then the full subcategory Wess of Ch(R)™
spanned by the class of quasi-isomorphisms is finitely accessible.

PROOF. It is well-known that Ch(R) is finitely combinatorial (see the description in [12,
Theorem 2.3.11]). The full subcategory of bounded chain complexes of finitely generated
R-modules generates the category of chain complexes. Since R is semi-simple, every R-
module is projective, so Ch(R) is generated under filtered colimits by finitely presentable
cofibrant objects. Thus, condition (i) of Theorem 4.2 is satisfied. For condition (ii), con-
sider the cylinder construction defined above. If C, is finitely presentable (and cofibrant),
the cokernel C[—1] of the map i in (Cyl) is cofibrant and therefore (Cyl) is a cylinder
object for Co. Moreover, Cyl(C,) is finitely presentable if C, is. Finally, condition (iii) is
satisfied since every monomorphism is a formal cofibration. n
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We emphasize that the finite accessibility in the general case of an arbitrary ring re-
mains open. In connection with this, we make some comments about the existence of
strong generators. Recall that a set of objects {S,} in a category C is a strong gener-
ator if the functors C(S,, —) : C — Set are jointly faithful and jointly conservative (=
isomorphism-reflecting). As observed in [4, 6.2], this definition is equivalent to the one
in [2, 0.6] (see also [4, 6.3]). If a category K is k-accessible, then in particular it has a
strong generator consisting of k-presentable objects. Conversely, every cocomplete cate-
gory with a strong generator of k-presentable objects is k-accessible (see [2, 1.20]) and,
as a consequence, it is A-accessible for all A > k.

It is easy to see that Wy C Ch(R)™ has a strong generator consisting of finitely
presentable objects. An example is the union of the following sets of morphisms:

e Let S™(R), be the chain complex which is concentrated in degree n, n € Z, and
S™(R), = R. Consider the identity maps of these chain complexes.

e Let D"(R), be the chain complex which is concentrated in degrees n and n — 1 and
the only non-trivial boundary map is the identity map of R. Consider the maps
0 — D"(R), for all n € Z.

However, having a strong generator of k-presentable objects is weaker than k-access-
ibility in general. One would still need to demonstrate that for some strong generator the
canonical diagrams with respect to this set of objects are k-filtered (cf. [2, 1.20]).

5.4. REMARK. Since it is not true in general that a k-accessible category is also -
accessible (see [2, 2.11]), one cannot expect that any category with rs-filtered colimits
and a strong generator consisting of k-presentable objects is k-accessible. This abstract
argument does not work for kK = Ny. For an example in this case, consider the full
subcategory K of the category of sets with monomorphisms as morphisms, and consisting
of the sets which are either one-element or infinite. This category has filtered colimits
and a one-element set is finitely presentable and forms a strong generator. However, K is
not finitely accessible.

The next example concerns the stable module category of R-modules for a Frobenius
ring R. Let Mod(R) denote the category of R-modules. If R is Frobenius, this has
a model structure where the cofibrations are the monomorphisms, the fibrations are the
epimorphisms and the weak equivalences are the stable equivalences [12, Theorem 2.2.12].
This is a combinatorial model category, but it is not finitely combinatorial in general. We
refer to [12] for a detailed account.

5.5. COROLLARY. Let R be a Noetherian Frobenius ring. Then the full subcategory Wy
of Mod(R)™ spanned by the class of stable equivalences is finitely accessible.

PROOF. The model category Mod(R) is finitely combinatorial by [12, Theorem 2.2.12].
Since every object is cofibrant, condition (i) of Theorem 4.2 is satisfied. (iii) is obvious,
so it remains to prove (ii). Following [14, Lemma 4.2], cylinder objects for an object K
are defined by objects of the form K*@® K* @ K where K* is a weak reflection of K to an



THE ACCESSIBILITY RANK OF WEAK EQUIVALENCES 701

injective object in Mod(R). Since injective objects coincide with projective objects and,
following [9, Theorem 3.1.17], they coincide with flat objects, given such a weak reflection
K — K* of a finitely presentable K, there is a factorization through a finitely presentable
injective object (K*). Such an object can be taken as a weak reflection of K, and then
the associated (non-functorial) cylinder object Cyl(K) = (K*)f & (K*)f @ K is finitely
presentable, as required. [

Finally we comment on the cases of diagram model categories and (left) Bousfield
localizations. Given a k-combinatorial model M category and C' a small category, we
can consider the diagram category M with the projective model structure where the
weak equivalences and the fibrations are defined pointwise (see, e.g., [11, 11.6]). We recall
that this model category structure is lifted from the product model category structure on
MOP©) along the adjunction of the restriction functor u*,

w: MO = MOy,

The resulting model category is again k-combinatorial, but there are difficulties with
applying Theorem 4.2 mainly because of condition (i). We do not know under what rea-
sonable assumptions on M and W, the category of pointwise weak equivalences Wy o C
(MY)7 is k-accessible for all C. Note that the latter category is the same as W,

Concerning the weaker property of having a strong generator of k-presentable objects,
the problem becomes much easier. Suppose that the category of weak equivalences W C
M™ has a strong generator W, consisting of weak equivalences between k-presentable
cofibrant objects. Then the subcategory of (pointwise) weak equivalences Wy obe in
(MOPC)~ has a strong generator of k-presentable cofibrant objects given by the collection
of tuples (f;)icobc such that f; is the initial object except for < k entries where it is in W.
Since u* is faithful and detects isomorphisms, it is easy to check that the image of this
strong generator under u, consists of weak equivalences between k-presentable objects and
forms a strong generator for the category of pointwise weak equivalences Wy ¢ C (M%),

Regarding left Bousfield localizations (see [11] for a comprehensive account), we recall
that given a left proper k-combinatorial model category M and S a set of morphisms, then
the left Bousfield localization LgM of M at S exists and is again a combinatorial model
category (see [15, A.3.7] for example). Since this has the same cofibrations, it follows that
the class of S-local equivalences is again closed under r-filtered colimits by Proposition
4.1. Theorem 4.2 has the following immediate corollary. We emphasize, however, that a
major difficulty in estimating the accessibility rank of S-local equivalences is, of course,
to specify generating sets of trivial cofibrations in LgM.

