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AN ALGEBRAIC DEFINITION OF (∞, N)-CATEGORIES

CAMELL KACHOUR

Abstract. In this paper we define a sequence of monads T(∞,n)(n ∈ N) on the cate-
gory ∞-Gr of ∞-graphs. We conjecture that algebras for T(∞,0), which are defined in a
purely algebraic setting, are models of∞-groupoids. More generally, we conjecture that
T(∞,n)-algebras are models for (∞, n)-categories. We prove that our (∞, 0)-categories
are bigroupoids when truncated at level 2.

Introduction

The notion of weak (∞, n)-category can be made precise in many ways depending on our
approach to higher categories. Intuitively this is a weak∞-category such that all its cells
of dimension greater than n are equivalences.

Models of weak (∞, 1)-categories (case n = 1) are diverse: for example there are the
quasicategories studied by Joyal and Tierney (see [24]), but also there are other models
which have been studied like the Segal categories, the complete Segal spaces, the simplicial
categories, the topological categories, the relative categories, and there are known to be
equivalent (a survey of models of weak (∞, 1)-categories can be found in [11]).

For any n ∈ N, models of weak (∞, n)-categories have been studied especially by
Segal, Simpson (based on Segal’s idea; see [23, 30, 38]), Rezk (Θn-categories ; see [36], but
also see [35] for another approach), Bergner (see [10, 12]), and Barwick (who calls them
n-fold complete Segal spaces ; his approach is described in [5, 29]; see also [3]). It is known
that some of these models are equivalent in an appropriate sense (see [35, 10, 12, 3]; see
also the recent work of Dimitri Ara [2]).

However, these models of (∞, n)-categories are not of an algebraic nature. In this
article we propose the first purely algebraic definition of weak (∞, n)-categories (or models
of (∞, n)-categories to be more precise) in the globular setting, meaning that we describe
these objects as algebras for some monad with good categorical properties. In particular
these models are algebras for Batanin’s ω-operad. We conjecture that the models of
the (∞, n)-categories that we propose here, are equivalent to other existing models in
a precise sense explained below. Grothendieck also proposed an algebraic definition of
∞-groupoids in Pursuing Stacks, and Maltsiniotis (see [32]) showed that the latter could
be extended to a definition of weak∞-categories resembling to Batanin’s definition based
on ω-operads. However, the algebraic nature of our definition of ∞-groupoid is stronger
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than in Grothendieck’s approach, because for him, ∞-groupoids are models for a limit
theory, while our concept gives algebras over a monad.

Our main motivation for introducing an algebraic model of (∞, n)-categories came
from our wish to build a machinery which would lead to a proof of the “Grothendieck con-
jecture on homotopy types” and, possibly, it generalisation. This conjecture of Grothendieck
(see [22, 7]), claims that weak ∞-groupoids encode all homotopical information about
their associated topological spaces. In his seminal article (see [7]), Michael Batanin gave
an accurate formulation of this conjecture by building a fundamental weak ∞-groupoid
functor between the category of topological spaces Top to the category of the weak ∞-
groupoids in his sense. This conjecture is not solved yet, and a good direction to solve it
should be to build first a Quillen model structure on the category of weak ω-groupoids
in the sense of Michael Batanin, and then show that his fundamental weak ∞-groupoid
functor is the right part of a Quillen equivalence. One obstacle for building such a model
structure is that the category of Batanin ∞-groupoids is defined in a nonalgebraic way.
An important property of the category of weak∞-groupoids Alg(T(∞,0)) (see Section 3.9)
that we propose here is to be locally presentable (see Section 3). Therefore, we hope that
this will allow us in the future to use Smith’s theory on combinatorial model categories
in our settings (see [9]).

More generally, we expect that it is be possible to build an adapted combinatorial
model category structure for each category Alg(T(∞,n)) of these models of weak (∞, n)-
categories (see Section 3.9) for arbitrary n ∈ N, in order to be able to prove the existence of
Quillen equivalences between our models of (∞, n)-categories and other models of (∞, n)-
categories. This should be considered as a generalization of the Grothendieck conjecture
for higher integers n > 0.

The aim of our present paper is to lay a categorical foundation for this multistage
project. The model theoretical aspects of this project will be considered in future papers
(but see Remark 3.7 about possible approaches).

Our algebraic description of weak (∞, n)-categories is an adaptation of the “philos-
ophy” of categorical stretchings as developed by Jacques Penon in [34] to describe his
weak ∞-categories (see also [16, 25]). Here we add the key concept of (∞, n)-graphs (see
Section 1).

Weak ∞-categories in the sense of Penon can be seen as algebras for a specific ω-
operad in the sense of Batanin, called by Batanin “the Penon operad” (see [8]). This
result is deep and involves the complex machinery of higher computads. The goal of this
article of Batanin was to prove that his weak ∞-categories were weaker than those of
Penon. However, Batanin did not construct a specific ω-operad for each integer n ∈ N
whose algebras were models of weak (∞, n)-categories. It is therefore impossible in the
present paper to compare our weak (∞, n)-categories with anything in Batanin’s work.

However it would be interesting to know whether our models of (∞, n)-categories do
underlie a specific ω-operad for each integer n ∈ N, of the kind Batanin produced for
Penon’s weak ∞-categories. That project is quite difficult and deserves further work
which is indeed in progress.



AN ALGEBRAIC DEFINITION OF (∞, N)-CATEGORIES 777

Also it is important to notice that in [15], Dominique Bourn and Jacques Penon
developed an inductive procedure to categorify structures defined by a cartesian monad.
Basically they start with a cartesian monad, say for instance the monad of monoids, and
then their procedure allows the categorification of this monad to produce the monad of
monoidal categories, and so on. Their procedure applies to the monad of monoids, because
it is a cartesian monad. Unfortunately we cannot use their inductive procedure in this
article, because our monads are not cartesian. For example, the monad for groupoids is
not cartesian. So we cannot use their inductive procedure to obtain a monad for weak
∞-groupoids (case n = 0) of the kind we are able to construct in the present article. In
this present article we prefer to build these higher structures directly, by using adapted
stretchings (see 3.8), thereby avoiding any inductive process, similar to what Penon did
in [34].

The plan of this article is as follows.
In Section 1 we introduce reversors, which are the operations algebraically describing

equivalences. These operations plus the brilliant idea of categorical stretching developed
by Jacques Penon (see [34]) are in the heart of our approach to weak (∞, n)-categories.

Section 2 introduces the reader to strict (∞, n)-categories, where we point out the
important fact that reversors are “canonical” in the “strict world”. Reflexivity for strict
(∞, n)-categories is seen as specific structure, using operations that we call reflexors, and
we study in detail the relationships between reversors and reflexors (see 2.4). However
most material of this section is well known.

Section 3 gives the steps in defining our algebraic approach to weak (∞, n)-categories.
First we recall briefly the definition of weak ∞-categories in Penon’s sense. Then we
define (∞, n)-magmas (see 3.5), which are the “(∞, n)-analogue” of the ∞-magmas of
Penon. Then we define (∞, n)-categorical stretching (see 3.8), which is the “(∞, n)-
analogue” of the categorical stretching of Penon. In [34], Jacques Penon used categorical
stretching to weakened strict ∞-categories. Roughly speaking, the philosophy of Penon
follows the idea that the “weak” must be controlled by the “strict”, and it is exactly
what the (∞, n)-categorical stretchings do for the “(∞, n)-world”. Thirdly we give the
definition of weak (∞, n)-categories (see 3.9) as algebras for specific monads T(∞,n) on
∞-Gr. We show in 3.12 that each T(∞,n)-algebra (G, v) puts on G a canonical (∞, n)-
magma structure. Then, as we do for the strict case, we study the more subtle relationship
between reversors and reflexors for weak (∞, n)-categories (see 3.13). Finally in 3.14, we
make some computations for weak ∞-groupoids. We show that models of our weak ∞-
groupoids in dimension 2 are bigroupoids.

The final section 4.2 explains how other choices of (∞, n)-structure could have been
used to build other algebraic models of weak (∞, n)-categories, and among these choices,
the maximal (∞, n)-structure is the one we use in this article, and the minimal (∞, n)-
structure is another remarkable (∞, n)-structure.

The main ideas of this article were exposed for the first time in September 2011, in
the Australian Category Seminar at Macquarie University [27].
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1. (∞, n)-graphs

Let G be the globe category defined as follows. For each m ∈ N, objects of G are
formal objects m. Morphisms of G are generated by the formal cosource and cotar-

get m
sm+1
m //

tm+1
m

//m+ 1 such that we have the following relations sm+1
m smm−1 = sm+1

m tmm−1 and

tm+1
m tmm−1 = tm+1

m smm−1. An ∞-graph X is just a presheaf Gop X // Set . We denote
by ∞-Gr := [Gop,Set] the category of ∞-graphs where morphisms are just natural trans-
formations. If X is an ∞-graph, sources and targets are still denoted by sm+1

m and tm+1
m .

If 0 ≤ p < m we define smp := sp+1
p ◦ ... ◦ smm−1 and tmp := tp+1

p ◦ ... ◦ tmm−1.
An (∞, n)-graph is given by a couple (X, (jmp )0≤n≤p<m) where X is an ∞-graph (see

[34]) or “globular set” (see [7]), and jmp are maps (0 ≤ n ≤ p < m), called the reversors

Xm

jmp // Xm ,

such that for all integers n, m, and p such that 0 ≤ n ≤ p < m we have the following two
diagrams in Set, each commuting serially.
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Xm

jmp //

smm−1

��
tmm−1

��

Xm

smm−1

��
tmm−1

��
Xm−1

jm−1
p //

sm−1
m−2

��
tmm−1

��

Xm−1

sm−1
m−2

��
tmm−1

��
Xm−2

jm−2
p //

�� ��

Xm−2

�� ��
Xp+2

jp+2
p //

sp+2
p+1

��
tmm−1

��

Xp+2

sp+2
p+1

��
tmm−1

��
Xp+1

jp+1
p //

tp+1
p ""

Xp+1

sp+1
p||

Xp

Xm

jmp //

smm−1

��
tmm−1

��

Xm

smm−1

��
tmm−1

��
Xm−1

jm−1
p //

sm−1
m−2

��
tmm−1

��

Xm−1

sm−1
m−2

��
tmm−1

��
Xm−2

jm−2
p //

�� ��

Xm−2

�� ��
Xp+2

jp+2
p //

sp+2
p+1

��
tmm−1

��

Xp+2

sp+2
p+1

��
tmm−1

��
Xp+1

jp+1
p //

sp+1
p ""

Xp+1

tp+1
p||

Xp

We shall say also that an (∞, n)-graph is an ∞-graph X equipped with an (∞, n)-
structure.

1.1. Remark. These two diagrams looks equal, but it is their bottoms which are different,
and are one of the key of our approach of reversibility. Also, to describe it we have preferred
to use diagrams than equations, which we believe make it easier to be understood for the
reader.

1.2. Remark. In the last section 4.2 we will see other interesting (∞, n)-structures on
∞-graphs, where the (∞, n)-structure just above shall be called the maximal (∞, n)-
structure.

A morphism of (∞, n)-graphs

(X, (jmp )0≤n≤p<m)
ϕ // (X ′, (j′mp )0≤n≤p<m)

is given by a morphism of ∞-graphs X
ϕ // X ′ which is compatible with the reversors:

this means that, for integers 0 ≤ n ≤ p < m, we have the following commutative square.

Xm

jmp
��

ϕm // X ′m

j′mp
��

Xm ϕm
// X ′m

The category of (∞, n)-graphs is denoted (∞, n)-Gr.
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1.3. Remark. In [25] we defined the category (∞, n)-Gr of “∞-graphes n-cellulaires”
(n-cellular ∞-graphs) which is a completely different category from this category (∞, n)-
Gr. The category (∞, n)-Gr was used to define an algebraic approach to “weak n-higher
transformations”, still in the same spirit of the weak∞-categories of Penon (see [34], but
a quick review of this approach is in 3.1 below).

1.4. Remark. Throughout this paper the reversors are denoted by the symbols “jmp ”
except with weak (∞, n)-categories (see comment in Section 3.12) where they are denoted
by the symbols “imp ”. Let us also make a little comment on reflexive ∞-graphs (see
[34] for their definition). For us a reflexive ∞-graph (X, (1pm)0≤p<m) must be seen as a
“structured ∞-graph” : that is, an ∞-graph X equipped with a structure (1pm)0≤p<m,

where the maps X(p)
1pm // X(m) must be considered as specific operations that we call

reflexors. Throughout this paper these operations are denoted by the symbols 1pm except
for the underlying reflexive structure of weak (∞, n)-categories (see Section 3.12) where,
instead, they are denoted by the symbols ιpm (with the Greek letter “iota”). Morphisms
between reflexive ∞-graphs are morphisms of ∞-graphs which respect this structure. In
[34] the category of reflexive∞-graphs is denoted∞-Grr. The canonical forgetful functor

∞-Grr U //∞-Gr is a right adjoint, and gives rise to the very important monad R of
reflexive ∞-graphs on ∞-graphs.

The reversors are built without using limits, and it is trivial to build the sketch1 Gn
of (∞, n)-graphs. It has no cones and no cocones, thus (∞, n)-Gr is just a category of
presheaves (∞, n)-Gr ' [Gn,Set]. Denote by G the sketch of ∞-graphs (it is the category
Gop at the beginning of this section). We have the inclusions

GnN

}}

� o

��
Gn+1

� � // Gn

showing that the functor

(∞, n)-Gr
Mn // (∞, n+ 1)-Gr

forgetting the reversors (jmn )m≥n+2 of each (∞, n)-graph has a left and a right adjoint:
Ln a Mn a Rn. The functor Ln is the “free (∞, n)-graphisation functor” on (∞, n + 1)-
graphs, and the functor Rn is the “internal (∞, n)-graphisation functor” on (∞, n + 1)-
graphs. The forgetful functor

(∞, n)-Gr
On //∞-Gr

which forgets all the reversors, has a left and a right adjoint: Gn a On a Dn. The
functor Gn is the “free (∞, n)-graphisation functor” on ∞-graphs, and the functor Dn is

1see [18, 14] for good references on sketch theory.
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the “internal (∞, n)-graphisation functor” on ∞-graphs. Both Mn and On are monadic
because they are conservative and, as well as left adjoints, have rights adjoints (and so
preserve all coequalizers).

2. Strict (∞, n)-categories (n ∈ N)

2.1. Definition. The definition of the category ∞-Cat of ∞-categories, in the form
needed here, can be found in [34]. A strict ∞-category C has operations ◦mp , for all
0 ≤ p < m, which are maps

◦mp : C(m) ×
C(p)

C(m) // C(m)

where C(m) ×
C(p)

C(m) = {(y, x) ∈ C(m)× C(m) : smp (y) = tmp (x)}.

Recall that the ∞-graph domains and codomains of these operations must satisfy the
following conditions: If (y, x) ∈ C(m) ×

C(p)
C(m), then

• for 0 ≤ p < q < m, smq (y ◦mp x) = smq (y) ◦qp smq (x) and tmq (y ◦mp x) = tmq (y) ◦qp tmq (x)

• for 0 ≤ p = q < m, smq (y ◦mp x) = smq (x) and tmq (y ◦mp x) = tmq (x).

These are the positional axioms in the terminology of [34].
If we denote by (C, (1pm)0≤p<m) the underlying reflexivity structure on C, then the

operations 1pm are just an abbreviation for 1m−1m ◦ ... ◦ 1pp+1. These reflexivity maps 1pm are
called reflexors to emphasise that we see the reflexivity as specific structure.

Now let α ∈ C(m) be an m-cell of C. We say that α has an ◦mp -inverse (0 ≤ p < m)
if there is an m-cell β ∈ C(m) such that α ◦mp β = 1pm(tmp (α)) and β ◦mp α = 1pm(smp (α)).

A strict (∞, n)-category C is a strict ∞-category such that for all 0 ≤ n ≤ p < m,
every m-cell α ∈ C(m) has an ◦mp -inverse. If such an inverse exists then it is unique,
because it is an inverse for a morphism in a category. Thus every strict (∞, n)-category
C has an underlying canonical (∞, n)-graph (C, (jmp )0≤n≤p<m) such that the maps jmp give
the unique ◦mp -inverse for each m-cell of C. In other words, for each m-cell α of C such
that 0 ≤ n ≤ p < m, we have α ◦mp jmp (α) = 1pm(tmp (α)) and jmp (α) ◦mp α = 1pm(smp (α)).
Strict∞-functors respect the reversibility. As a matter of fact, consider two strict (∞, n)-

categories C and C ′ and a strict ∞-functor C F // C ′ . If α is an m-cell of C, then for
all 0 ≤ n ≤ p < m, we have

F (jmp (α) ◦mp α) = F (jmp (α)) ◦mp F (α)

= F (1pm(smp (α)))

= 1pm(F (smp (α)))1pm(smp (F (α)))

= jmp (F (α)) ◦mp F (α)
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which shows, by the unicity of jmp (F (α)), that F (jmp (α)) = jmp (F (α)). Thus morphisms
between strict (∞, n)-categories are just strict ∞-functors. Thus the category of strict
(∞, n)-categories, denoted by (∞, n)-Cat, is a full subcategory of ∞-Cat.

It is not difficult to see that there is a projective sketch Cn satisfying an equivalence of
categories Mod(Cn) ' (∞, n)-Cat. Thus, for all n ∈ N, the category (∞, n)-Cat is locally
presentable.

Furthermore, for each n ∈ N, we have the following forgetful functor

(∞, n)-Cat
Un //∞-Gr .

There is an inclusion G ⊂ Cn, and this inclusion of sketches produces, on passing to
models, a functor Cn between the categories of models

Mod(Cn)
Cn //Mod(G) ,

and the associated sheaf theorem for sketches of Foltz (see [21]) yields that Cn has a left
adjoint. Thus the following commutative square induced by the previous equivalence of
categories

Mod(Cn)
Cn //

o
��

Mod(G)

o
��

(∞, n)-Cat
Un //∞-Gr

produces the required left adjoint Fn a Un : (∞, n)-Cat //∞-Gr .

The unit and the counit of this adjunction are respectively denoted by λ
(∞,n)
s and ε

(∞,n)
s .

Using Beck’s theorem of monadicity (see for instance [14]), we see that these functors Un
are monadic. This adjunction generates a monad T(∞,n)

s = (T
(∞,n)
s , µ

(∞,n)
s , λ

(∞,n)
s ) on ∞-

Gr. It is the monad for strict (∞, n)-categories on ∞-graphs.

2.2. Remark. For each n ∈ N, when no confusion appears, we will simplify the notation
of these monads by omitting the symbol ∞; so Tns = (T ns , µ

n
s , λ

n
s ) is the same as T(∞,n)

s =

(T
(∞,n)
s , µ

(∞,n)
s , λ

(∞,n)
s ).

As we did for (∞, n)-graphs (see Section 1) by building functors of “(∞, n)-graphisation”,
we are going to build some functors of “strict (∞, n)-categorification” by using systemat-
ically the Dubuc adjoint triangle theorem (see theorem 1 page 72 in [20]).

For all n ∈ N we have the following triangle in CAT

(∞, n)-Cat
Vn //

Un &&

(∞, n+ 1)-Cat

Un+1uu
∞-Gr
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where the functor Vn forgets the reversors (jmn )m≥n+2 for each strict (∞, n)-category, and
we have the adjunctions Fn a Un and Fn+1 a Un+1, where in particular Un+1Vn = Un
and Un+1 is monadic. So we can apply the Dubuc adjoint triangle theorem which shows
that the functor Vn has a left adjoint: Ln a Vn. For each strict (∞, n + 1)-category C,
the left adjoint Ln of Vn assigns the free strict (∞, n)-category Ln(C) associated to C.
The functor Ln is the “free strict (∞, n)-categorification functor” for strict (∞, n + 1)-
categories. Notice that the functor Vn has an evident right adjoint Rn. For each strict
(∞, n + 1)-category C, the right adjoint Rn of Vn assigns the maximal strict (∞, n)-
category Rn(C) associated to C. This is simply because, if D is an object of (∞, n)-Cat,
then the unit map D

ηn // Rn(Vn(D)) is just the identity 1D, and its universality becomes
straightforward.

We can apply the same argument to the following triangle in CAT (where here the
functor V forgets all the reversors or can be seen as an inclusion)

(∞, n)-Cat V //

Un &&

∞-Cat

Uvv
∞-Gr

to prove that the functor V has a left adjoint: L a V . For each strict ∞-category C,
the left adjoint L of V assigns the free strict (∞, n)-category Ln(C) associated to C.
The functor L is the “free strict (∞, n)-categorification functor” for strict ∞-categories.
Notice also that the functor V has an evident right adjoint R, by the same argument as
before, for the adjunction Vn a Rn.

2.3. Remark. The previous functors Vn and V are, from our point of view, not only
inclusions but also “trivial forgetful functors”. Indeed for instance, they occur in the
paper [1] where they do not see strict∞-groupoids (which are in our terminology (∞, 0)-
categories) as strict ∞-categories equipped with canonical reversible structures. So from
their point of view V is just an inclusion. We do not claim their point of view is incorrect
but we believe that our point of view, which is more algebraic (the reversors jmp must
be seen as unary operations), shows clearly that this inclusion is also a forgetful functor
which forgets the canonical and unique reversible structures of some specific strict ∞-
categories. Basically in our point of view, a strict (∞, n)-category (n ∈ N) is a strict
∞-category equipped with some canonical specific structure.

2.4. (∞, n)-Involutive structures and (∞, n)-reflexivity structures. Involu-
tive properties and reflexive structures (see below) are an important part of each strict
(∞, n)-categories (n ∈ N). We could have spoken about strict (∞, n)-categories without
referring to these two specific structures. Yet we believe it is informative to especially point
out that, while these two structures are canonical in the world of strict (∞, n)-categories,
they are not canonical in the world of weak (∞, n)-categories (see Section 3.13). In par-
ticular we will show that they cannot be weakened for weak (∞, n)-categories, but only
for some specific equalities which are part of these two kinds of structures (see Section 3).
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This observation indicates that some properties or structures, true in the world of strict
(∞, n)-categories, might or not be weakened in the world of weak (∞, n)-categories.

An involutive (∞, n)-graph is an (∞, n)-graph (X, (jmp )0≤n≤p<m) satisfying jmp ◦ jmp =
1Xm . Involutive (∞, n)-graphs form a full reflexive subcategory i(∞, n)-Gr of (∞, n)-
Gr. For each n ∈ N, each strict (∞, n)-category C has its underlying (∞, n)-graph
(C, (jmp )0≤n≤p<m) an involutive (∞, n)-graph. Indeed, for each 0 ≤ n ≤ p < m and each
m-cell α ∈ C(m), we have

jmp (jmp (α)) ◦mp jmp (α) = 1pm(smp (jmp (α))) = 1pm(tmp (α)) ;

thus jmp (jmp (α)) is an ◦mp -inverse of jmp (α). By uniqueness, jmp (jmp (α)) = α.
A reflexive (∞, n)-graph is a triple (X, (1pm)0≤p<m, (j

m
p )0≤n≤p<m) where (X, (1pm)0≤p<m)

is an ∞-graph equipped with a reflexivity structure (1pm)0≤p<m, where (X, (jmp )0≤n≤p<m)
is an (∞, n)-graph, and such that we have the commutative diagram

Xn

jnp // Xn

Xn−1

1n−1
n

OO

jn−1
p // Xn−1

1n−1
n

OO

Xn−2

1n−2
n−1

OO

jn−2
p // Xn−2

1n−2
n−1

OO

Xp+2

OO

jp+2
p // Xp+2

OO

Xp+1

1p+1
p+2

OO

jp+1
p // Xp+1

1p+1
p+2

OO

Xp

1pp+1

bb

1pp+1

<<

in Set, expressing the relation between the truncation at level n of the reflexors 1pm and
the reversors jmp (0 ≤ n ≤ p < m). Thus, for all 0 ≤ n ≤ q < m and q ≥ p ≥ 0, we have
jmq (1pm(α)) = 1pm(α) and, for all 0 ≤ n ≤ q < p < m, we have jmq (1pm(α)) = 1pm(jpq (α)).
Morphisms between reflexive (∞, n)-graphs are those which are morphisms of reflexive
∞-graphs and morphisms of (∞, n)-graphs. The category of reflexive (∞, n)-graphs is
denoted by (∞, n)-Grr.

For each n ∈ N, each strict (∞, n)-category C has its underlying (∞, n)-graph (C
, (jmp )0≤n≤p<m) equipped with a reflexive (∞, n)-graph (C, (1pm)0≤p<m, (j

m
p )0≤n≤p<m) struc-

ture where (1pm)0≤p<m is the reflexive structure of the underlying strict ∞-category of
C. As a matter of fact for all 0 ≤ n ≤ q < p < m, we have jmq (1pm(α)) ◦mq 1pm(α) =
1qm(smq (1pm(α))) = 1qm(spq(α)). Also we have the following axiom for strict ∞-categories:
if q < p < m and spq(y) = tpq(x) then 1pm(y ◦pq x) = 1pm(y) ◦mq 1pm(x) (see [34]). But
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here we have spq(j
p
q (α)) = tq+1

q sq+2
q+1...s

p
p−1(α) = tpq(α), thus we can apply this axiom:

1pm(jpq (α)) ◦mq 1pm(α) = 1pm(jpq (α) ◦pq α) = 1pm(1qp(s
p
q(α))) = 1qm(spq(α)) which shows that

1pm(jpq (α)) is the unique ◦mq -inverse of 1pm(α) and thus 1pm(jpq (α)) = jmq (1pm(α)). Also for
all 0 ≤ n ≤ q < m and q ≥ p ≥ 0, we have jmq (1pm(α)) ◦mq 1pm(α) = 1qm(smq (1pm(α))) =
1qm(1pq(α)) = 1pm(α) and 1pm(α) ◦mq 1pm(α) = 1pm(α) because q ≥ p, thus 1pm(α) is the unique
◦mq -inverse of 1pm(α) and thus 1pm(α) = jmq (1pm(α)).

As in Section 2, it is not difficult to show some similar results for the category i(∞, n)-
Gr and the category (∞, n)-Grr (n ∈ N):

• For each n ∈ N, the categories i(∞, n)-Gr and (∞, n)-Grr are both locally pre-
sentable.

• For each n ∈ N, there is a monad I(∞,n)i = (I
(∞,n)
i , µ

(∞,n)
i , λ

(∞,n)
i ) on ∞-Gr (i is for

“involutive”) with Alg(I(∞,n)i ) ' i(∞, n)-Gr, and a monad R(∞,n)
r =

(R
(∞,n)
r , µ

(∞,n)
r , λ

(∞,n)
r ) on∞-Gr (r is for “reflexive”) with Alg(R(∞,n)

r ) ' (∞, n)-Grr.

• We can also consider the category i(∞, n)-Grr of involutive (∞, n)-graphs equipped
with a specific reflexivity structure, whose morphisms are those of (∞, n)-Gr which
respect the reflexivity structure. This category i(∞, n)-Grr is also locally pre-

sentable. For each n ∈ N, there is a monad K(∞,n)
ir = (K

(∞,n)
ir , µ

(∞,n)
ir , λ

(∞,n)
ir ) on

∞-Gr (ir is for “involutive-reflexive”) with Alg(K(∞,n)
ir ) ' i(∞, n)-Grr. There is a

forgetful functor from the category i(∞, n)-Grr to the category (∞, n)-Grr which
has a left adjoint, the functor “(∞, n)-involution” of any reflexive (∞, n)-graph.
There is a forgetful functor from the category i(∞, n)-Grr to the category i(∞, n)-
Gr which has a left adjoint, the functor “(∞, n)-reflexivisation” of any involutive
(∞, n)-graph. These left adjoints are built using the Dubuc adjoint triangle theo-
rem.

3. Weak (∞, n)-categories (n ∈ N)

In this section we define our algebraic point of view of weak (∞, n)-categories for all
n ∈ N. As the reader will see, many kind of filtrations as in Section 2 could be studied
here, because their filtered colimits do exist. But we have avoided that, because all the
filtrations involved here are not built with “inclusion functors” but are all right adjunc-
tions, and the author has not found a good description of their corresponding filtered
colimits. We do hope to afford it in a future work because we believe that these filtered
colimits have their own interest in abstract homotopy theory, and also in higher category
theory. We start this section by recalling briefly2 the definition of the weak ∞-categories
in Penon’s sense.

2For a self-contained text and the convenience of the reader.



786 CAMELL KACHOUR

3.1. Weak ∞-categories in Penon’s sense. For all n ∈ N, each model of weak
(∞, n)-category that we are going to define (see 3.9) is a weak ∞-categories in Penon’s
sense.

3.2. Definition. An ∞-magma3 is a reflexive ∞-graph M equipped for all 0 ≤ p < m
with operations ◦mp

◦mp : M(m) ×
M(p)

M(m) //M(m)

where M(m) ×
M(p)

M(m) = {(y, x) ∈M(m)×M(m) : smp (y) = tmp (x)}, and the operations

◦mp satisfy only positional axioms as in 2.1. Morphisms between∞-magmas are morphisms
of reflexive ∞-graphs which preserve these operations. We write ∞-Mag for the category
of ∞-magmas.

3.3. Definition. A categorical stretching is given by a quadruple

E = (M,C, π, ([−,−]m)m∈N)

where M is an ∞-magma, C is a strict ∞-category, π is a morphism in ∞-Mag, and
([−,−]m)m∈N) is an extra structure called the “bracketing structure”, and which is the key
structure of the Penon approach to weakening the axioms of strict ∞-categories; let be
more precise about it: If m ≥ 1, two m-cells c1, c0 of M are parallel if tmm−1(c1) = tmm−1(c0)
and if smm−1(c1) = smm−1(c0), and in that case we denote it c1‖c0.

([−,−]m : M̃m
//Mm+1 )m∈N

is a sequence of maps, where

M̃m = {(c1, c0) ∈Mm ×Mm : c1‖c0 and πm(c1) = πm(c0)} ,

and such that

• ∀(c1, c0) ∈ M̃m, tmm−1([c1, c0]m) = c1, smm−1([c1, c0]m) = c0,

• πm+1([c1, c0]m) = 1m−1m (πm(c1)) = 1m−1m (πm(c0)),

• ∀c ∈Mm, [c, c]m = 1mm+1(c).

A morphism of categorical stretchings,

E (m,c) // E′

3In [26] ∞-magmas are defined without the reflexive structure. In [26] we can see that this approach
of ∞-magmas have its own interest.
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is given by the following commutative square in ∞-Mag,

M

π
��

m //M ′

π′

��
C c

// C ′

such that for all m ∈ N, and for all (c1, c0) ∈ M̃m,

mm+1([c1, c0]m) = [mm(c1),mm(c0)]m.

Let ∞-EtCat denote the category of categorical stretchings.

Now consider the forgetful functor:

∞-EtCat
U //∞-Gr

given by (M,C, π, ([, ])m∈N) � //M . This functor has a left adjoint which produces a

monad TP = (T P , µP , λP ) on the category of ∞-graphs called the Penon’s monad.

3.4. Definition. Weak ∞-categories in the sense of Penon are algebras for the monad
TP above.

The original approach of the Penon’s monad is defined on the category ∞-Grr of
reflexive ∞-graphs, however Michael Batanin has proved in [8] that we obtain a better
approach of this monad by considering∞-graphs instead. See also the work in the article
[16].

3.5. (∞, n)-Magmas. An (∞, n)-magma is an∞-magma such that its underlying reflex-
ive ∞-graph is equipped with a specific (∞, n)-structure in the sense of 1.

3.6. Remark. The reversibility part of an (∞, n)-magma has no relation with its reflex-
ivity structure, neither with the involutive properties, contrary to strict (∞, n)-categories
where their reversible structures, their involutive structures and their reflexivity structures
are all related to one another (see 2.4). Instead we are going to see in this Section 3, that
each underlying (∞, n)-categorical stretching of any weak (∞, n)-category (n ∈ N) is es-
pecially going to be weakened, for the specific relation between the reversibility structure
and the involutive structure, inside its underlying reflexive (∞, n)-magma the equalities
jn+1
n ◦ jn+1

n = 1Mn+1 . Also we are going to see in 3.8, that each (∞, n)-categorical stretch-
ing is especially going to be weakened, for the specific relation between the reversibility
structure and the reflexibility structure, inside its underlying reflexive (∞, n)-magma the
equalities jmq ◦ 1m−1m = 1m−1m ◦ jm−1q and the equalities jmm−1 ◦ 1m−1m = 1m−1m .

The basic examples of (∞, n)-magmas are strict (∞, n)-categories. Let us denote by
M = (M, (jmp )0≤n≤p<m) and M′ = (M ′, (j′m

′

p′ )0≤n≤p′<m′) two (∞, n)-magmas where M and

M ′ are respectively their underlying∞-magmas, and (jmp )0≤n≤p<m and (j′m
′

p′ )0≤n≤p′<m′ are
respectively their underlying reversors. A morphism between these (∞, n)-magmas
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M ϕ //M′

is given by its underlying morphism of ∞-magmas

M
ϕ //M ′

such that ϕ preserves the (∞, n)-structure; this means that for integers 0 ≤ n ≤ p < m
we have the following commutative square.

Mm

jmp
��

ϕm //M ′
m

j′mp
��

Mm ϕm
//M ′

m

The category of the (∞, n)-magmas is denoted by (∞, n)-Mag; clearly it is not a full
subcategory of ∞-Mag.

As in Section 2, it is not difficult to show the following similar results for (∞, n)-
magmas (n ∈ N):

• For each n ∈ N, the category (∞, n)-Mag is locally presentable.

• For each n ∈ N, there is a monad T(∞,n)
m = (T

(∞,n)
m , µ

(∞,n)
m , λ

(∞,n)
m ) on ∞-Gr (m is

for “magmatic”) with Alg(T(∞,n)
m ) ' (∞, n)-Mag.

• By using Dubuc’s adjoint triangle theorem we can build functors of “(∞, n)-magma-
fication” similar to those in Section 2.

3.7. Remark. Let us explain some informal intuition related to homotopy. The reader
may notice that we can imagine many variations of “∞-magmas” similar to those of [34],
or those that we propose in this paper (see above), but which still need to keep the pres-
ence of “higher equivalences”, encoded by the reversors (see the Section 1), or, in a less
obvious way, by the reflexors plus some compositions ◦mp (see Section 2.4). For instance
we can build kinds of “∞-magma”, their adapted “stretchings” (similar to those of Sec-
tion 3.8), and their corresponding “weak ∞-structures” (similar to those of Section 3.9).
All that just by using reversors, reflexors plus compositions. Such variations of “higher
structures” must be all the time projectively sketchable (see Section 2). If we restrict
to taking models of such sketches in Set, then these categories should be locally pre-
sentables and there are strong reasons to believe that there exists an interesting Quillen
model structure on it. The Smith theorem could bring simplification to proving these
intuitions. For instance, in [28], the authors have built a folk Quillen model structure on
ω-Cat, by using the Smith theorem, and ω-Cat is such a “higher structure” where weak
equivalences were build only with reflexors and compositions. So, even though the goal
of this paper is to give an algebraic approach of weak (∞, n)-categories, we believe that
such structures and variations should provide us many categories with interesting Quillen
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model structure. Our slogan is: “enough reversors, and (or) reflexors plus some higher
compositions” captures enough equivalences for doing abstract homotopy theory, based
on higher category theory.

3.8. (∞, n)-Categorical stretchings. Now we are going to define (∞, n)-categorical
stretchings (n ∈ N), which are for the weak (∞, n)-categories what categorical stretchings
are for weak ∞-categories (see 3.1), and we are going to use these important tools to
weaken the axioms of strict (∞, n)-categories.

An (∞, n)-categorical stretching is given by a categorical stretching En =
(Mn, Cn, πn, ([−,−]m)m∈N) where Mn is an (∞, n)-magma, Cn is a strict (∞, n)-category,
πn is a morphism in (∞, n)-Mag. A morphism of (∞, n)-categorical stretchings

E (m,c) // E′

is given by the following commutative square in (∞, n)-Mag,

M

π
��

m //M ′

π′

��
C c

// C ′

such that for all m ∈ N, and for all (c1, c0) ∈ M̃m,

mm+1([c1, c0]m) = [mm(c1),mm(c0)]m .

Let (∞, n)-EtCat denote the category of (∞, n)-categorical stretchings.
As in Section 2, it is not difficult to show the following similar results for (∞, n)-

categorical stretchings (n ∈ N):

• For each n ∈ N, the category (∞, n)-EtCat is locally presentable (see also 3.9).

• By using Dubuc’s adjoint triangle theorem we can build functors of “(∞, n)-categor-
isation stretching” for any (∞, n+ 1)-categorical stretching, and for any categorical
stretching.

3.9. Definition. For each n ∈ N consider the forgetful functors

(∞, n)-EtCat
Un //∞-Gr

given by (M,C, π, ([, ])m∈N) � //M

Also, for each n ∈ N the categories (∞, n)-EtCat and ∞-Gr are sketchable (in Sec-
tion 2 we call G the sketch of ∞-graphs). Let us call En the sketch of (∞, n)-categorical
stretchings. These sketches are both projective and there is an easy inclusion G ⊂ En.
This inclusion of sketches produces, in passing to models, a functor Wn:
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Mod(En)
Wn //Mod(G)

and the associated sheaf theorem for sketches of Foltz ([21]) proves that Wn has a left
adjoint. Furthermore, there is an equivalence of categories Mod(En) ' (∞, n)-EtCat.
Thus the following commutative square induced by these equivalences

Mod(En)
Wn //

o
��

Mod(G)

o
��

(∞, n)-EtCat Un //∞-Gr

produces the required left adjoint Fn of Un.

(∞, n)-EtCat
Un //∞-Gr
Fn

>oo

The unit and the counit of this adjunction are respectively denoted λ(∞,n) and ε(∞,n).
This adjunction generates a monad T(∞,n) = (T (∞,n), µ(∞,n), λ(∞,n)) on ∞-Gr.

3.10. Definition. For each n ∈ N, a weak (∞, n)-category is an algebra for the monad
T(∞,n) = (T (∞,n), µ(∞,n), λ(∞,n)) on ∞-Gr.

3.11. Remark. For each n ∈ N, when no confusion occurs, we will simplify the notation
of these monads: Tn = (T n, µn, λn) = T(∞,n) = (T (∞,n), µ(∞,n), λ(∞,n)), by omitting the
symbol ∞.

For each n ∈ N, the category Alg(T(∞,n)) is locally presentable. As a matter of fact,

the adjunction (∞, n)-EtCat
Un //∞-Gr
Fn

>oo involves the categories (∞, n)-EtCat and ∞-

Gr which are both accessible (because they are both projectively sketchable thus locally
presentable). But the forgetful functor Un has a left adjoint, thus thanks to proposition
5.5.6 of [14], it preserves filtered colimits. Thus the monad Tn preserves filtered colimits in
the locally presentable category∞-Gr, and theorem 5.5.9 of [14] implies that the category
Alg(T(∞,n)) is locally presentable as well.

Now we are going to build some functors of “weak (∞, n)-categorification” by using
systematically Dubuc’s adjoint triangle theorem (see [20]). For all n ∈ N we have the
following triangle in CAT

Alg(Tn)
Vn //

Un %%

Alg(Tn+1)

Un+1uu
∞-Gr

The functors Vn can be thought of as forgetful functors which forget the reversors (imn )m≥n+2

for each weak (∞, n)-category (see 3.12 for the definition of the reversors produced by
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each weak (∞, n)-category). We have the adjunctions Fn a Un and Fn+1 a Un+1, where in
particular Un+1Vn = Un and Un+1 is monadic. So we can apply Dubuc’s adjoint triangle
theorem (see [20]) to show that the functor Vn has a left adjoint: Ln a Vn. For each
weak (∞, n+1)-category C, the left adjoint Ln of Vn yields the free weak (∞, n)-category
Ln(C) associated to C. Ln can be seen as the “free weak (∞, n)-categorification functor”
for weak (∞, n+ 1)-categories.

We can apply the same argument to the following triangles in CAT (where here the
functor V forgets all the reversors; see also 3.1)

Alg(Tn) V //

Un %%

Alg(TP )

Uvv
∞-Gr

to prove that the functor V has a left adjoint: L a V . For each weak ∞-category C, the
left adjoint L of V builds the free weak (∞, n)-category Ln(C) associated to C. L is the
“free weak (∞, n)-categorification functor” for weak ∞-categories.

In [8] Batanin has proved that Penon’s monad TP is in fact a contractible ω-operad4

equipped with a composition system, and thus algebras for TP are weak ∞-categories in
Batanin’s sense. Thus for each n ∈ N and thanks to the forgetful functor V above, our
models of (∞, n)-categories are weak ∞-categories in Batanin’s sense.

3.12. Magmatic properties of weak (∞, n)-categories (n ∈ N). If (G, v) is a

Tn-algebra then G
λnG // Tn(G) is the associated universal map and Mn(G)

πn
G // Cn(G)

is the free (∞, n)-categorical stretching associated to G, and we write (?mp )0≤p<m for the
composition laws of Mn(G). Also let us define the following composition laws on G: If
a, b ∈ G(m) are such that smp (a) = tmp (b) then we put

a ◦mp b = vm(λnG(a) ?mp λ
n
G(b)) ,

if a ∈ G(p) then we put
ιpm(a) := vm(1pm(λnG(a))) ,

and if a ∈ G(m) and 0 ≤ n ≤ p < m then we put

imp (a) := vm(jmp (λnG(a))) .

It is easy to show that with these definitions, the Tn-algebra (G, v) puts an (∞, n)-magma
structure on G.

In [34] the author showed that if a, b are m-cells of Tn(G) such that smp (a) = tmp (b)
then vm(a ?mp b) = vm(a) ◦mp vm(b). We are going to show that if a is a p-cell of Tn(G)
such that 0 ≤ n ≤ p < m then vm(1pm(a)) = ιpm(vp(a)) and if a is an m-cell of Tn(G)

4We use here the notation ω instead of ∞, in order to make clear that we are dealing with higher
operads in Batanin’s sense and not with ∞-operads as defined in Jacob Lurie’s book (see [31])
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such that 0 ≤ n ≤ p < m then vm(jmp (a)) = imp (vm(a)). In other words, each underlying

morphism Tn(G) v // G in ∞-Gr of a weak (∞, n)-category (G, v) is also a morphism

of (∞, n)-Mag when we consider them as equipped with the (∞, n)-magmatic structures
defined above. Proofs of these magmatic properties becomes standard after the work in
[25, 34], but for the comfort of the reader we shall give a complete proof.

All reversors for algebras are denoted “imp ” because there is no risk of confusion. The
Tn-algebra (Tn(G), µnG) on Tn(G) is an (∞, n)-structure (imp )0≤n≤p<m such that for all t
in Tn(G)(m) we have jmp (t) = imp (t). As a matter of fact

imp (t) := µnG(jmp (λnTn(G)(t))) = jmp (µnG(λnTn(G)(t)))

because µnG forgets that a morphism preserves the involutions, so imp (t) = jmp (t). Further-

more a morphism of Tn-algebras (G, v)
f // (G′, v′) is such that for all t ∈ G(m) with

0 ≤ n ≤ p < m we have f(imp (t)) = imp (f(t)). Indeed

f(imp (t)) = f(vm(jmp (λnG(t))))

= v′m(T n(f)(jmp (λnG(t))))

= v′m(jmp (T n(f)(λnG(t))))

because Tn(f) forgets that a morphism preserves the reversors. Thus

f(imp (t)) = v′m(jmp (T n(f)(λnG(t)))) = v′(jmp (λnG′(f(t)) .

Because a Tn-algebra (G, v) determines a morphism of Tn-algebras

(µnG,Tn(G)) v // (G, v) ,

we deduce the useful formula vm(jmp (t)) = imp (vm(t)).
All reflexors for algebras are denoted “ιpm” because there is no risk of confusion, and

we use the symbols “1pm” for reflexors coming from the free (∞, n)-categorical stretchings.
The Tn-algebra (Tn(G), µnG) puts a reflexive structure (ιpm)0≤p<m on Tn(G) such that for
all t in Tn(G)(p) we have 1pm(t) = ιpm(t). As a matter of fact

ιpm(t) := µnG(1pm(λnTn(G)(t))) = 1pm(µnG(λnTn(G)(t)))

because µnG forgets that a morphism preserves the reflexivities, so ιpm(t) = 1pm(t). Further-

more a morphism of Tn-algebras (G, v)
f // (G′, v′) is such that for all t ∈ G(p) with

0 ≤ p < m, we have f(ιpm(t)) = ιpm(f(t)). Indeed

f(ιpm(t)) = f(vm(1pm(λnG(t))))

= v′m(Tn(f)(1pm(λnG(t))))

= v′m(1pm(T n(f)(λnG(t))))
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because Tn(f) forgets that a morphism preserves the reflexors, so

f(ιpm(t)) = v′(1pm(Tn(f)(λnG(t)))) = v′(1pm(λnG′(f(t)))) = ιpm(f(t)) .

Thus, because a Tn-algebra (G, v) is also a morphism

(µnG,Tn(G)) v // (G, v)

of Tn-algebras, we have the useful formula vm(1pm(t)) = ιpm(vm(t)).

3.13. Interactions between reversibility structures, involutive struct-
ures, and reflexivity structures. The reversors for strict (∞, n)-categories and for
(∞, n)-magmas are denoted by “j”, whereas the reversors for weak (∞, n)-categories are
denoted by “i”. Let us fix an n ∈ N and a strict (∞, n)-category C. We know that in C
(see Section 2) we have for each 0 ≤ n ≤ p < m the involutive properties jmp ◦ jmp = 1Xm .
However for weak (∞, n)-categories this property does not hold even up to coherence cell;
yet reversors of type im+1

m do permit a weakened version of the involutive property. As
a matter of fact consider now a weak (∞, n)-category (G, v), the free (∞, n)-categorical

stretching Mn(G)
πn
G // Cn(G) associated to G and the universal map G

λnG // Tn(G) .

For each α ∈ G(m+ 1) we have

im+1
m (im+1

m (α)) = im+1
m (v(jm+1

m (λmG (α))))

= v(jm+1
m (jm+1

m (λmG (α)))),

because the algebra (G, v) preserves the reversibility structure (see 3.14). This implies
im+1
m (im+1

m (α))‖α because

sm+1
m (im+1

n (im+1
m (α))) = sm+1

m (vm+1(j
m+1
m (jm+1

m (λmG (α)))))

= vm(sm+1
m (jm+1

m (jm+1
m (λmG (α)))))

= vm(tm+1
m (jm+1

m (λmG (α))))

= vm(sm+1
m (λmG (α)))

= vm(λmG (sm+1
m (α)))

= sm+1
m (α),

and similarly we show that tm+1
m (im+1

m (im+1
m (α))) = tm+1

m (α).
But also in the free (∞, n)-categorical stretching associated to G, which controls the

algebraic nature of (G, v), creates between the (m+1)-cells jm+1
m (jm+1

m (λmG (α))) and λmG (α),
an (m+ 2)-cell of coherence:

[jm+1
m (jm+1

m (λmG (α)));λmG (α)]m+1.

Thus at the level of algebras it shows that there is a coherence cell between im+1
m (im+1

m (α))
and α.
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The other equalities jmp ◦ jmp = 1Xm (0 ≤ n < p < m) which are valid in any strict
(∞, n)-category have no reason to be weakened in any weak (∞, n)-category for the simple
reason that the axioms of (∞, n)-structure do not imply parallelism between the m-cells
imp (imp (α)) and α when p > n.

Now let us fix an n ∈ N and a strict (∞, n)-category C. We know that for each p-cell
α of C and for each 0 ≤ n ≤ q < p < m we have the equalities jmq (1pm(α)) = 1pm(jpq (α))
but also for each 0 ≤ n ≤ q < m and 0 ≤ p ≤ q we have the equalities jmq (1pm(α)) = 1pm(α)
(see Section 2). However for a weak (∞, n)-category (G, v) and for any p-cell α in it, the
(∞, n)-structure, for each 0 ≤ n ≤ q < p < m, does not ensure the parallelism between
the m-cells imq (ιpm(α)) and ιpm(ipq(α)), and for each 0 ≤ n ≤ q < m and 0 ≤ p ≤ q, does
not ensure the parallelism between the m-cells imq (ιpm(α)) and ιpm(α).

Thus these equalities which are true in the strict case are not necessarily weakened
in the weak case. However there are certain situations where in the weak case these
equalities are replaced by some coherence cells. As a matter of fact if now (G, v) is a weak
(∞, n)-category then it is easy to check, thanks to the axioms for the (∞, n)-structure
(see Section 1) that if p = m− 1 and 0 ≤ n ≤ q < m− 1, then for any (m− 1)-cell α of
(G, v) we have imq (ιm−1m (α))‖ιm−1m (im−1q (α)). Indeed, we have

imq (ιm−1m (α)) = imq (vm(1m−1m (λnG(α))))

= vm(jmq (1m−1m (λnG(α)))).

Thus

smm−1(i
m
q (ιm−1m (α))) = smm−1(vm(jmq (1m−1m (λnG(α)))))

= vm−1(s
m
m−1(j

m
q (1m−1m (λnG(α)))))

= vm−1(j
m−1
q (smm−1(1

m−1
m (λnG(α)))))

= vm−1(j
m−1
q (λnG(α)))

= im−1q (α)

= vm−1(λ
n
G(im−1q (α)))

= vm−1(s
m
m−1(1

m−1
m (λnG(im−1q (α)))))

= smm−1(vm(1m−1m (λnG(im−1q (α)))))

= smm−1(ι
m−1
m (im−1q (α))),

and similarly we see that tmm−1(i
m
q (ιm−1m (α))) = tmm−1(ι

m−1
m (im−1q (α))). But also in the

free (∞, n)-categorical stretching associated to G, which controls the algebraic nature of
(G, v), between the m-cells jmq (1m−1m (λnG(α))) and 1m−1m (jm−1q (λnG(α))), an (m + 1)-cell of
coherence is created:

[jmq (1m−1m (λnG(α))); 1m−1m (jm−1q (λnG(α)))]m.

Thus at the level of algebras it shows that there is a coherence cell between imq (ιm−1m (α))
and ιm−1m (im−1q (α)).
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Furthermore, thanks to the (∞, n)-structure (see Section 1) we easily prove that for
p = q = m − 1 we have, for any (m − 1)-cells α of any weak (∞, n)-category (G, v), the
parallelism imm−1(ι

m−1
m (α))‖ιm−1m (α). As a matter of fact

imm−1(ι
m−1
m (α)) = imm−1(vm(1m−1m (λnG(α))))

= vm(jmm−1(1
m−1
m (λnG(α)))),

Thus

smm−1(i
m
m−1(ι

m−1
m (α))) = smm−1(vm(jmm−1(1

m−1
m (λnG(α)))))

= vm−1(s
m
m−1(j

m
m−1(1

m−1
m (λnG(α)))))

= vm−1(t
m
m−1(1

m−1
m (λnG(α))))

= vm−1(λ
n
G(α))

= α

= smm−1(ι
m−1
m (α)),

and similarly we show that tmm−1(i
m
m−1(1

m
m−1(α))) = tmm−1(1

m
m−1(α)). But also in the free

(∞, n)-categorical stretching associated to G, which controls the algebricity of (G, v), be-
tween the m-cells jmm−1(1

m−1
m (λnG(α))) and 1m−1m (λnG(α)) creates an (m+1)-cell of coherence

[jmm−1(1
m−1
m (λnG(α))); 1m−1m (λnG(α))]m.

Thus at the level of algebras it shows that there is a coherence cell between imm−1(ι
m−1
m (α))

and ιm−1m (α).
For the other equalities jmq (1pm(α)) = 1pm(jpq (α)) (for 0 ≤ n ≤ q < p < m and p 6= m−1)

and jmq (1pm(α)) = 1pm(α) (for 0 ≤ n ≤ q < m, 0 ≤ p ≤ q and p, q 6= m−1), which are valid
in any strict (∞, n)-category, they have no reason to be weakened in any weak (∞, n)-
category for the simple reason that the axioms of the (∞, n)-structure does not imply
the parallelism between these m-cells imq (ιpm(α)) and ιpm(ipq(α)), or between the m-cells
imq (ιpm(α)) and ιpm(α).

3.14. Computations in dimensions 2. We are going to see that in dimension 2, alge-
bras for the monad T0 (see Remark 3.11 for this notation) for weak (∞, 0)-categories (see
Section 3), commonly called in the literature weak ∞-groupoids, are bigroupoids in the
usual sense.

A bigroupoid is just a bicategory such that its 1-cells are equivalences and its 2-cells
are ◦21-isomorphism (see below). In [34] Penon has proved that weak ∞-categories in his
sense are bicategories in dimension 2. However as we said in 3.1, this approach is slightly
different from our approach because he used reflexive ∞-graphs whereas we use here ∞-
graphs instead. It is important to recall that our models of weak (∞, 0)-categories are
weak ∞-categories in Penon sense, where these weak ∞-categories are obtained with the
monad TP = (T P , µP , λP ) described in 3.1.

First let us recall some basic definitions that we can find in [25]. A reflexive ∞-graph
has dimension p ∈ N if all its q-cells for which q > p are identity cells and if there is at
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least one p-cell which is not an identity cell. Thus reflexive ∞-graphs of dimension 0 are
just sets. An (∞, 0)-categorical stretching E0 = (M0, C0, π0, ([, ])m∈N) (that we should
also call “groupoidal stretching” by analogy with the “categorical stretchings” of Penon)
has dimension p ∈ N if the underlying reflexive ∞-graph of M0 has dimension p. A
T0-algebra (G; v) has dimension p ∈ N if G has dimension p when G is considered with
its canonical reflexivity structure (see 3.12).

Because Penon has proved in [34] that algebras for the monad TP on reflexive ∞-
graphs are bicategories in dimension 2, we just need to prove the identities axiom for the
bicategorical part : Basically, it says that given a T0-algebra (G, v) of dimension 2, and
given a diagram in G of the type

a
f // b

ι01(b) // b
g // c

then the following commutative diagram in G holds

(g ◦10 ι01(b)) ◦10 f
a //

rg◦20ι12(f) ''

g ◦10 (ι01(b) ◦10 f)

ι12(g)◦20lfww
g ◦10 f

where a is the coherence cell of associativity isomorphism described in [34], and

g ◦10 10
1(b)

rg // g , 10
1(b) ◦10 f

lf // f are respectively the right unit isomorphism cell and
the left unit isomorphism cell.

Also we need to prove that 1-cells are equivalences and 2-cells are ◦21-isomorphisms.
We first start to prove these facts and then finish by proving the bicategorical nature of
such algebras.

3.15. Proposition. Let (G; v) be a T0-algebra of dimension 2 and let a
f // b be a

1-cell of G. Then f is an equivalence.

Proof. Actually we are going to exhibit a diagram in G of the following form

a bι01(a);;i10(f)◦01f ==
v(α)+3 ι01(b)cc f◦01i10(f)aa

v(β)ks

f

))

i10(f)

ii

and show that the 2-cells v(α) and v(β) are ◦21-isomorphism. Let us denote by G
λ0G // T0(G)

the universal map associated toG, and by M0(G)
π0
G // C0(G) the free groupoidal stretch-

ing associated to G.
Consider the 2-cell

β =
[
λ0G(f) ?10 j

1
0

(
λ0G(f)

)
; 10

1

(
λ0G(b)

)]
1
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in M0(G). We are going to show that a diagram of the type[
λ0G(f) ?10 j

1
0

(
λ0G(f)

)
; 101
(
λ0G(b)

)]
1
?21 j

2
1

([
λ0G(f) ?10 j

1
0

(
λ0G(f)

)
; 101
(
λ0G(b)

)]
1

)
102
(
λ0G(b)

)λ0f
�

lives in M0(G). Because π0
G is a morphism of (∞, 0)-magmas, we have

π0
G

([
λ0G(f) ?10 j

1
0

(
λ0G(f)

)
; 10

1

(
λ0G(b)

))
]1

?21 j
2
1

([
λ0G(f) ?10 j

1
0

(
λ0G(f)

)
; 10

1

(
λ0G(b)

)]
1

))
= π0

G([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

◦21 π0
G(j21([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1))

= π0
G([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

◦21 j21(π0
G([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1))

= 11
2(π

0
G(λ0G(f) ?10 j

1
0(λ0G(f))))

◦21 j21(11
2(π

0
G(λ0G(f) ?10 j

1
0(λ0G(f)))))

= 11
2(π

0
G(λ0G(f)) ◦10 j10πG((λ0G(f))))

◦21 j21(11
2(π

0
G(λ0G(f)) ◦10 j10π0

G((λ0G(f)))))

= 11
2(1

0
1(π

0
G(λ0G(b)))) ◦21 j21(11

2(1
0
1(π

0
G(λ0G(b)))))

= 10
2(π

0
G(λ0G(b))) ◦21 j21(10

2(π
0
G(λ0G(b))))

= 10
2(π

0
G(λ0G(b))) ◦21 10

2(π
0
G(λ0G(b)))

= 10
2(π

0
G(λ0G(b))) = π0

G(10
2(λ

0
G(b))) .

The second equality holds because π0
G respects the (∞, 0)-reversible structure and the

third equality holds because of the definition of an (∞, 0)-stretching (see 3.8), the fourth
equality is because π0

G is a morphism of∞-magmas and π0
G preserves the reversible struc-

ture, whereas the fifth equality is because π0
G(λ0G(f)) and j10π

0
G((λ0G(f)) are ◦10-inverse in

the strict ∞-groupoid C0(G). The seventh equality is because j21 ◦ 10
2 = 10

2; see 2.4. Thus
by the contractibility structure in M0(G), we get the coherence 3-cell

[λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1 ?

2
1 j

2
1([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

10
2(λ

0
G(b))

λ0f
�

in M0(G), where λ0f is the 3-cell

[[λ0G(f) ?10 j
1
0(λ0G(f)) ; 10

1(λ
0
G(b))]1 ?

2
1 j

2
1([λ0G(f) ?10 j

1
0(λ0G(f)) ; 10

1(λ
0
G(b))]1)

; 10
2(λ

0
G(b))]2 .
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By applying to it the T0-algebra (G; v) we obtain the 3-cell in G

v([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1 ?

2
1 j

2
1([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1))

v(10
2(λ

0
G(b)))

v(λ0f )
�

with

v([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1

?21 j
2
1([λ0G(f) ?10 j

1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

= v([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

◦21 v(j21([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1))

because v is a morphism of (∞, 0)-magmas

= v([λ0G(f) ?10 j
1
0(λ0G(f)); 10

1(λ
0
G(b))]1)

◦21 i21(v([λ0G(f) ?10 i
1
0(λ

0
G(f)); 10

1(λ
0
G(b))]1))

= v(β) ◦21 i21(v(β)) .

Thus we obtain the 3-cell

v(β) ◦21 i21(v(β))
v(λ0f ) *4 ι02(b)

in G. But the T0-algebra (G; v) has dimension 2 forcing v(λ0f ) to be an identity, proving
v(β) ◦21 i21(v(β)) = ι02(b). By the same method we can prove that i21(v(β)) ◦21 v(β) =
ι12(f ◦10 i10(f)) which shows that v(β) is an ◦21-isomorphism.

Furthermore with the 2-cell

α = [j10(λ0G(f)) ?10 λ
0
G(f); 10

1(λ
0
G(a))]1

in M0(G), we can build a 3-cell in M0(G) of the type

[j10(λ0G(f)) ?10 λ
0
G(f); 10

1(λ
0
G(a))]1] ?

2
1 j

2
1([j10(λ0G(f)) ?10 λ

0
G(f); 10

1(λ
0
G(a))]1])

10
2(λ

0
G(a))

ρ0f
�

and with the same kind of arguments as above we can prove that in G we have the
following 2-cell

i10(f) ◦10 f
v(α) +3 ι10(a)

which is an ◦21-isomorphism, that is we have v(α)◦21 i21(v(α)) = ι02(a) and i21(v(α))◦21v(α) =
ι12(i

1
0(f) ◦10 f), which finally shows that f is an equivalence.
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3.16. Proposition. Let (G; v) be a T0-algebra of dimension 2 and let f
α // g be a

2-cell of G. Then α is an ◦21-isomorphism.

Proof. Let us denote by G
λ0G // T0(G) the universal map associated to G, and by

M0(G)
π0
G // C0(G) the free groupoidal stretching associated to G.

Consider the following diagram in M0(G)

λ0G(g)
j21(λ

0
G(α))

// λ0G(f)
λ0G(α)

// λ0G(g)
j21(λ

0
G(α))

// λ0G(f)

The 2-cells λ0G(α)?21j
2
1(λ0G(α)) and 11

2(λ
0
G(g)) are parallels and are connected by a coherence

3-cell A because

π0
G

(
λ0G(α) ?21 j

2
1(λ0G(α))

)
= π0

G

(
λ0G(α)

)
◦21 π0

G

(
j21(λ0G(α))

)
= π0

G

(
λ0G(α)

)
◦21 j21

(
π0
G(λ0G(α))

)
= 11

2(π
0
G

(
λ0G(g)

)
)

= π0
G(11

2(λ
0
G(g)))) .

Also, the 2-cells j21(λ0G(α)) ?21 λ
0
G(α) and 11

2(λ
0
G(f)) are parallels and are connected by a

coherence 3-cell B because

π0
G

(
j21(λ0G(α)) ?21 λ

0
G(α)

)
= π0

G

(
j21(λ0G(α))

)
◦21 π0

G

(
λ0G(α)

)
= j21

(
π0
G(λ0G(α))

)
◦21 π0

G

(
λ0G(α)

)
= 11

2(π
0
G(λ0G(f)))

= π0
G(11

2(λ
0
G(f))) .

These two equalities hold because π0
G is a morphism of (∞, 0)-magmas.

But v is also a morphism of (∞, 0)-magmas, thus we have v(λ0G(α) ?21 j
2
1(λ0G(α))) =

α ◦21 i21(α) and v(j21(λ0G(α)) ?21 λ
0
G(α)) = i21(α) ◦21 α. Also (G; v) has dimension 2 thus it

shows that v(A) and v(B) are identity cells, which brings equalities α◦21 i21(α) = ι12(g) and
i21(α) ◦21 α = ι12(f), which proves that α is indeed an ◦21-isomorphism.

3.17. Proposition. If (G; v) is a T0-algebra of dimension 2, then it puts on G a bicat-
egorical structure.

Proof. The reflexive structure that (G; v) put on G has been defined in 3.12, and the
associativity axiom for bicategories has been already proved in [34].

Consider the following diagram in G

a
f // b

ι01(b) // b
g // c



800 CAMELL KACHOUR

We have to show that we have the following commutative diagram in G

(g ◦10 ι01(b)) ◦10 f
a //

rg◦20ι12(f) ''

g ◦10 (ι01(b) ◦10 f)

ι12(g)◦20lfww
g ◦10 f

where a is the coherence cell of associativity isomorphism described in [34], and

g ◦10 ι01(b)
rg // g , ι01(b) ◦10 f

lf // f are respectively the right unit isomorphism cell and

the left unit isomorphism cell. First we define rg and lf . Let us denote by G
λ0G // T0(G)

the universal map associated toG, and by M0(G)
π0
G // C0(G) the free groupoidal stretch-

ing associated to G. Consider the coherence 2-cells

Rg =
[
λ0G(g) ?10 11

0

(
λ0G(b)

)
; λ0G(g)

]
1

and
Lf =

[
11
0

(
λ0G(b)

)
?10 λ

0
G(f) ; λ0G(f)

]
1

in M0(G). By definition we put rg = v(Rg) and lf = v(Lf )
Now we have the following diagram in M0(G)(
λ0G(g) ?10 11

0

(
λ0G(b)

))
?10 λ

0
G(f) A //

Rg?201
1
2(λ

0
G(f)) **

λ0G(g) ?10
(
11
0

(
λ0G(b)

)
?10 λ

0
G(f)

)
112(λ

0
G(g))?20Lftt

λ0G(g) ?10 λ
0
G(f)

such that the v(A) = a and which is commutative up to a 3-coherence cell(
112(λ

0
G(g)) ?20 Lf

)
?21 A

Rg ?
2
0 112(λ

0
G(f))

u

�

This coherence 3-cell u exist because 11
2(λ

0
G(g))?20Lf

)
?21A and Rg?

2
011

2(λ
0
G(f)) are parallels;

because π0
G is a morphism of (∞, 0)-magmas, we have

π0
G

((
11
2(λ

0
G(g)) ?20 Lf

)
?21 A

)
= π0

G

(
11
2(λ

0
G(g)) ?20 Lf

)
◦21 π0

G(A)

=
(
π0
G(11

2(λ
0
G(g))) ◦20 π0

G(Lf )
)
◦21 11

2(f ◦10 g)

= 11
2(π

0
G(λ0G(g))) ◦20 π0

G(Lf )

= 11
2(π

0
G(λ0G(g))) ◦20 11

2(π
0
G(λ0G(f)))

= π0
G(Rg) ◦20 11

2(π
0
G(λ0G(f)))

= π0
G(Rg) ◦20 π0

G(11
2(λ

0
G(f)))

= π0
G(Rg ?

2
0 11

2(λ
0
G(f))) .
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which shows existence of this coherence 3-cell u between the 2-cells
(
11
2(λ

0
G(g)) ?20Lf

)
?21A

and Rg ?
2
0 11

2(λ
0
G(f)).

Finally v is also a morphism of (∞, 0)-magmas (see 3.12), thus

• v(λ0G(g) ?10 11
0

(
λ0G(b))

))
?10 λ

0
G(f) = (g ◦10 ι01(b)) ◦10 f,

• v(λ0G(g) ?10
(
11
0

(
λ0G(b)

)
?10 λ

0
G(f)

)
) = g ◦10 (ι01(b) ◦10 f),

• v(λ0G(g) ?10 λ
0
G(f)) = g ◦10 f,

and

• v(
(
11
2(λ

0
G(g)) ?20 Lf

)
?21 A) = (ι12(g) ◦20 lf ) ◦21 a,

• v(Rg ?
2
0 11

2(λ
0
G(f))) = rg ◦20 ι12(f).

If we apply v to this 3-cell u we obtain the required commutative diagram

(g ◦10 ι01(b)) ◦10 f
a //

rg◦20ι12(f) ''

g ◦10 (ι01(b) ◦10 f)

ι12(g)◦20lfww
g ◦10 f

because v(u) is an identity cell which is a consequence of the dimension 2 of the algebra
(G; v).

3.18. Proposition. If (G; v) is a T0-algebra of dimension 2, then it puts on G a bi-
groupoidal structure.

Proof. It is a consequence of the propositions above

4. (∞, n)-structures

This last section was motivated by the suggestion of the anonymous referee who told us to
include the proof that in dimension 2 our models of weak ∞-groupoids are bigroupoids.

Actually, we could have built all our article with many other combinatorics similar to
those of the first section 1 and for each n ∈ N it should give different flavours of what we
suspect to be other models of weak (∞, n)-categories, where in dimension 2 corresponding
models of weak ∞-groupoids are bigroupoids (see below).

These combinatorics are called regular (∞, n)-structure, and in our article we have
used the maximal (∞, n)-structure (see below).

Surprisingly, the proposition 4.1 below related to strict∞-groupoids, has helped us to
understand better the key ingredients (see definitions 4.2 and 4.4) of all variations possible
of models of weak ∞-groupoids which in dimension 2 produce bigroupoids.

Strict∞-groupoids have been defined in 2.1 under the name of a strict (∞, 0)-categories.
Also we have the following proposition
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4.1. Proposition. A strict ∞-category is a strict ∞-groupoid if the following equivalent
conditions hold

1. For each m ≥ 1, each m-cell has an ◦mm−1-inverse,

2. For each m ≥ 1, each m-cell has an ◦mp -inverse for one p such that 0 ≤ p < m,

3. For each m ≥ 1, each m-cell has an ◦mp -inverse for all p such that 0 ≤ p < m.

Proof of this proposition can be found in [1]. The underlying technology of stretch-
ings that we used in this article is to use the “strict world” to build the “weak world”.
This proposition informs us that other candidates of (∞, n)-structure (see below) could
have been chosen for other approach of algebraic model of weak (∞, n)-categories. This
proposition motivates the following definition

4.2. Definition. An (∞, 0)-structure on an ∞-graph X is the data of a family of dia-
grams constructed as follows : ∀m > 0, ∀s ∈ N such that 1 ≤ s ≤ m + 1, we consider a
finite sequence in N

0 ≤ m1 < m2 < ... < mj < ... < ms ≤ m− 1

where for all j ∈ N such that 1 ≤ j ≤ s, it corresponds two diagrams in Set, each
commuting serially

Xm

jmmj //

smm−1

��
tmm−1

��

Xm
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��
tmm−1

��
Xm−1

jm−1
mj //
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Xmj+2
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t
mj+2

mj+1
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mj ##
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mj{{

Xmj
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smm−1

��
tmm−1
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Xm−1

jm−1
mj //

sm−1
m−2

��
tmm−1

��

Xm−1

sm−1
m−2

��
tmm−1

��
Xm−2

jm−2
mj //

�� ��

Xm−2

�� ��
Xmj+2

j
mj+2
mj //
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mj+2

mj+1

��
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mj+2

mj+1

��

Xmj+2
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mj+2

mj+1

��
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mj //
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Xmj+1
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Xmj
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Now let us fix an integer n ∈ N. An (∞, n)-structure on an ∞-graph X is the data of
a family of diagrams that are obtained by n-truncation of an (∞, 0)-structure on an ∞-
graph X ′5, that is we consider only diagrams of such (∞, 0)-structure for which m > n,
and where X ′ is replaced by X. It is equivalent to say that an (∞, n)-structure on an
∞-graph X is the realisation of the sketch obtained by n-truncation of the sketch of an
(∞, 0)-structure on an ∞-graph X ′. An (∞, n)-structure on an ∞-graph X is denoted by

R = (X, (jmmj
)1≤j≤s;1≤s≤m−n+1;m>n)

4.3. Remark. Morphisms between two∞-graphs equipped with the same kind of (∞, n)-
structure, are build as in 1 : Such morphisms need just to preserve underlying reversors
of such (∞, n)-structure.

4.4. Definition. Consider an (∞, n)-structure on an ∞-graph X as above. If for each
m > n and for each 1 ≤ s ≤ m − n + 1 we have ms = m − 1, then we say that this
(∞, n)-structure is regular.

For each regular (∞, n)-structure R = (X, (jmmj
)1≤j≤s;1≤s≤m−n+1;m>n), the correspond-

ing monad on ∞-Gr is denoted by

T(∞,n,R) = (T (∞,n,R), µ(∞,n,R), λ(∞,n,R))

and its algebras are models of weak (∞, n)-categories build with this specific regular
(∞, n)-structure. We believe that these regular (∞, n)-structures R produce categories
Alg(T(∞,n,R)) which are Quillen equivalents.

The maximal (∞, n)-structure Rmax that we used in our article, is to consider all kind
of reversors jmp with 0 ≤ n ≤ p < m. It is a regular (∞, n)-structure as well, and we
have shown in 3.18 that the corresponding models of weak ∞-groupoids in dimension 2
are bigroupoids. These are bigroupoids because the maximal (∞, n)-structure is regular,
which forces the existence of the reversor j21 , and thus the proof of the bigroupoidal nature
in dimension 2.

More generally, it is not difficult to check that with any regular (∞, n)-structure, the
corresponding models of weak ∞-groupoids in dimension 2 are also bigroupoids, because
regularity forces the existence of the reversor j21 . However it is not true for a non-regular
(∞, n)-structure which doesn’t contain the reversor j21 , that the corresponding models of
weak ∞-groupoids in dimension 2 are bigroupoids, just for the simple reason that each
2-cell in it have no reasons to be ◦21-isomorphisms.

Also each regular (∞, n)-structure captures many kinds of higher equivalences, depend-
ing on the kinds of reversors we used. More precisely, consider for example the following
definition build by decreasing induction :

4.5. Definition. Let us consider a strict ∞-category C and x ∈ C(m). We say that x
is an (◦mm−1, q)-equivalence (q ∈ N) if there exist a diagram

5X ′ could be equal to X but not necessarily.
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smm−1(x) tmm−1(x)
1m−1
m (smm−1(x))

==
jmm−1(x)o

m
m−1x

>>
α +3

1m−1
m (tmm−1(x))

aa
xomm−1j

m
m−1(x)

``

βks

x
++

jmm−1(x)

kk

such that α and β are (◦m+1
m , q − 1)-equivalences. By convention, for each 0 ≤ s < r,

(◦rs, 0)-equivalences are ◦rs-isomorphisms.

This definition gives also an intuition of what could be an (◦mm−1, q)-equivalence when
q is taken to the infinite.

Also for any regular (∞, n)-structure R, for each n ∈ N, and for each integer m such
that 0 ≤ n < m, the m-cells of a T(∞,n,R)-algebras are (◦mm−1, q)-equivalences where q
could be taken to the infinite.

Let us finish by a fact that we believe is important : A remarkable regular (∞, n)-
structure called the minimal (∞, n)-structure Rmin, is to consider for each m > n, s = 1
and :

n ≤ m1 = m− 1.

and this (∞, n)-structure and the maximal (∞, n)-structure Rmax are both extrema in
the sense of the evident following proposition :

4.6. Proposition. For any regular (∞, n)-structure R we have the following functorial
inclusions

Alg(T(∞,n,Rmax)) �
� // Alg(T(∞,n,R) � � // Alg(T(∞,n,Rmin))

This proposition raises the question that the collection of regular (∞, n)-structures
might form a lattice. Other members of the collection, apart from the minimal and
maximal, may provide useful models of weak (∞, n)-categories.
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