5.6. COROLLARY. Let M be a left proper k-combinatorial model category satisfying the
assumptions (i) and (iii) of Theorem 4.2 and S a set of morphisms in M. Suppose that
the left Bousfield localization LgM of M at S is A-combinatorial, N\ > k, and satisfies
(ii) of Theorem 4.2. Then the full subcategory Ws of LsM™ spanned by the S-local
equivalences is \-accessible.
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PRrOOF. It suffices to show that conditions (i)-(iii) of Theorem 4.2 are satisfied. (i) and (ii)
hold by assumption. (iii) follows from the analogous property in M. Indeed every formal
cofibration 7: A — B in M is also a formal cofibration in LgM because M — LgM

preserves homotopy pushouts. [
References
[1] J. Addamek, H. Hu, and W. Tholen, On pure morphisms in accessible categories, J.

2]

[10]

[11]

[12]

[13]

Pure Appl. Algebra 107 (1996), 1-8.

J. Adamek and J. Rosicky, Locally Presentable and Accessible Categories, London
Mathematical Society Lecture Note Series 189, Cambridge University Press, 1994.

J. Adamek and J. Rosicky, Pure morphisms in pro-categories, J. Pure Appl. Algebra
207 (2006), 9-35.

J. Adamek, J. Rosicky, and E. M. Vitale, Algebraic theories, Cambridge Tracts in
Mathematics 184, Cambridge University Press, 2011.

I. Barnea and T. M. Schlank, Model structures on Ind categories and the accessibility
rank of weak equivalences, arXiv:1407.1817.

T. Beke, Sheafifiable homotopy model categories, Math. Proc. Cam. Phil. Soc. 129
(2000), 447-475.

B. Chorny and J. Rosicky, Class-locally presentable and class-accessible categories,
J. Pure Appl. Alg. 216 (2012), 2113-2125.

D.-C. Cisinski, Théories homotopiques dans les topos, J. Pure Appl. Algebra 174
(2002), 43-82.

E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter
2000.

D. Dugger, Combinatorial model categories have presentations, Adv. Math. 164
(2001), 177-210.

P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and
Monographs 99, American Mathematical Society, 2003.

M. Hovey, Model categories, Mathematical Surveys and Monographs 63, American
Mathematical Society, 1999.

A. Joyal and G. Wraith, Filenberg-MacLane toposes and cohomology, Mathematical
applications of category theory, 117-131, Contemporary Mathematics 30, American
Mathematical Society, 1984.



THE ACCESSIBILITY RANK OF WEAK EQUIVALENCES 703

[14] A. Kurz and J. Rosicky, Weak factorization systems, fractions and homotopies, Appl.
Categ. Struct. 13 (2005), 141-160.

[15] J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton Uni-
versity Press, 2009.

[16] M. Makkai and R. Paré, Accessible Categories: The Foundations of Categorical Model
Theory, Contemporary Mathematics 104, American Mathematical Society, 1989.

[17] M. Makkai and J. Rosicky, Cellular categories, J. Pure Appl. Alg. 218 (2014), 1652
1664.

[18] M. Makkai, J. Rosicky and L. Vokiinek, On a fat small object argument, Adv. Math.
254 (2014), 49-68.

[19] G. Raptis, On a congecture by J. H. Smith, Theory Appl. Categ. 24 (2010), No. 5,
114-116.

[20] J. Rosicky, On combinatorial model categories, Appl. Cat. Str. 17 (2009), 303-316.

[21] F. Ulmer, Bialgebras in locally presentable categories, Univ. Wuppertal 1977.

Fakultat fur Mathematik, Universitat Regensburg
93040 Regensburg, Germany

Department of Mathematics and Statistics, Masaryk University
Faculty of Sciences, Kotlarska 2
611 37 Brno, Czech Republic

Email: georgis.raptis@mathematik.uni-regensburg.de
rosicky@math.muni.cz

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

SUBSCRIPTION INFORMATION Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta. ca.

INFORMATION FOR AUTHORS The typesetting language of the journal is TEX, and I¥TEX2e is
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

MANAGING EDITOR. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: barr@math.mcgill.ca

ASSISTANT TEX EDITOR. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

TRANSMITTING EDITORS.

Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr

Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com

Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk

Anders Kock, University of Aarhus: kock@imf .au.dk

Stephen Lack, Macquarie University: steve.lackOmq.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster®@ed.ac.uk

Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Giuseppe Rosolini, Universita di Genova: rosolini@disi.unige.it

Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk

James Stasheff, University of North Carolina: jds@math.upenn.edu

Ross Street, Macquarie University: street@math.mq.edu.au

Walter Tholen, York University: tholen@mathstat.yorku.ca

Myles Tierney, Rutgers University: tierney@math.rutgers.edu

R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca



