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GAUGE INVARIANT SURFACE HOLONOMY AND MONOPOLES

ARTHUR J. PARZYGNAT

ABSTRACT. There are few known computable examples of non-abelian surface holon-
omy. In this paper, we give several examples whose structure 2-groups are covering
2-groups and show that the surface holonomies can be computed via a simple formula in
terms of paths of 1-dimensional holonomies inspired by earlier work of Chan Hong-Mo
and Tsou Sheung Tsun on magnetic monopoles. As a consequence of our work and
that of Schreiber and Waldorf, this formula gives a rigorous meaning to non-abelian
magnetic flux for magnetic monopoles. In the process, we discuss gauge covariance of
surface holonomies for spheres for any 2-group, therefore generalizing the notion of the
reduced group introduced by Schreiber and Waldorf. Using these ideas, we also prove
that magnetic monopoles form an abelian group.
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1. Introduction

1.1. BACKGROUND, MOTIVATION, AND OVERVIEW. Ordinary holonomy along paths for
principal group bundles has been studied for over 40 years in the context of gauge theories
in physics and in the context of fiber bundles in mathematics. Recently, with ideas from
higher category theory, it has been possible to extend these ideas to holonomy along
surfaces. Although higher holonomy, and more generally higher gauge theory, has been
studied in the context of abelian gauge theory for higher-dimensional manifolds, it was
thought for some time that non-abelian generalizations were not possible [Te86]. Today,
we understand this as being due to the fact that a group object in the category of groups is
an abelian group. By “categorifying” well-known concepts, and considering group objects
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in the category of categories, one can avoid this restriction. The language of higher
categories allows us to give a resolution to this problem.

The data needed for defining surface holonomy for abelian structure groups has been
known for quite some time under the name abelian gerbes with connection with a formal
presentation offered by Gawedzki [Ga88] in 1988 in the context of the WZW model, with
further work in 2002 with Reis [GaRe02]. Further development under the name of non-
abelian gerbes, higher bundles, and so on were carried out in the following years starting
with the foundational work of Breen and Messing [BrMe05] in 2001, where the data for
connections on non-abelian gerbes first appeared. In [BaSc04], Baez and Schreiber gave
a definition of non-abelian gerbes with connection in terms of parallel transport using
the notion of a 2-group. The most up-to-date theoretical framework in terms of category
theory, which provides a language easily adaptable for non-abelian generalizations, was
established by Schreiber and Waldorf in [ScWal3]. In this categorical setting, higher
principal bundles with connections are described by transport functors.

The motivation for transport functors comes from observations originally made by
Barrett in [Ba91] and expanded on by Caetano and Picken in [CaPi94] by describing a
bundle with connection in terms of its holonomies. In [ScWa09], Schreiber and Waldorf
use a categorical perspective to prove that a principal group bundle with connection over a
smooth manifold determines, and is determined by, a transport functor defined on the thin
path groupoid of that manifold with values in a fattened version of the structure group
viewed as a one-object category. The upshot of this equivalence is that it is conceptually
simple to go from categories and functors to 2-categories and 2-functors. In [ScWall],
[ScWal, and [ScWal3], Schreiber and Waldorf take advantage of this equivalence and
abstract the definition so that it can be used to define principal 2-group 2-bundles with
connection allowing a conceptually simple formulation of surface holonomy.

In the present article, we review the theory of transport functors formalized by Schreiber
and Waldorf in [ScWa09], [ScWall], [ScWa], and [ScWal3] with an emphasis on examples
and explicit computations. Besides this, we accomplish several new results. First, we pro-
vide a definition of holonomy along spheres modulo thin homotopy without representing a
sphere as a bigon (Definition 3.50). The target of this holonomy is an analogue of conju-
gacy classes, which is used for ordinary holonomy along loops, called a-conjugacy classes.
To prove this, we introduce a procedure that turns an arbitrary transport functor into a
group-valued transport functor. In [ScWal3], the authors forced their surface holonomy
to land in a rather restrictive quotient of the structure 2-group to prove gauge invariance
of holonomy. Our perspective is to take the smallest quotient possible, and we show our
quotient surjects onto the one of [ScWal3].

We then focus on transport functors with a particular class of 2-groups, termed cov-
ering 2-groups, given by a Lie group GG and a covering space of G. We provide a simple
formula, motivated by constructions in [HoTs93|, for holonomy along surfaces in a lo-
cal trivialization and show that this formula agrees with the surface-ordered integral
in [ScWall]. This gives an interesting relationship between (i) well-known formulas in
the physics literature for computing the magnetic flux in terms of a loop of holonomies
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and (ii) non-abelian surface-ordered integrals in terms of 1- and 2-forms of [ScWall].
Physically, we argue that the latter is the correct analogue to computing the magnetic
flux as a surface integral and our formula tells us that this agrees with the usual definition
given in the physics literature. This is all done without the introduction of a Higgs field,
completing the ideas in [GoNuOI77].

Then we consider an entire collection of examples of transport 2-functors constructed
from an ordinary principal G-bundle with connection along with a choice of a subgroup
N of m1(G), the fundamental group of G (such a choice of subgroup determines a covering
2-group). We show that when the subgroup N is chosen to be 7 (G) itself, our example
reduces to the curvature 2-functor defined by Schreiber and Waldorf in [ScWal3]. We
instead focus on the other extreme, namely when the subgroup N is chosen to be the trivial
group {1}, to calculate four examples of surface holonomies associated to both abelian and
non-abelian magnetic monopoles. But just as ordinary holonomy is not exactly group-
valued on the space of all loops (due to conjugation issues), surface holonomy isn’t in
general either. Using our results on gauge invariance of sphere holonomy for arbitrary 2-
groups, we prove that the surface holonomies for magnetic monopoles are not only gauge
invariant but also form an abelian group.

1.2. OUTLINE OF PAPER ALONG WITH MAIN RESULTS. In Section 2, we review the
main definitions of transport functors along with an equivalence between local descent
data and global transport functors. We follow the recent work of Schreiber and Waldorf
[ScWa09] who describe it precisely and categorically in a framework that is suitable for
generalizations to surfaces. We briefly discuss the relationship to principal G-bundles with
connection, where G is a Lie group, in their usual formulation by introducing the category
of G-torsors (manifolds with free and transitive right G-actions). The equivalence between
the two descriptions was proved in [ScWa09]. We also review the relationship between
local descent data and differential cocycle data for principal group bundles, recalling the
well-known formula for parallel transport in terms of a path-ordered integral. To obtain
group-valued holonomies, we introduce a procedure (60) described as a functor that takes
an arbitrary transport functor and produces a group-valued transport functor in Section
2.31. The presentation differs a bit from that of [ScWa09] so we describe it in some detail.

In Section 3, we review how to ‘categorify’ the definitions and statements of Section
2 in order to define transport 2-functors. The main references for this section include
[ScWall], [ScWa], and [ScWal3]. We only briefly review the technical points but spend
more time on a computational understanding of surface holonomy and also supply an
iterated integral expression for surface holonomy including a picture (Figure 15) that we
think will be useful for lattice gauge theory. As in the case of holonomy along loops,
we introduce a procedure (169) to obtain group-valued surface holonomy. This lets us
discuss gauge covariance and gauge invariance simply and in full detail without referring
to the reduced group of [ScWal3]. However, we restrict ourselves to holonomy along
spheres as opposed to surfaces of arbitrary genus. We show, in Theorem 3.49, that our
holonomy along spheres lands in a set that surjects onto the reduced group and give a
simple example, in Lemma 3.54, where this surjection has nontrivial kernel.
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In Section 4, we consider transport 2-functors with structure 2-group given by a cover-
ing 2-group. We give a new and simple formula valid for all such transport 2-functors in
Corollary 4.21 for surface holonomy in a local trivialization in terms of homotopy classes
of paths of holonomies along loops. This construction was inspired by work of physicists
for computing magnetic charge as a topological number [HoTs93]. In Definition 4.15, we
give our main construction of a transport 2-functor, called the path-curvature 2-functor,
associated to every principal G-bundle with connection and to any subgroup of m(G).
We prove that this assignment is functorial. Furthermore, the path-curvature 2-functor
is shown to reduce to the example of Schreiber and Waldorf known as the curvature 2-
functor in [ScWal3| when the subgroup of 71 (G) is chosen to be m1(G) itself. We describe
this construction on four levels: (i) global transport functors (ii) functors with smooth
trivialization data chosen (iii) descent data (iv) differential cocycle data. This allows one
to work with either construction at whatever level he or she pleases. We then summarize
our result as a list of commutative diagrams of functors in (251), (255), and (257).

In Section 5, we consider special cases of covering 2-groups and give several examples
all of which are known as magnetic monopoles [HoTs93]. The first example is obtained
from any principal U(1)-bundle with connection over the two-sphere S?. It is shown that
the surface holonomy along this sphere coming from the path-curvature 2-functor defined
in Section 4 is precisely the integral of the curvature form of the principal U(1)-bundle
along this sphere, which in this case is the integral of the first Chern class over the
sphere. This example is precisely the Dirac monopole [Di31] and the surface holonomy
gives the magnetic charge as the integral of a magnetic flux. We then discuss non-
abelian examples starting with a principal SO(3)-bundle with connection over the sphere
and compute the surface holonomy explicitly using both our simple formula and the
formula in terms of path-ordered integrals using differential forms. In the case of a non-
trivial bundle, the surface holonomy along the sphere is given by the element (51 _01)
in SU(2), the universal cover of SO(3), which is the nontrivial element in the kernel of
the covering map 7 : SU(2) —= SO(3). We do this same computation in other examples
including SU (n)—=SU(n)/Z(n), where Z(n) is the center of SU(n), and also for the case
SU(n) x R—=U(n). This gives a rigorous meaning to the notion of non-abelian magnetic
flux as a surface holonomy along a sphere (see Definition 5.6). Furthermore, it is shown
that magnetic flux is a gauge-invariant quantity in Corollary 5.7.

Finally, the Appendix includes an overview of diffeological spaces which are used to
describe several of the constructions involving infinite-dimensional manifolds and smooth
maps between them.

In short, this article contains the following results.

e Theorem 2.47 allows one to define gauge-invariant holonomy along loops in the
language of transport functors via Definition 2.48. The image lands in conjugacy
classes instead of the abelianization.

e Theorem 3.49 accomplishes the analogous result for surface holonomy along spheres
in Definition 3.50. The image lands in a-conjugacy classes (Definition 3.48) instead
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of the reduced group of [ScWal3]. The set of a-conjugacy classes surjects to the
reduced group but is not in general injective as shown in Lemma 3.54. We also
prove that the fixed points of this « action form a central subgroup of the group of
surface holonomies in Lemma 3.56.

e The rest of the paper focuses on transport 2-functors whose structure 2-groups
are covering 2-groups (Definition 4.8). They are called path-curvature 2-functors
(Definition 4.15). These transport 2-functors are defined without using surface inte-
grals, and we show, in Theorem 4.20 and Corollary 4.21, that locally, any transport
2-functor (defined as in [ScWall] using surface integrals) with structure 2-group a
covering 2-group, coincides with ours, thus enabling a simple formula for calculating
surface holonomy.

e Section 5 includes several examples and explicit computations of surface holonomy.
Due to the previously mentioned theorem, these examples can rightfully be called
magnetic fluxes of magnetic monopoles from physics. We include several examples
of non-abelian surface holonomy. We conclude with Corollary 5.7 that shows that
the magnetic flux is a fixed point under the « action and therefore lands in the
central subgroup mentioned earlier. In particular, this implies that the magnetic
charge is an abelian group-valued quantity known as a topological number.
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Science Foundation Graduate Research Fellowship under Grant No. 40017-06 05 and
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1.4. NOTATIONS AND CONVENTIONS. We assume the reader is familiar with some basic
concepts of 2-categories (the Appendix of [ScWa] explains most details needed for this
paper) but our notation differs from the norm so we set it now.

Compositions of 1-morphisms is usually written from right to left as in

e B aof
(1)

z Y x — Z<——x.
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Vertical composition is written from top to bottom as

EN S
N

Horizontal composition is written as

\“/y\ﬂg/‘x - \“/x )
Bt 5 ~od

Sources, targets, and identity-assigning functions are denoted by s,t, and i, respec-
tively. We will always write the identity i(z) at an object x as id,, id, for the vertical
identity at a 1-morphisms «, and idjg, for the horizontal identity at an object x. Given
a 2-category C, the set of objects is typically denoted by Cy, 1-morphisms by C; and 2-
morphisms by C,. In general, an overline such as f will denote weak inverses, vertical
inverses, and reversing paths/bigons. It will be clear from context which is which. The
first form of 2-categories appeared under the name bi-categories and were introduced by
Bénabou [Bé67].

2. Principal bundles with connection are transport functors

In this section, we review the notion of transport functors mainly following [ScWa09]. We
split up the discussion into several parts. We first discuss a Cech description of principal
G-bundles (without connection), where G is a Lie group, in terms of smooth functors.
Then we attempt a guess for describing principal G-bundles with connections in terms of
smooth functors. This attempt fails as it only gives trivialized bundles, motivating the
need to use transport functors. We then proceed to describing local trivialization data,
descent data, and finally transport functors. The key feature of descent data is that it
enables us to encode smoothness while still allowing the ‘bundle’ to have nontrivial topol-
ogy. We then discuss a reconstruction functor that takes us from the category of descent
data to the category of transport functors with chosen trivializations. It is here that we
discuss a version of the Cech groupoid incorporating paths and ‘jumps’ that are necessary
for transition functions. Then we move in the other direction and go from smooth descent
data to locally defined differential forms, or more generally differential cocycle data. We
also describe how to go from differential cocycle data back to smooth descent data. We
then summarize the four different levels describing transport functors and their relation-
ship to one another. Finally, we use these results to formulate a procedure that sends an
arbitrary transport functor to a transport functor with group-valued parallel transport
and discuss its gauge covariance and invariance stressing the use of conjugacy classes.
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2.1. A CECH DESCRIPTION OF PRINCIPAL G-BUNDLES. Let G be a Lie group. Princi-
pal G-bundles over a smooth manifold M can be described simply in terms of functors.
Furthermore, an isomorphism of such bundles corresponds to a natural transformation of
the corresponding functors. This is done as follows (this is an expansion of Remark I1.13.

in [Woll]).

2.2. DEFINITION. Given an open cover {U;}er of M, the Cech groupoid §l is the category
whose set of objects is given by
o =] Ui (4)

el

and whose morphisms, called ‘Jumps,’ are given by

111 = H Uij, (5)

i,5€l

where U;; = U; n U; and the order of the index is kept track of in the disjoint union.
Ezplicitly, elements of 4y are written as (x,7) and elements of Uy are written as (x,1, 7).
The source and target maps are given by s((x,i,7)) := (x,i) and t((z,4,7)) := (x,7) for
(z,4,7) € Uy. The identity-assigning map is gwen by' i((x,1)) := (x,4,1). Let (z,1,7) and
(a',d', 5) be two morphisms with t((x,i,7)) = s((«,4',7")), i.e. (x,5) = (2/,7'). Renaming
the index j' to k, the composition is defined to be

(x,j,k)o(x,i,j) == (z,i, k). (6)

2.3. DEFINITION. For every Lie group G, there is a one-object groupoid BG defined as
follows. Denote the one object by e. Let the set of morphisms from e to itself be given by
the set G. Composition is given by group multiplication.

The previous two groupoids have a smooth structure, formalized in the following
definition.

2.4. DEFINITION. A Lie groupoid is a (small) category, typically denoted by Gr, whose
objects, morphisms, and sets of composable morphisms all form smooth manifolds. Fur-
thermore, the source, target, identity-assigning, and composition maps are all smooth.
In addition, every morphism has an inverse and the map that sends a morphism to its
wmverse s smooth.

2.5. EXAMPLE. The Cech groupoid of Definition 2.2 and BG of Definition 2.3 are Lie
groupoids with the appropriate (obvious) smooth structures.

LOur apologies for this double usage of the letter i to mean both the identity-inclusion map and the
index letter. We hope that it is not too confusing. Later, we will also use the letter ¢ for several other
purposes.



1326 A. PARZYGNAT

2.6. DEFINITION. A smooth functor from one Lie groupoid to another is an ordinary
functor that is smooth on objects and morphisms. Likewise, a smooth natural transformation
s a natural transformation whose function from objects to morphisms is smooth.

Any smooth functor $f — BG gives the Cech cocycle data of a principal G-bundle
over M subordinate to the cover {U;};c;. To see this, simply recall what a functor does.
To each object (,4) in 4, it assigns the single object e in BG. To each jump (z,1,7), it
assigns an element denoted by g;;(z) € G in such a way that we get a smooth 1-cochain
Gij - Uij —G

This picture should be interpreted as follows. To each x € U;;, we draw the jump (z,1, j)
as the figure on the left. Its image under 4{— BG is g;;(x) drawn on the right (without
explicitly writing x). To each triple intersection Uj;j,, which corresponds to the composi-
tion of (z,1,7) in U;; with (z, j,k) in Ujj, as in (6), functoriality gives a cocycle condition

which says

9ik9ij = Yik- (9)
This convention was chosen to match that of [ScWa09] and [ScWal3] so that the reader
who is interested in further details can consult without too much trouble.

We now discuss refinements and morphisms between two such functors. Let {Uy }ier be
another cover of M with associated Cech groupoid . Let P : 4—=BG and P’ : f —BG
be two smooth functors. A morphism from P to P’ consists of a common refinement
{Vataea, with associated Cech groupoid U, of both {Ui}ier and {Uy}yep along with a
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smooth natural transformation

2N
Dy o BG. (10)

RNV

il/

The refinement condition means that there are associated functions o : A —= I and
o : A—1I"so that V, € Uy and V, < U, (;(a) for all @ € A. These functions determine
the functors a : U — U and o : LV — ' drawn above. We denote the restrictions
of ga(a)ar) and g, (@ap) 1O Var by gap and ¢/, respectively. Any such smooth natural
transformation gives an equivalence of Cech cocycle data of principle G-bundles. To see
this, simply recall what a natural transformation does. To each object (x,a) in U it
assigns a group element h,(x) € G in a smooth way. In other words, it gives a smooth
function h, : V, — G. To each jump (z, a,b) in ¥, the naturality condition

| \ . (1)

says that
hoGab = Gopha (12)

on V. This is precisely the condition that says the principal G-bundles P and P’ are
isomorphic [St99].

2.7. A NAIVE GUESS FOR TRANSPORT FUNCTORS. Our goal in this section is to guess
what a connection on a principal G-bundle over M should be in terms of functors. We will
fail at this attempt, but will learn an important lesson which will motivate the modern
definition in terms of transport functors. First, recall that in a principal G-bundle P—=M,
every fiber is a right G-torsor.

2.8. DEFINITION. Let G be a Lie group. Let G-Tor be the category whose objects are
right G-torsors, i.e. smooth manifolds equipped with a free and transitive right G-action,
and whose morphisms are right G-equivariant maps.

Furthermore, a connection on a principal G-bundle over M gives an assignment from
paths in M to isomorphisms of fibers between the endpoints. This assignment is indepen-
dent of the parametrization of the path, but it is even independent of the thin homotopy
class of a path as discussed in [CaPi94]|. To define this, we use the theory of smooth
spaces, reviewed in Appendix A, which give natural definitions for smooth structures on
subsets, mapping spaces, and quotient spaces.
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2.9. DEFINITION. Let X be a smooth manifold. A path with sitting instants is a smooth
map 7y : [0,1] —=X such that there exists an € with 3 > ¢ > 0 and (t) is constant for all
t e [0,€e] U [l —¢1]. For such paths v with v(0) = x and v(1) = y, we write

Yy 1. (13)

The set of paths with sitting instants in X will be denoted by PX.

Paths with sitting instants were first described in [CaPi94]. We reserve the notation
XD for the set of (ordinary) smooth paths in X. Thus, PX < X1,

2.10. DEFINITION. Two paths in X with sitting instants v and ' with the same endpoints,
i.e. Y(0) =~'(0) =z and v(1) = /(1) =y, are said to be thinly homotopic if there exists
a smooth map T : [0,1] x [0,1] —= X with the following two properties.

(a) First, there exists an € with % > € > 0 such that

T for all (t,s) € [0,€] x [0,1]
)y for all (t,s) e [1 —e, 1] x [0,1]
PESY =900 Jor all (£.5) € [0.1] % [0.€] (14)
Y ()  forall (t,s)e[0,1] x [1 —¢,1]

A mapT :[0,1]x[0, 1]—X satisfying just (14) is called a bigon in X and is typically

denoted by
P RN
y \ﬂr/ x (15)

The set of bigons in X is denoted by BX.

(b) Second, the rank of I' is strictly less than 2, i.e. the differential D " : T( ([0, 1] x
[0, 1]) — T, X, where T,)Y denotes the tangent space to'Y at the point y € Y, has
kernel of dimension at least one for all (t,s) € [0,1] x [0, 1].

Thin homotopy is an equivalence relation and the equivalence classes are called thin paths.
Denote the set of thin paths in X by P'X.

P'X is naturally a smooth space since it is a quotient of PX, which is itself a subset
of X1 which has a natural smooth space structure as a mapping space. With these
preliminaries, the definition of the thin path-groupoid of a smooth manifold X can be
given (we refer the reader to [CaPi94] and [ScWa09] for more details).
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2.11. DEFINITION. Let X be a smooth manifold. Let P1(X) be the category whose objects
are the points of the smooth manifold X and whose morphisms are the thin paths of X.
The source and target of a thin path are defined by choosing a representative and taking
the source and target, respectively. The identity at each point x € X s the thin path
associated to the constant path at x. The composition of two thin paths is defined by
choosing representatives and concatenating with double-speed parametrization. Namely,
given two thin paths

/

z— y 2 T, (16)

the composition is given by the thin homotopy class associated to

(Y e)(t) := {7(%) Jfor 0

<t<i
) . 2, (17)
Y(@2t-1) forz<t<l1
Under the sitting instants assumption and the thin homotopy equivalence relation, the
composition is well-defined, smooth, associative, has left and right units given by constant
paths, and right and left inverses by reversing paths. By replacing the word “smooth
manifold” with “smooth space” in Definition 2.4, P;(X) is therefore a Lie groupoid.
With this definition of the thin path-groupoid of M, one might guess that a transport
functor should be a smooth functor Py (M) — G-Tor. However, since G-Tor is not a Lie
groupoid, there is no obvious way of demanding such a functor to be smooth. One might
therefore try to use BG instead of G-Tor. Indeed, notice that there is a natural functor

1 : BG— G-Tor defined by

o — (G

(18)
g— Lga

where G is viewed as a right G-torsor and L, is left multiplication on G by g. One can think
of G-Tor as a ‘thickening’ of BG because ¢ is an equivalence of categories. We can then
try to use BG for our target instead of GG-Tor so that we can ask for smoothness. Then
one might guess that a transport functor should be a smooth functor P;(M)—BG. Un-
fortunately, now that we have smoothness, we’ve lost non-triviality because such smooth
functors describe parallel transport on trivialized principal G-bundles (this fact follows
from Section 2.27 particularly around equation (47)).

In order to encode local instead of global triviality, we have to combine these ideas
with those of the previous section in terms of the Cech groupoid (we will also return to a
more suitable combination of the path groupoid and the Cech groupoid in Section 2.24).
To avoid a huge collection of indices again, we denote our open cover {U;};e; of M simply
by Y :=[],; Ui and we let 7 : Y —= M be the inclusion of these open sets into M. Note
that 7 is a surjective submersion. Then, the next guess might be that we need to have a
smooth functor P;(Y)—=BG, but we still need an assignment of fibers Py (M) —G-Tor.
These assignments should be compatible in terms of the functor ¢ : BG—G-Tor and the
submersion 7. This is exactly what is done in [ScWa09] and we therefore now proceed to
discussing local triviality of functors.



1330 A. PARZYGNAT

2.12. LOCAL TRIVIALITY OF FUNCTORS. Our first goal is to discuss local triviality of
functors without making any assumptions on smoothness, which is left to the next sec-
tion. The fibers of principal G-bundles were right G-torsors, which led us to consider
the category G-Tor of G-torsors. One of the great features of Schreiber’s and Waldort’s
work [ScWa09] is their generality on the different flavors of bundles. If one wants to work
with vector bundles one simply replaces G-Tor with Vect, the category of vector spaces
(over some appropriate field such as R or C), and if this vector bundle is an associated
bundle for some representation of G, then this representation is precisely encoded by a
functor ¢ : BG — Vect. Fiber bundles can be defined similarly. Therefore, we’ve made
two important observations. The first is that fibers of a bundle are objects of some cat-
egory T. The second is that the structure group of the bundle is encoded by a functor
1 : BG—"T. Schreiber and Waldorf generalize this even further by considering any Lie
groupoid Gr instead of the special one BG. They define a m-local trivialization as follows
(Definition 2.5. of [ScWa09]).

2.13. DEFINITION. Let Gr be a Lie groupoid, T a category, i : Gr —=T a functor, and
M a smooth manifold. Fix a surjective submersion w:Y —= M. A m-local i-trivialization
of a functor F' : P(M)—=T is a pair (triv,t) of a functor triv : Py(Y) — Gr and a
natural isomorphism t : 7 F = triv; as in the diagram

PL(M) <= Py (Y)

AN

i

F triv . (19)

T Gr

The groupoid Gr is called the structure groupoid for F.

In this definition 7, is the pushforward defined sending points y € Y to 7(y) and
sending thin paths 7 € P'Y to the thin homotopy class of 7 o~ (by choosing a repre-
sentative). 7*F := F o, is the pullback of F' along 7 and triv; := ¢ o triv. Functors
F : Py(M)—T equipped with 7-local i-trivializations (triv,¢) form the objects, written
as triples (F),triv,t), of a category denoted by Triv’(4).

2.14. DEFINITION. A morphism o : (F,triv,t) — (F’,triv/,¢') in Trivl(i) of m-local
i-trivializations is a natural transformation o : F' = F'. Composition is given by vertical

composition of natural transformations.

2.15. REMARK. One might expect a morphism (F,triv,t)—(F" triv',t') to consist of « :
F = F’ as well as a natural transformation h : triv = triv’ satisfying some compatibility
condition with «, t, and t'. This natural compatibility condition completely determines h
which is why it is excluded in the definition.

In this description, it’s not immediately obvious what transition functions are. This
is part of the motivation for introducing descent objects (Definition 2.8. of [ScWa09]).
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We use the notation Y™ associated to a surjective submersion 7 : Y —= M to mean the
n-fold fiber product defined by

YU = (g1, o) €Y oo x Y [ (yn) = -+ = ()} - (20)

There are several projection maps 7;,...;, : Yl yl-H foralln >2and 0 < k < n
with 1 < iy < --- < i, <n that are defined by

Y[n] 9(y17"'7yn)'_)(y117""ylk)' (2]‘)

Yl is a smooth manifold for all n and all Tiy-i, are smooth since 7 is a surjective
submersion.

2.16. DEFINITION. Let Gr be a Lie groupoid, T a category, and i : Gr —="T" a functor.
Fiz a surjective submersion m: Y —= M. A descent object is a pair (triv, g) consisting of
a functor triv : P(Y) —= Gr, a natural isomorphism

Pi(Y) === Py (v )
triv; \ 2% (22)
T triv; 7)1 (Y)
The pair (triv, g) must satisfy
o9 %
% = ™39, (23)
239

where the left-hand-side is vertical composition of natural transformations (read from top
to bottom), and
idtrivi = A*g7 (24)

where A is the diagonal A : Y —= Y2 sending y to (y,v).
Descent objects form the objects of a category denoted by @eﬁi(i).

2.17. DEFINITION. A descent morphism h : (triv, g) — (triv’, ¢') is a natural transfor-
mation h : triv; = triv} satisfying

mih g
: ° . (25)
g myh

There is a functor Ex} : Triv} (i) — Desk (i) that extracts descent data from trivial-
ization data. At the level of objects, this functor is defined as follows. Let (F triv,t) be
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an object in Trivi(s). For the pair (triv, g), take triv to be exactly the same. For g take
et

@
the composition ¢ := W%;t coming from the composition in the diagram
T2

771*

Xk
/ \

where ¢ is the (vertical) inverse of ¢. This defines a descent object (Section 2.2 of [ScWa09]).
On a morphism « : (F, triv,t) — (F', triv’, #'), the functor Ex} is defined by setting

t
h = ﬂfa (27)
t/

coming from the composition in the diagram
triv;
m
T Ua Pl (M) - ,Pl (Y) . (28)

F—
I

sl
triv;

The functor Ex} is part of an equivalence of categories between Triv. (i) and Desk (7).
This is done by constructing a weak inverse functor Recl : Desk (i) —=Triv.(4), which we
will describe in Section 2.24.

2.18. DEFINITION. Let (F triv,t) be a w-local i-trivialization of a functor F : Py (M)—T,
i.e. an object of Trivl(i). The descent object associated to the 7-local i-trivialization of
F is ExL(F, triv,t). Let a : (F,triv,t) — (F',triv’,#) be a morphism in Trivi(i). The
descent morphism associated to the 7-local i-trivialization of a is Ex. ().

2.19. TRANSPORT FUNCTORS. We now discuss smoothness of descent data and finally
give a definition of transport functors.

2.20. DEFINITION. A descent object (triv,g) as above is said to be smooth if triv :
P(Y) — Gr is a smooth functor and if there exists a smooth natural isomorphism
g @ mitriv = mitriv with ¢ = id; o g, the horizontal composition of natural transfor-
mations id; and g. A descent morphism h : (triv, g) — (triv’, ¢') as above is said to be
smooth if there exists a smooth natural isomorphism h : triv = triv’ with h = id; o h.

Smooth descent objects and morphisms form the objects and morphisms of a category
denoted by Des! (i)® and form a sub-category of Des. (7).
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2.21. DEFINITION. A m-local i-trivialization (F,triv,t) is said to be smooth if the asso-
ciated descent object ExL(F,triv,t) is smooth. A morphism « : (F, triv,t)— (F', triv’, ')
is said to be smooth if the associated descent morphism Ex:(a) is smooth.

Smooth local trivializations and their morphisms form the objects and morphisms
of a category denoted by Trivl(i)® and form a sub-category of Trivi(i). Ex. restricts
to an equivalence of categories Trivi(i)® —> Desl(i)® of smooth data. Again, we will
discuss an inverse functor in Section 2.24 since it will be necessary in discussing gauge

invariant holonomy in Section 2.31. We now come to the definition of a transport functor
(Definition 3.6 of [ScWa09)).

2.22. DEFINITION. Let Gr be a Lie groupoid, T a category, i : Gr —=T a functor, and
M a smooth manifold. A transport functor on M with values in a category T and with
Gr-structure is a functor tra : P1(M)—=T such that there exists a surjective submersion
m: Y —=M and a smooth w-local i-trivialization (triv,t) of tra.

Transport functors with values in 7" with Gr-structure form the objects of a category
Transér(M ,T). We also define the morphisms of transport functors.

2.23. DEFINITION. A morphism 7 of transport functors on M from tra to tra’ is a natural
transformation n : tra = tra’ such that there exists a surjective submersion w:Y — M
and smooth -local i-trivializations (triv,t), (triv’,t'), and h : (triv,t) — (triv’, t') of tra,
tra’, and n respectively.

By using pullbacks, one can define the composition of such morphisms. We will not
explicitly describe this now since we will come back to it later when discussing limit
categories over surjective submersions in Section 2.30.

2.24. THE RECONSTRUCTION FUNCTOR: LOCAL TO GLOBAL. In many situations, one
works locally and pieces together data to construct globally defined quantities. In the case
of parallel transport, one obtains group elements. An explicit construction of a (weak)
inverse Recl : Des! (i) —= Triv. (i) to Ex. will assist in this direction. Following Section
2.3 of [ScWa09], we introduce a category that combines the Cech groupoid with the path
groupoid utilizing the surjective submersion 7 : Y — M.

2.25. DEFINITION. Let PT(M) be the category, called the Cech path groupoid, whose set
of objects are the elements of Y. The set of morphisms are freely generated by two types
of morphisms (the generators) which are given as follows

i) thin paths (see Definition 2.10) v in Y with sitting instants and
i) points a in Y2 (thought of as morphisms m (o) % my(a) and called jumps).

There are several relations imposed on the set of morphisms.
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(a) For any thin path © : o —= B in Y2 the diagram

m1(O)

m(B) =—m(a)

5| la (29)

7(8) = m(a)
commutes (see Figure 1 for a visualization of this).

T

Figure 1: Thinking in terms of an open cover as a submersion, condition i) above says
that if a path © : @ — [ is in a double intersection, it doesn’t matter whether or not the
jump is performed first and then the thin path is traversed or vice versa.
(b) For any point Z e Y3 the diagram

m2(Z)

m23(E) m12(E)

)

[1]
(1]

m3( ()

7T13(E)
commutes.
(c) The free composition of two thin free paths is the usual composition of thin paths and

for every point y € Y, the thin homotopy class representing the constant path at y is
equal to A(y) € Y which is the formal identity for the composition.

The notation for the free composition will be =.

Item (b) together with item (c) demands that the jumps a € Y2 are isomorphisms.
A typical morphism in P (M) is depicted in Figure 2.
Associated to every descent object (triv, g) in Desy. (i) is a functor Ryiy.q) : PT(M)—T
defined (on objects and generators) by
Y 3y — trivy(y),
P'Y 37 > trivy(y), and (31)

T (g(oz) s trivy (m (@) —>triv,~(7r2(a))>.
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T
00

d
¢

Figure 2: A generic representative of a morphism in PJ(M) is shown above for YV =
[ I;e; Ui, the disjoint union over an open cover. The larger ellipses indicate open sets and
the smaller ones in the middle indicate intersections. The curves in the open sets indicate
the paths and the dotted vertical lines indicate the jumps.

This assignment extends to a functor R : Des. (i) — Funct(PF(M),T) (Lemma 2.14.
of [SeWa09]). To a descent morphism h : (triv, g) — (triv’, ¢’) it gives a natural transfor-
mation R : Rtiv,g) = Rwiv ¢y defined by sending y € Y to h(y) for all y e V.

The functor Recl : Des! (i) — Trivl (i) will be defined so that it factors through R.
What will then remain is to define a functor Funct(P] (M), T) — Funct(P;(M),T). In
order to do this, we need to “lift” paths. First, notice that there is a canonical projection
functor p™ : PF(M)—="P; (M) which sends objects y € Y to m(y), thin paths v to 7 (), and
points a € Y12 to the identity. We will construct a weak inverse s™ : P, (M) —= PF(M).

Since 7 : Y—=M is surjective, for every x € M, there exists a y € Y such that 7 (y) = x.
Therefore, define s™ : Py(M) — P (M) on objects to be this assignment. Because
7Y —= M is a surjective submersion, there exists an open cover {U;},er of M with local
sections s; : U;—=Y of . Using these local sections, we can define s™ : P (M)—P] (M)
on morphisms as follows. For every thin path v : z — 2’ in M there exists a collection
of thin paths ~,--- ,7, with (representatives of) v; inside U;, for all j =1,...,n and

v v Yn1 2 "
¥ = <, (32)

For such a choice define (we write s; instead of s;; to avoid too many indices)

Sﬂ'(/}/) = Oy % Sn(fYn) * Qp—1 * Sn—l(/}/n—l) Hoeen ok 82(72) * (U] * 81(71) * Oy, (33)

where «, is the unique isomorphism from s™(x) to si(x), «; is the unique isomorphism
from s;_1(z;) to sj(x;), and a, is the unique isomorphism from s, (z) to s™(z'). This
definition comes from Figure 3.

The functor s™ is a weak inverse to p™ (Lemma 2.15. of [ScWa09]). For reference, by
definition this means there exists a natural isomorphism

C 05" Opﬂ- = ldp{r(M) (34)

that is part of an adjoint equivalence given by the quadruple (s™,p",(,id,rosr) since
p" o s™ = idp,(ar). This natural isomorphism ¢ is the one that sends y € Y to the unique
jump, an isomorphism, from y to s™(7(y)). It is natural by relation i) in Definition 2.25.
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o
i

ol
o

Jo
2
\

Figure 3: By choosing a decomposition of every path to land in open sets one can lift
using the locally defined sections. At the beginning and end of the path, one must apply
a jump since the map s defined on objects might not coincide with the lift of the endpoint
of the path.

2.26. REMARK. Note that we have not put a smooth structure on PT(M) nor will we
(although it is done in [ScWa09]). Indeed, the choice of lifts for the points could be
sporadic. All the smoothness for transport functors is contained in the descent data.

The functor s™ : Py (M)—=PJ (M) induces a pullback functor s™ : Funct(P](M),T) —
Funct(Py (M), T) defined by s™(F) := F o s™ on functors F : PJ(M)—T and by
s™(p) := poidy on natural transformations p : F' = G. Finally, Rec! is defined as the
composition in the diagram

1
Rec;

Funct(Py (M), T) <= Des’ (i)

SN (35)

Funct(P7 (M), T)

The image of Des’. (i) under Rec} is actually in Triv. (7). This means at the level of objects
that associated to Ruiv,g) © 8™ there exists a m-local i- trivialization. We take triv itself for
the first part of this datum. To define ¢ : 7* (s”* (R(tm,g))) = triv; we take the composition
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defined by the diagram

P1(M) P.(Y)
‘&“ id /
¢ 7
s™ Pl (M)
K triv , (36)
Pr(M)
id
Rtriv,g)
T ! Gr

where the functor P;(Y) < P (M) is the inclusion. The rest of the proof, namely the
fact that the image of a morphism lands in Triv. (i) under Recl, is explained in Appendix
B.1. of [ScWa09].

2.27. DIFFERENTIAL COCYCLE DATA. We now switch gears a bit and go in the other
(infinitesimal) direction. We describe this in several parts. We focus on a local description
first in terms of ‘trivialized’ transport functors. We extract the differential cocycle data
from functors and then we construct functors from differential cocycle data. This is a
brief and simplified account of the material covered in Section 4 of [ScWa09] since we do
not prove any results.

2.27.1. FROM FUNCTORS TO 1-FORMS. Throughout this article, let G denote the Lie
algebra of G. Given a smooth functor F' : P(X) — BG, we will define a G-valued 1-
form A pointwise for every x € X and v € T, X as follows. Let v : R— X be a curve
in X with v(0) = « and ‘é—;’(O) = v. 7 : R— X induces a smooth pushforward functor
Ye : P1(R)—=P;(X). At the level of morphisms, the space P'R of thin homotopy classes of
paths in R is actually smoothly equivalent to R xR. The diffeomorphism v : Rx R—=P'R
is defined by sending (s, t) to the thin homotopy class of a path in R determined by its
source point s and target ¢ as shown schematically in Figure 4.

2i3

Figure 4: A point (s,t) in R? is drawn as two points on R and gets mapped to the thin
path in R from the point s to the point ¢ with a representative shown on the right under
the map ~g.

Therefore, we obtain a function Fj o7, o yg from the composition

GEpPIX I PIRERXR, (37)
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Here [ is F restricted to the set of morphisms P'X. Using this, we define

d
Ay (v) = %

F (7* (7 (0, t))) (38)

t=0

A, (v) is independent of v and only depends on x and v. Furthermore, it defines a 1-form
Ae QYX;G).

2.27.2. FROM 1-FORMS TO FUNCTORS. Starting with a G-valued 1-form A € Q'(X; G)
on X we want to define a smooth functor P;(X) — BG. To do this, we first define a
function, referred to as the path transport, ks : PX — G on paths in X with sitting
instants (we do not mod out by thin homotopy). Given v € PX, we can pull back the
1-form A to R, namely 7*(A) € Q([0, 1]; G). We then define k4(y) using the path-ordered-

exponential
! 0
ka(y) i= P exp U A, (—) dt} | (39)
0 ot

Recall that this path-ordered exponential is defined by?

o [ a(2)a} iS4 [ [ [ (5)a (3)]. o

where the time-ordering operator T is defined by

(41)

AA, ift>=s
>t

Tl {ASAt if
The n = 0 term on the right-hand side of equation (40) is the identity. We can picture the
path-ordered exponential schematically as a power series of graphs with marked points as
in Figure 5.

k4 only depends on the thin homotopy class of v and therefore factors through a
smooth map Fy : P!X —= G on thin paths (see Definition 2.10). This map defines a
smooth functor Fy : P1(X)— BG (see Proposition 4.3. and Lemma 4.5. of [ScWa09]).

2.27.3. LOCAL DIFFERENTIAL COCYCLES FOR TRANSPORT FUNCTORS. The above con-
structions can be extended to smooth natural transformations between smooth func-
tors. Given a smooth natural transformation h : F' = F’ of smooth functors F, F’ :
P1(X) — BG we obtain a function, written somewhat abusively also as h : X — G
satisfying

My)F(v) = F'(7)h(x) (42)

for all thin paths v : x —y in X. If we differentiate this condition, we obtain

A = Ad,(A) — h*0, (43)

2In this expression, we are assuming that G is a matrix Lie group.
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Figure 5: The path-ordered integral is depicted as a power series over integrals. The
first term (not drawn) is the identity. The second term is the integral of A; (depicted as
a bullet on the interval) over all ¢ from the right to the left (the orientation goes from
right to left). The third term is the integral of A; A, over the interval but keeping earlier
operators to the right. This is drawn by showing the bullet on the right being able to move
along the interval provided it stays behind the bullet to its left. The fourth term involves
three operators. Higher terms are not drawn. All terms are summed with appropriate
factors.

where 6 is right Maurer-Cartan form, sometimes written as dgg ! for matrix groups, A
is the 1-form corresponding to F, A’ is the 1-form corresponding to F’, and Ad is the
adjoint action on the Lie algebra G defined by

d
Adh (T) = E

(h exp{t:r}hfl) (44)

=0
for all T'e G. This motivates the following definition.
2.28. DEFINITION. Let Z3(G)*® be the category whose objects are 1-forms A € QY (X; G)
and a morphism from A to A" is a function h : X — G satisfying
A" = Ady(A) — h*6. (45)
The composition is defined by
(A” Xogrd A) - (A" 2 A), (46)

where h'h is (pointwise) multiplication of G-valued functions.

This (and the previous section) defines two functors

Px
Z(G)™ ____ Funct®(Pi(X), BG) , (47)

Dx

where Funct™(P;(X), BG) is the category of smooth functors and smooth natural trans-
formations from the thin path groupoid of X to BG. These functors are defined on objects
by Dx(F) := A from (38) and Px(A) := F4 from (39). These two functors are inverses
of each other, and not just an equivalence pair (Proposition 4.7. of [ScWa09]).
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All of this was for globally defined smooth functors. Transport functors on M are not
necessarily smooth globally. However, there must exist a surjective submersion 7 : Y—M
with a smooth 7-local i-trivialization. The smooth functor triv : Py (Y)—=BG corresponds
to a 1-form A € Q'(Y; @), which is an object in Z3-(G)®. The natural transformation
g : mitriv; = mitriv; factors through a smooth natural transformation g : 7triv = mjtriv,
which is a morphism in the category Z1.,(G)® from 7f A to w3 A. This means

yl2]
A = Ady(rrA) — G*0. (48)
The condition .
" =g (49)
239
translates to
Ty3g Ti2d = Ti3d, (50)

where the concatenation indicates multiplication of G-valued functions. A morphism of
transport functors subordinate to the same surjective submersion is a natural transforma-
tion & : triv; = triv} that factors through a smooth natural transformation A : triv = triv’
and therefore defines a morphism from A to A’ in Z(G)®. This motivates the following
definition of local differential cocycles.

2.29. DEFINITION. Let m : Y —= M be a surjective submersion. Define the category
ZYG)* of differential cocycles subordinate to 7 as follows. An object of Z1(G)™ is
a pair (A, g), where A is an object in Zy(G)®, g is a morphism from wfA to 75A in
Zy2(G)*. A morphism from (A, g) to (A',¢") is a morphism h from A to A" in Zi,(G)®.
The composition of morphisms in Z1(G)* is defined by

((ar, 9" & (1 g) & (Ag)) o (A7) &2 (4,9)). (51)
The above generalizations produce functors

Pr
Zy(G)* " Desy (i) (52)
D

exhibiting an equivalence of categories whenever i : BG—1T is an equivalence (Corollary
4.9. in [ScWa09)]).

2.30. LIMIT OVER SURJECTIVE SUBMERSIONS. Here we give a brief summary of the four
levels of construction introduced and the notation of the functors relating these categories.
To do this, we get rid of the dependence on the surjective submersion in the categories
introduced in the prequel. Several of our categories depended on the choice of a surjective
submersion. These categories were Trivl(i)®, Des! (i)*, and Z1(G)®. On the contrast,
the category of transport functors Transy. (M, T) does not depend on 7. To relate these
categories better, we will take limits over m. Changing the surjective submersion gives a
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collection of categories depending on such surjective submersions. One can take a limit
over the collection of surjective submersions in this case.

The general construction is done as follows. Let S, be a family of categories para-
metrized by surjective submersions 7 : Y — M and let F(¢) : Sy — Sro¢ be a family of
functors for every refinement ¢ : Y'—=Y of 7 satisfying the condition that for any iterated
refinement ¢’ : Y —Y  and ( : Y —Y of 7 : Y —= M then F({' o () = F({) o F(().
In this case, an object of lim _ Sy is given by a pair (m, X) of a surjective submersion
7m:Y —= M and an object X of S;. A morphism from (7, X;) to (7, X5) consists of an
equivalence class of a common refinement

io|¢ v (53)

together with a morphism f : (F'(y1))(X1) — (F(y2))(X2) in S¢. It is written as a pair
(¢, f). Two such (¢, f) and (', f') are equivalent if they agree (on the nose) on their
common pullback. The composition

(w3, X3) <22 (7, X5) L2207 X)) (54)

is defined by choosing representatives and taking the pullback refinement

Z13
prV \?:23

ZlQ ZQS

/x 7\ (55)
Vi o\ Y2 fen Y

along with the composition (F'(prys))(g) o (F(pri5))(f). One can check this definition does
not depend on the equivalence class chosen.
After getting rid of the specific choices of the surjective submersions, we can take the

limits of all the categories we have introduced. We set the following notation, slightly
differing from that of [ScWal3]:

Trivy, ()* = lim Triv, (i)* (56)
Desy, (1) = lim Des (1) (57)

ZY(M;G)* = lim ZX(G)>. (58)

™
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Because a limit of such equivalences is still an equivalence, the following facts, sum-
marizing the several previous sections, hold. The categories Z'(M;G)® and Desy, (i)
are equivalent under the condition that ¢ : BG — T is an equivalence of categories.
Desy,(1)* and Trivy, (i)® are equivalent for any i. Let v : Trivy, (i)® — Transgq (M, T)
be the forgetful functor which forgets the specific local trivialization. If ¢ is full and faith-
ful, then v : Trivy,(i)® — Transg, (M, T) is part of an equivalence of categories. All
these statements are proved in [ScWa09] (except the last one, but it follows from Lemma
3.3 in [ScWa09)).

For the reader’s convenience, we collect the categories and equivalences (assuming i is
an equivalence) introduced in the past few sections

P Rec! v
ZNM; G)® _ Desy, (1)® Triv}, (1)® Transy. (M, T) , (59)
Ex! ¢

where we’ve introduced the notation P := lim P and similarly for the other functors. ¢
is a weak inverse to v and chooses a m-local i-trivialization for transport functors.

2.31. PARALLEL TRANSPORT, HOLONOMY, AND GAUGE INVARIANCE. Holonomy for
principal G-bundles with connection is defined in several different ways. In all cases, it
is a special case of parallel transport where one restricts attention to paths whose target
match their source, i.e. marked loops.®> Holonomy along a marked loop is an isomorphism
of the fiber over the endpoint. However, for computational purposes, it is convenient
to express such isomorphisms as group elements. One common way of doing this is to
choose an open cover over which the bundle trivializes, choose a trivialization, and for each
path, choose a decomposition of that path subordinate to the cover and parallel transport
along each piece while patching the terms together using the transition functions. This
is the procedure we discussed in Section 2.24. The problem with this procedure is that
it depends on several choices. One purpose of this section is to analyze the dependence
on these choices. The second purpose is to discuss (and make precise) the dependence of
such group elements on the marking chosen for loops. The punchline is that to obtain a
well-defined holonomy independent of such choices, one needs to pass to conjugacy classes
in G.

The first goal is accomplished by starting with a transport functor F': Py(M) —T,
choosing a local trivialization, extracting the descent data, and using the descent data to
reconstruct a transport functor. This procedure can be described as a functor, which we
call 7, from Transg(M,T) to itself (see Definition 2.33). Although all the ingredients
for the functor Z were described in [ScWa09], this procedure was not discussed. Here,
we formulate this procedure and use it to analyze holonomy along loops. Thus, starting
with a transport functor F' we obtain a new transport functor Z{F’) that produces group-
valued holonomies along loops under suitable assumptions. The first choice we made in
this procedure is the transport functor F' itself. One could have chosen a different, but

3The terminology “marked” is chosen over “based” to avoid confusion with the based loop space,
which is the space of loops with a single base point. We allow our basepoints to vary.
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naturally isomorphic, transport functor F’ to obtain Z (F”’). The other choices made
were those defining Z. Abstract nonsense tells us there is a morphism F — Z/(F) of
transport functors. Different choices of local trivializations and reconstructions are thus
described in terms of natural isomorphisms. Formulated this way, it becomes a tautology
that holonomy along loops is independent of these choices once one passes to conjugacy
classes in G.

2.32. REMARK. One might argue that such a complicated formalism to obtain the well-
known fact that holonomy is defined only with respect to conjugacy classes of G is overkill.
While this is true for holonomy along loops, this formalism extends naturally to holonomy
along surfaces, which is our main objective, and the proofs are similar since they are
expressed in terms of category theory. In the case of surfaces, we will use these ideas to
generalize the results of Section 5.2 of [ScWal3]. It is therefore important to study the
simpler case of holonomy along loops first.

The second goal, namely the dependence on markings, is accomplished by showing
that for any two loops that are thinly homotopic, but not necessarily thinly homotopic
preserving their marking, the group-valued holonomy using Z(F') is well-defined up to
conjugation. Using all these observations, we define, for every isomorphism class of trans-
port functors, a holonomy map L' M—=G/Inn(G) from the space of thin homotopy classes
of free loops (see Definition 2.36) to the conjugacy classes of G.

We now define precisely what we mean by (functorially) extracting group-valued par-
allel transport from arbitrary transport functors. In order to accomplish this, we restrict
our discussion to transport functors with BG-structure and with values in 7" and assume
once and for all that ¢ : BG—T is full and faithful.

2.33. DEFINITION. A group-valued transport extraction is a composition of functors
(starting at the left and moving clockwise)

c_» Trivi(i)® — Bx!
Al N

Transg (M, T) Des' (i) (60)

¥”\ Triv'(s) Rec!

and consists of a choice of a weak inverse ¢ of the forgetful functor v and a reconstruction
functor Rec' (which itself depends on the choice of a lifting of paths as in (33)). Such a
functor is written as Z := voRec' oEx'oc. The notation £ stands for (local) trivialization.

2.34. REMARK. Although the functor £ depends on both ¢ and s™ (which defines Rec') we
suppress the notation. The reason is because if we change ¢ and/or s™, the functor £ will
change to a naturally isomorphic one and only this fact will matter in any computation.

The purpose of Z is that it assigns group elements to thin paths for every trans-
port functor F' and also assigns group-valued gauge transformations for every morphism
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n : F'—F" of transport functors (this will be reviewed in the following paragraphs). Fur-
thermore, we know that a natural isomorphism z: id = £ exists because all the functors
in (60) are (part of) equivalences of categories. Choosing such a natural isomorphism
specifies isomorphisms from the original fibers to the fiber G viewed as a G-torsor and
relates our original parallel transports to the group elements defined from Z.

To see this, first recall what Z does. For a transport functor F, ¢ chooses a lo-
cal trivialization ¢(F') := (m, F,triv,¢). Then we extract the smooth local descent object
Ex!(m, F, triv,t) := (7, triv, g). Then, we reconstruct a m-local i-trivialization Rec! (7, triv, g)
and then forget the trivialization data keeping just the transport functor v(Rec* (r, triv, g)).
The resulting transport functor, written as 4 (as opposed to Z(F')), is defined by (see
the paragraph after Definition 2.25)

Pi(M) x,

M sz — i(e) =: triv,(s™(z)) (61)
P'M 37 = Rgaimy(s"(7)).

Here triv : P1(Y) — BG is the “local” transport, s™ : P;(M)—= PJ(M) is a choice of
lifting points and paths, and R, (g (s™(7)) : i(e)—=i(e) is an element of G because i is
full and faithful. This element of G is defined by choosing a lift of the path v (see Figure
3) and applying trivialized transport on the pieces and transition functions on the jumps
(see Section 2.24). Note that in the special case that T" = G-Tor, i(e) can be taken to be
G itself and then £-(y) for a thin path v is left multiplication by some uniquely specified
group element.

To a morphism 7 : F'— F" of transport functors, the resulting morphism of transport
functors, written as 4, is defined as follows. First, ¢ chooses surjective submersions
m:Y —=M and 7’ : Y'— M for F and F’, respectively, along with local trivializations
(triv,t) and (triv’,¢'). This means that under ¢ the morphism ¢(n) is defined on a common
refinement ¢ : Z— M of both 7 and n’. The same thing applies to the extracted descent
morphism Ex'(c()) = (¢, h). Since our domain is changed under the refinement, h is
defined by the composition

triv;

Pi(Z) - (62)

triv}
This composition satisfies the condition

(2] Crh
y—g 1

C:h - /[23* r <63)
2 y=g
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The notation means the following. A map y : Z—Y (and similarly for ¢/ : Z —Y")
determines a unique map y? : ZI2 — Y defined by y(z,2") := (y(2),y(2")). The
maps (i, (o : ZI2 — Z are the two projections.

The reconstruction functor Rec' : ®esy,(i)—=Triv}, (i) sends the morphism £ in (62) to
Rec'(¢, h) 1= s* R(¢ ) which is a morphism of transport functors from Rec' (y*(r, triv, g))
to Rec! (y™* (7', triv’, ¢')) with respect to this common refinement and where

s¢ PUM) —=PS(M).

Rec!(¢, h) is defined by sending o € M to h(s%(z)) which is a morphism from triv;(y(s¢(x)))
to trivi(y'(s¢(z))).

Now, the natural isomorphism 2 : id = # assigns to every transport functor F' a
morphism of transport functors 2z : F' — #. This means (see Definition 2.23) that
associated to every x € M is an isomorphism #x(x) : F'(z) —i(e) satisfying naturality,
which means that to every thin path v € P'M from z to y, the diagram

i(0) <= p(a)

zm)l IF(w (64)

commutes.

2.35. REMARK. In Section 3.2, [ScWa09] define the Wilson line, what we’re calling
4 (), in terms of (64) as the composition 2r(y) o F(vy) o 2p(x)™! : i(e) —=i(e) using
that i is full and faithful so that this composition defines a unique group element. QOur
viewpoint is to define the Wilson line functorially and globally by using the group-valued
transport extraction procedure £.

Since ¢ itself is a natural transformation, to every morphism 7 : F'— F” of transport
functors, the diagram

lp~—"—F
% n (65)
4‘/ 2t FI

commutes.
To analyze holonomy, we need to restrict parallel transport to thin paths whose source
and target are the same, i.e. thin marked loops, and eventually thin free loops.

2.36. DEFINITION. The marked loop space of M is the set

LM :={ye PM | s(y) =t(7)} (66)
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equipped with the subspace smooth structure (see Example A.4). FElements of £M are
called marked loops. The thin marked loop space of M 1is the set

M = {ye P'M | s(y) =t(v)} (67)
equipped with the subspace smooth structure. Elements of £*M are called thin marked
loops.

2.37. DEFINITION. The Z-holonomy of F, written as hol, is defined as the restriction
of parallel transport of a transport functor F to the thin marked loop space £'M of M :
hol% := 4 Ce'M—G. (68)
oM
We now pose three questions that will motivate the rest of our discussion on holonomy
along thin marked loops.

i) How does hol§ depend on the choice of basepoint? Namely, suppose that two thin
marked loops v : * —x and 7' : ' — 2’ are thinly homotopic without preserving
the marking* (see Definition 2.38). Then, how is hol%(7) related to hol%(v')?

ii) How does holl; depend on F'? Namely, suppose that n : FF'— F’ is a morphism of
transport functors. How is hol’ related to hol} in terms of n?

iii) How does hol% depend on Z, i.e. the choices of ¢ and s™? Namely, suppose that Z
is another trivialization. Then how is holZ related to hol%,?

We first define what we mean by the thin free loop space and then we proceed to
answer the above questions. Denote the smooth space of loops in M by LM := {v :
St —= M | v smooth}.

2.38. DEFINITION. Two smooth loops v,~' € LM are thinly homotopic if there exists a
smooth map h : St x [0,1] —= M such that
i) there exists an € > 0 with h(t,s) = v(t) for s < € and h(t,s) = 7'(t) fors =1 —¢
and for all t € St and

ii) the smooth map h has rank < 1.

Such a smooth map h is called an unmarked thin homotopy. The smooth space of such
thin homotopy classes of loops is denoted by L'M and is called the thin free loop space
of M. Elements of LM are called thin free loops or just thin loops.

The first condition guarantees that unmarked thin homotopy defines an equivalence re-
lation and L' M is well-defined. The second condition is where the thin structure is buried.
We need to discuss a few definitions and facts before relating thin loops to thin marked
loops. For the purposes of being absolutely clear, from Lemma 2.40 through Lemma
2.44 we will distinguish between representatives of loops and thin homotopy equivalence
classes by using brackets [ |. However, afterwards, we will abuse notation and will rarely
make the distinction.

4The notion of thin homotopy introduced in Definition 2.10 does not make sense when x # z’.
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2.39. DEFINITION. The function f : £M — LM defined by sending a marked loop ~ :
[0, 1]—=M to the associated map f(7) : S'—=M obtained from identifying the endpoints
of [0,1] is called the forgetful map.

2.40. LEMMA. There exists a unique map f': LM —= L' M such that the diagram

LM ——=¢'M

f‘ ‘fl (69)

LM ——L'M
commutes (the horizontal arrows are the projections onto thin homotopy classes).

PRrROOF. The map is constructed by choosing a representative, applying f, and then pro-
jecting to L' M. Let [y] : #—=x be an element of £'M and let v : x—=x and 7/ : v —>x
be two representatives in £M. Then there exists a thin homotopy & : [0, 1] x [0, 1] — M
from v to /. Because h(t,s) = x for all s € [0,1] and all t € [0,€] U [1 — €,0] for some
e > 0, the two ends of the first [0, 1] factor can be identified resulting in a smooth map
h:S' x [0,1]. This gives the desired homotopy from f(v) to f(v). m

Note that there is also a function evg : £!M —= M given by evaluating a thin loop at
its endpoint. This function forgets the loop and remembers only the basepoint.

2.41. DEFINITION. A marking of thin loops is a section (not necessarily smooth) m :
L'M —2'M of f1: &M —L'M, i.e. flom=id.

2.42. REMARK. A marking of ordinary loops cannot be defined in this way as a section
of f : LM —= LM because an arbitrary smooth map S* —= M need not have a sitting
stant at any point.

2.43. PROPOSITION. A marking of thin loops ezists.

Actually, much more is true. Because the fact is somewhat surprising and interesting
(and only holds due to the thin homotopy equivalence relation), we include it here. Let
moM denote the set of components of M and p : M—myM the canonical function sending
a point to its component. Let ¢y : L' M —= 1o M denote the canonical function sending
a thin loop to the component in which it (every representative) lies. A marking of thin
loops m determines a function 3 : L'M —= M given by 3 := evy o m that satisfies the

condition that
/ ‘p (70)

commutes.
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2.44. LEMMA. Let 8 : L*M —= M be any function such that the diagram in (70) com-
mutes. Then there exists a marking of thin loops m : L* M — £ M such that the diagram

glMeV—O>M

iy -

PROOF. A function m can be defined as follows. For any thin loop [y] € L'M, let
v St —= M be a representative. Then there exists an unmarked thin homotopy A from
v to a loop 75 with sitting instants at 3([y]) because (70) commutes. To see this, one
can simply pick a point on the loop and extend the loop out to the basepoint and come
back without sweeping out any area (see Figure 6). Then project 75 to £'M. Thus, set

commutes.

Figure 6: Let [y] be a thin free loop, = := (|7]) a point in the same connected component
as |v], and 7 a representative loop (in red). Then there exists a path 7/ :  — z with
sitting instants (in blue) and an unmarked thin homotopy h : v = 4. The cylinder depicts
such a homotopy with the middle loop (in purple) indicating an intermediate loop. The
dashed line on the cylinder indicates that the loops begin to extend outwardly towards
the marking without sweeping any area. The “mouse-hole” on the cylinder indicates that
the loops from the homotopy eventually sit at x.

m([7]) := [v5]. To see that this is well-defined, let 4 be another representative of [y] and
let & be an unmarked thin homotopy from 4’ to . Then composing the two unmarked
thin homotopies & o h gives an unmarked thin homotopy from +' to 7. Of course, there
are many possible choices for 4 for a given [ that will give different markings m. [

2.45. REMARK. If  is chosen so that the diagram in (70) does not commute, a marking
m satisfying (71) does not exist.

We now proceed to answering the above questions in order.

i) Let m,m’ : L'M — £'M be two markings of thin loops in M. Let [y] € L'M and
denote z := evo(m([v])) and 2’ := evo(m/([7])). A choice of representatives v : t—2x
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and ' : 2’—1' as paths with sitting instants of m([y]) and m’([v]), respectively, need
not have the same image. In particular, x and 2’ might not lie on each others images.
Figure 7 gives an example. This makes it impossible to compare their holonomies

using thin bigons in the usual way (because no such bigon exists).
/

v

Ty

Figure 7: Two representatives v and ' of two markings of a single thin loop are shown.
Their respective basepoints z and z’ do not lie on each others images.

However, there is an unmarked thin homotopy h : S* x [0, 1]—=M with h(t, s) = y(¢)
for s < e and h(t,s) = +/(t) for s = 1 — € for some € > 0. Therefore, one can choose a
loop 4 and two paths with sitting instants v, : © —= 2’ and 7, : ¥’ —= = with the
following three properties. First, as a loop, 7 can be written as the composition v,
and 7, in some order, i.e. using the map f of Definition 2.39, 5 = f(Vuz © Yaur) OF
f(Yzar © Yarz). Second, the composition 7., © 7, is thinly homotopic to v preserving
the basepoint x. Third, the composition 7., 0, is thinly homotopic to 7' preserving
the basepoint z’. This is depicted in Figure 8.

This says that given two marked loops, with possibly different markings, that are
thinly homotopic without preserving the marking, one can always choose a represen-
tative of such a thin loop in M with two marked points so that the associated two
marked loops (coming from starting at either marking) are thinly homotopic to the
original two with a thin homotopy that preserves the marking. More precisely, we
proved the following fact.

2.46. LEMMA. Let m,m’ : L'M — £'M be two markings. Let [y] € L*M be a thin
loop in M and write x := evo(m(|v])) and ' := evo(m'([y])). Then, there exist two
paths Ve : * —= ' and Vup : ¥ — x with sitting instants such that the following
three properties hold (see Figure 9).

i) The composition of Ve and Y. (in either order) and forgetting the marking is
a representative of [].
i) Year © Yarz 1S @ representative of m([y]) as a path with sitting instants.

000) Yarw © Yaar 1S @ representative of W'([y]) as a path with sitting instants.
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Figure 8: The domain of the unmarked thin homotopy h : S* x [0,1] — M is drawn
as an annulus depicting the domain of v as the inner circle and that of 4/ as the outer
circle. The homotopy allows us to choose a loop 4, drawn somewhat in the middle (in
orange), that contains both z and 2’ and is thinly homotopic to both v and +'. This
loop %4 is decomposed into two paths 7., : * — 2’ and 7, : @' — x. The dashed lines
indicate the regions of sitting instants. All paths are oriented counter-clockwise. Note
that, by a reparametrization if necessary, the homotopy h may be chosen to separate the
two basepoints into the northern and southern hemispheres as drawn.

Therefore, without loss of generality, we can choose a single representative 7 of a
thin free loop [y] with a decomposition as in the Lemma. We denote 4 := vz © Vyur
and 7y 1= Y4 0 Yare. Thus 7 is one of f(v) or f(v'). Note that 7' and 7,7 0y 0 v, are
thinly homotopic. For convenience, from now on we abuse notation often and do not
distinguish between the actual paths versus the thin homotopy classes as elements of
PiM.

By functoriality of the transport functor 4, we have

holy(v') = 4(v)
/F(%&x’ © ’7 © ’sz )

/)
(4’( :mc’)) 1h01F( )4’(73390’)

(72)

so that hol§ changes by conjugation in G when the marking is changed.

ii) Suppose that n: F'— F’ is a morphism of transport functors. Then, for every thin
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A

Figure 9: For two markings with associated basepoints 2 and z’ of a thin loop [7], there
exist representatives paths with sitting instants (shown on the right) 7, : * — 2’ (in
red) and 7, : ' — x (in blue) such that v := 7., © Y, (shown on the left) represents
one marking and ' := 7,7, © Y, (shown in the middle) represents the other. Note that
7" and ¥z © 7 0 Y4 are thinly homotopic.

iii)

path v : z —y we have a commutative diagram
(z)
o () <" ()

z;,ml lam) : (73)

which says
4(y)4:(7) = 4 (7) 4(). (74)

If we restrict this to a thin marked loop v with y = x, then

holy () = (4(x)) 'holf(7) 4 (x) (75)

so that again, hol? changes under conjugation when the functor F' is changed to an
isomorphic one.

Suppose that another trivialization # ' was chosen. Then following the comments
after Remark 2.34, we can choose natural isomorphisms z:id = Zand 2’ :id = /'
resulting in a natural isomorphism 7 := E’ : £ ' = /. This means every transport
functor F' gets assigned a morphism of transport functors Jr : 4’ — 4 satisfying
naturality. This means to every z € M we have a morphism Jr(z) : 4'(z) — 4-(x)
satisfying naturality, i.e. to every path v : x —y the diagram

li(2) <2 ()
zm)l 7' () (76)

4'(y)
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commutes. In case v is a thin loop at x, this gives
holy. () = (4r(x)) " holy (7) 4r (z). (77)

In conclusion, the answer to every one of the three questions is conjugation. This is
what is called gauge covariance. To get something gauge invariant, we first denote the
quotient map from G to its conjugacy classes by ¢ : G—=G/Inn(G), where Inn(G) stands
for the inner automorphisms of G and the quotient G/Inn(G) is given by the conjugation
action of G on itself. All of the above considerations show that the following theorem
holds.

2.47. THEOREM. Let M be a smooth manifold, G be a Lie group, T a category, and
suppose that i : BG—T is full and faithful. Let F € Transgo(M,T) be a transport functor
and £ a group-valued transport extraction. Let L'M, £'M, m, hol§ and q be defined as
above. Then the composition

G/Inn(G) & G Ay S VAV (78)
18
i) independent of m,
ii) independent of the isomorphism class of F,
iii) and independent of the isomorphism class of £.

Notice that this theorem lets us make the following definition.

2.48. DEFINITION. Let [F| be an isomorphism class of transport functors. The gauge
invariant holonomy of |F'| is defined to be the map in the previous theorem, namely

hollf1 := g o holl om : L' M —= G/Inn(G) (79)

where F' is a representative of [F|, £ is a group-valued transport extraction, and m :
L'M —= £'M is a marking of thin loops in M. Let vy € L*M. If hol¥l(v) is such that
¢ ' (hol™1(7)) is a single element, we will say that hol™)(v) is gauge invariant and abu-
sively write holF1(v) instead of ¢~ (holFl(%)).

3. Transport 2-functors and gauge invariant surface holonomy

In the present section, we review the basics of transport 2-functors and also provide some
new and interesting results. As a preliminary, we briefly set our notation and review some
facts about (strict) 2-groups and crossed modules. Then we split up the discussion into
several parts and follow a similar pattern to the transport functor case. However, since
we are now aware of what local triviality should mean, we skip the guess-work and head
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straight to the correct theory. We start with a Cech description of ordinary principal
(strict) 2-group 2-bundles (without connection) in terms of smooth 2-functors. We then
discuss how to add connection data by introducing transport functors, local triviality, and
descent data. The discussion of the reconstruction functor is more involved, and because
it is important for the calculation, we spend some time on it. Nevertheless, we skip some
technical details (such as compositors and unifiers). Then we consider the differential
cocycle data and discuss a formula for higher holonomy in terms of an iterated surface
integral. We summarize the results as before. Sections 3.1 through 3.35 are a summary
of [ScWall], [ScWa], and [ScWal3].

Finally, in Section 3.36, we discuss some results on surface holonomy and its gauge
covariance. We introduce a notion of a-conjugacy classes for a 2-group in Definition
3.48 and prove in Theorem 3.49 that surface holonomy along spheres is well-defined in a-
conjugacy classes generalizing the reduced group of [ScWal3] (it is not yet known whether
this generalization will work for more general surfaces). In the process, the procedure
of group-valued transport extraction is categorified for the purposes of (i) proving this
theorem and (ii) providing a functorial description for computing transport locally, which
we utilize in Section 5.

We assume the reader is familiar with the basics of 2-categories. A review sufficient
for most of our purposes can be found in Appendix A of [ScWa).

3.1. 2-GROUP CONVENTIONS. The theory of 2-groups is discussed in great detail in the
article [BaLa04]. However, to simplify the discussion, we will define a (strict) 2-group
as a strict one-object 2-groupoid, i.e. a strict 2-category with inverses for all 1- and 2-
morphisms. Normally, one defines a 2-group as a groupal groupoid as in [BaLa04], but
we find this unnecessary. However, to be consistent with notation in the literature, we
will write our 2-groups as B® and use the notation & where appropriate.

There is a 2-category of strict 2-groups denoted by 2-Grp whose 1-morphisms and 2-
morphisms are functors and natural transformations, respectively. It is useful to relate this
higher-categorical definition to one involving ordinary groups. Although this is standard,
we set the notation, which may differ from some authors.

3.2. DEFINITION. A crossed module is a quadruple (H,G, T, a) of two groups, G and H,
and group homomorphisms T : H—=G and o : G—=Aut(H) satisfying the two conditions

e () = A (80)
and
T(ag(h)) = gr(h)g™". (81)
In this definition, Aut(H) is the automorphism group of H. The collection of crossed
modules form the objects of a 2-category CrsMod.

3.3. THEOREM. The 2-categories CrsMod and 2-Grp are equivalent.

This theorem has been known for quite some time in several different forms. A simple
place to start for this is in the article [BaHull] with more information in [BaLa04].
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ProOF. We only prove the equivalence at the level of objects and in only one direc-
tion. This will set up our conventions throughout the paper. Given a crossed module
(H,G, T, «) the associated 2-group B® is defined to have a single object e, G as its set of
1-morphisms, and H x G as its set of 2-morphisms. Composition of 1-morphisms is given
by multiplication in G. The source and target maps of 2-morphisms are defined pictorially

by
g
P N
. (hg) ®. (82)

T(h)g

Vertical and horizontal compositions are defined by

g
° 7(h)g ° — . \“(/

fzh,g) L4 (83)

(h,7(h)g -
7(hh)g

and

g
RN pl N
. (W.g) ® (hg) ® +— W ., (84)

m(h")g' 7(h)g T(h)g'T(h)g

respectively. When writing 2-group multiplication, we will always drop the composition
symbol o, which is a common practice for ordinary group multiplication. [

The above proof sets up our convention for 2-group multiplication. Equation (82)
shows that what’s needed to specify a 2-morphism is an element of GG, the source of the
2-morphism, and an element of H. Thus, if the source is already known, the element
in H specifies the 2-morphism. Equation (83) defines vertical composition and equation
(84) defines horizontal composition. Please be aware that different authors have different
conventions (since the 2-categories CrsMod and 2-Grp are equivalent in many ways).

The following is a simple but important fact (which we use in studying gauge invari-
ance, mainly Corollary 5.7).

3.4. LEMMA. Let (H,G,1,a) be a crossed module. Then kert :={h € H | 7(h) = e} is
a central subgroup of H.

PRroor. Let ke ker7 and h € H. Then

kh = khk™'k = gy (h)k = ag(h)k = h. (85)
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3.5. DEFINITION. A Lie crossed module is a crossed module (H,G,T,«) with G and H
Lie groups and where T and « are smooth maps, where o being smooth technically means
that the adjoint map G x H— H 1is smooth.

3.6. DEFINITION. A Lie 2-groupoid is a strict 2-category Gr whose objects, 1-morphisms,
and 2-morphisms are all smooth spaces and all structure maps are smooth. Furthermore,
all 1- and 2-morphisms are invertible and the inversion maps are all smooth.

3.7. DEFINITION. A Lie 2-group is a Lie 2-groupoid with a single object.

3.8. REMARK. Lie crossed modules form the objects of a 2-category and Lie 2-groups
form the objects of a 2-category. A similar proof shows that these 2-categories are also
equivalent.

3.9. A CECH DESCRIPTION OF PRINCIPAL ®-2-BUNDLES. Let B& be a Lie 2-group
and denote the associated crossed module by (H,G, T, «). Principal &-2-bundles over a
manifold M can be described in terms of 2-functors using the Cech groupoid as well (this
also comes from Remark I1.13. of [Wol1]). However, since we are dealing with 2-categories
we need to slightly modify the Cech groupoid of Definition 2.2. The way we do this is
just by throwing on identity 2-morphisms. In other words, given an open cover {U,};e; of
M, a 2-morphism from (x,1, j) to (2,4, ") exists only if 2’ = x,7 =i, and j' = j and in
this case there is only the identity 2-morphism. Composition is uniquely defined by this.
This defines the Cech 2-groupoid, also written as $L. This is a Lie 2-groupoid.

3.10. DEFINITION. 2-functors between Lie 2-groupoids are smooth if they assign data
smoothly. Similarly, pseudonatural transformations and modifications are smooth when
the assignments defining them are smooth.

Any smooth 2-functor U—B& gives the Cech cocycle data of a principal ®-2-bundle
over M subordinate to the cover {U,};c;. To see this, simply recall what a 2-functor does
(see Definition A.5. of [ScWa]). To each object (z,7) in 4l it assigns the single object
e in B&. To each jump (x,7,7), it assigns an element denoted by g;;(x) € G in such a
way that we get a smooth 1-cochain g;; : U;; — G as in Section 2.1. However, to each
triple intersection Ujj;, which corresponds to the composition of U;; with Uj, it assigns
an element f;;,(z) € H in such a way that we get a smooth 2-cochain fijy, : Ujjr — H

— ik 9ij | (86)
Jijks95k9ij
.—L.

ik
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which says

T(fijk)gjkgij = Gik- (87)
The 2-functor satisfies an associativity condition which is translated into a condition on
quadruple intersections giving a “cocycle condition”

(88)

where fij, is short for (fijx, gjrg:;), etc. This condition says

(firts grigin) (e, gi5) (e, i) (fijis 9k Gi) (89)

(fiji» 9j19:5) (firts gr1gir)

which after multiplying out (using the rules of Section 3.1) and projecting both sides to
H gives

fifime = firog,, (fijh)- (90)
The 2-functor also assigns 0-cochains v; : U; — H

e
ifai i . /@{)\ (1)
\/
_ _ _ | Gii
which says
(i) = gus. (92)

These satisfy two “degenerate” cocycle conditions on each double intersection U;; of M
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for the two ways one edge can be collapsed on the triangle. One is

= (93)
9ij
which after multiplying out and projecting to H says
fiijorg,; (i) = e. (94)
The other cocycle condition is
= e (95)

Gij
which after multiplying out and projecting to H says

fizih; =e. (96)

Refinements and 1-morphisms between two such 2-functors is similar to the ordinary
functor case from Section 2.1 but a bit more subtle due to modifications (which we won’t
discuss now anyway). Let {Uy }ierr be another cover of M with associated Cech 2-groupoid
. Let P:U—=B® and P’ : W —= B& be two smooth 2-functors. A 1-morphism from
P to P’ consists of a common refinement {V,},e4 of both {U;},c; and {U; }yep along with
a smooth pseudo-natural transformation

Dy ho B®. (97)

By definition (see Definition A.6. in [ScWa]), to each object (x,a) in ¥ such a pseudo-
natural transformation gives a smooth function h, : V, — G as before, but also to each
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jump (z,a,b) in U, it gives another smooth function €y, : V,,—= H fitting in the diagram

Gab
O <—— O

hb (szJWW&b) ha 5

.-&.
9ab

which says that
T(eab)hbgab = g;bha'

(98)

(99)

The higher naturality conditions of a pseudo-natural transformation are given as follows.
In general, to every 2-morphism, there is an associated naturality condition, but because
the 2-morphisms in 4 are all identities, this condition is vacuously true. To every pair of

composable 1-morphisms (z,4, j) and (x, j, k) we get

Commutativity of this diagram says

C)H hc C sy Ya
(e’ hc)(fabc;gbcgab) _ (€b , 9b )(2 g b)
(€acs heGac) (€, Gpe) (€av, hgab),
7 ( (ibc?g;)cg(/lb)

which after equating both projections to H gives

€acOth, (fabe) = fébc%gc (€ab)€ne

for all a,b, c € A.

(100)

(101)

(102)
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Finally, to every object (z,7) we get on each open set U;

T

. (Ya,e) [

W
\ Gii
ha ha (103)

(Eaa ahagaa)

where the back face of the cylinder is the identity 2-morphism (e, h,). This reads
(67 h‘a)(¢a7 e) _ (67 ha) (104)

(Eaaa hagaa) ( Zw 6) (67 ha) 7
which after projecting to H says

€aaCth, (Va) = wtlz (105)

Therefore, a 1-morphism of such principal 2-bundles as described above defines an equiv-
alence of principal 2-bundles as described in [Woll].

We won’t discuss 2-morphisms now because we will see that the above construction is
a special case of the concept of limits of 2-categories in Section 3.35.

3.11. LOCAL TRIVIALITY OF 2-FUNCTORS. Just as transport functors describe parallel
transport along paths, transport 2-functors describe parallel transport along paths and
surfaces. They exhibit a formulation of a generalization of bundles with connection that
describe such transport. We start by generalizing the thin path groupoid P;(X) to the
thin path 2-groupoid Py(X). At this point, one should recall Definition 2.38 where bigons
are introduced.

3.12. DEFINITION. Let X be a smooth manifold. Two bigons I' and I are said to be
thinly homotopic if there exists a smooth map A : [0,1] x [0,1] x [0,1] — X with the
following two properties.

i) First, there ezists an € with % > € > 0 such that

( for all (t,s,r) € [0,¢] x [0,1] x [0,1]
Yy for all (t,s,r) e [1—¢€ 1] x [0,1] x [0,1]
() for all (t,s,r) € [0,1] x [0,¢€] x [0,1]
Alt,s,m) = v (t) for all (t,s,r) € [0,1] x [1 —¢,1] x [0,1] (106)
[(t,s)  forall (t,s,r) € [0,1] x [0,1] x [0, €]
(['(t,s) forall (t,s,r)e]0,1] x [0,1] x [1 —¢,1]
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ii) Second, the rank of A is strictly less than 3 for all (t,s,r) € [0,1] x [0,1] x [0, 1] and
is strictly less than 2 for all (t,s,r) € [0,1] x ([0,€] U [1 —¢,1]) x [0, 1].

In this case, A is said to be a thin homotopy from I' to I. The set of equivalence classes of
bigons under thin homotopy is denoted by P?X. Elements of P?X are called thin bigons.

3.13. DEFINITION. Let X be a smooth manifold. The thin path-2-groupoid is a 2-
category Pao(X) defined as follows. The set of objects and 1-morphisms of Po(X) coincide
with that of P1(X). The set of 2-morphisms of Po(X) is P2X. Let [T'] be a thin bigon.
The source and targets are defined by choosing a representative bigon I' and taking the
thin homotopy equivalence classes of the paths t — T'(t,0) and t — T'(t,1), respectively.
For a thin path [7], the identity at [y] is the thin homotopy class of the bigon (t, s) — ~(t).

The various compositions in Pa(X) are the usual ones of composing paths and homo-
topies by either stacking squares vertically or horizontally and parametrizing via double
speed vertically or horizontally, respectively. More concretely, given two vertically com-
posable thin bigons’®

gl
(]
Y ~—T——x (107)
Jag
[]
the wvertical composition is given by first choosing representatives 6 for the target of T’
and 0" for the source of A. Then, there exists a thin (rank strictly less than 2) homotopy
Y0 = 4. Using this thin homotopy, the vertical composition is the thin homotopy class
associated to the bigon

['(t,3s) Jor0<s <3
L(ts) = {5(t3s—1) fori<s<?, telo1] (108)
A(t,3s—2) fori<s<l1
Given two horizontally composable thin bigons
(] [
z 'l y r x (109)
[0] (3]

['(2t,s) for 0 <

t< 3
) 2 sefo0,1]. (110)
"2t —1,s) for5<t<1

(I o )(t,s) := {

5To be absolutely clear, we write square brackets to denote the thin homotopy equivalence classes.
After this definition, we will generally not do this, unless otherwise specified.
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All such compositions are well-defined, smooth, associative, have left and right units
given by constant bigons for horizontal composition and paths viewed as bigons for vertical
composition respectively, and satisfy the interchange law. Po(X) is a Lie 2-groupoid since
thin homotopy classes of bigons are invertible in both ways and the functions that assign
every class to its vertical and horizontal inverses are both smooth.

3.14. REMARK. In the definition of vertical composition (108), we can always choose
representatives of I' and A so that 6 = &' and we can ignore X for all practical purposes
of this paper. Therefore, we will always write the vertical composition as

) I(¢,2s) for 0
(t,5):= {A(t, 2s—1)  for s

5 <

< 1
b 2 telo,1]. 111
B [0.1] (111)

[>o

3.15. DEFINITION. Let Gr be a Lie 2-groupoid, T be a 2-category, i : Gr —T a 2-
functor, and M a smooth manifold. Fir a surjective submersion w:Y —= M. A m-local
i-trivialization of a 2-functor F : Po(M)—=T is a pair (triv,t) of a strict 2-functor
triv : Po(Y) —= Gr and a pseudonatural equivalence

Po(M) <= Pa(Y)

N

)

F triv (112)

T

Gr

meaning that there exist a weak inverse t along with modifications (see Definition A.8.
in [ScWa]) i, : % = idexp and jp 0 idggy, = % satisfying the zig-zag identities (see
Definition 7. of [BaLa04] and particularly their discussion on string diagrams). The
2-groupoid Gr is called the structure 2-groupoid for F.

2-functors F' : Py(M)—T equipped with 7-local i-trivializations (triv,t) form the
objects, written as triples (F, triv,t), of a 2-category denoted by Triv2(i).

3.16. DEFINITION. A 1-morphism of 7r-local i-trivializations « : (F) triv, t)—=(F", triv’; ')
in Triv2(i) is a pseudo-natural transformation o : F = F'. A 2-morphism a = o is a
modification.

3.17. DEFINITION. Let Gr be a Lie 2-groupoid, T a 2-category, i : Gr —=T a 2-functor
and w: Y —= M a surjective submersion. A descent object is a quadruple (triv,g,v, f)
consisting of a strict 2-functor triv : Po(Y) — Gr, a pseudonatural equivalence

USE

A
=
T
s
E

2% (113)
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and invertible modifications

I ﬂ;jg = Ty39 (114)
23
and
¥ idyy, = A¥g. (115)

These modifications must satisfy the coherence conditions which are explicitly given in
Definition 2.2.1. of [ScWa] (in the examples of this current paper, the above modifications
will actually be trivial and the coherence conditions will automatically be satisfied, which
is why we leave them out).

Descent objects form the objects of a 2-category denoted by Des2 (7). Morphisms and
2-morphisms are defined as follows.

3.18. DEFINITION. A descent 1-morphism from (triv, g,v, f) to (triv’, ¢', ¢, f') is a pair
(h,€) with h a pseudo-natural transformation h : triv; = triv. and € an invertible modifi-
cation

mih
e 9 o= L (116)
msh ¢

These must satisfy certain identities explained in Definition 2.2.2. of [ScWa).

3.19. DEFINITION. Let (h,€) and (', €') be two descent 1-morphisms from (triv,g,v, f)
to (triv’, ¢’ ¢, f"). A descent 2-morphism from (h,€) to (I, €') is a modification E : h = h’
satisfying a certain identity explained in Definition 2.2.3. of [ScWa/.

There is a 2-functor Ex? : Triv2 (i) —Des> (i) that extracts descent data from trivial-
ization data. At the level of objects, this functor is defined as follows. Let (F,triv,t) be
an object in Triv2(i). For the quadruple (triv, g, 1, f), take triv to be exactly the same.

¥t

For g take the composition ¢ : i . coming from the composition in the diagram
T2
Y) <Py (Y

Nk
/ \

just as before but this time ¢ is a weak (Vertical) inverse to t. By definition f should be a

(117)

modification f : ng = T7j3g. Using our definition of g, this means that we can break it

239

e
. t) (
[e]

*
5t
*

1

o
*
T

down as follows

3

~ ~+
~——
3
=%
&~

3

)

= o =T (118)

) ﬂ';:t

Sl

3
WxONKxONZO g

*
239 "
To3

3
o~



GAUGE INVARIANT SURFACE HOLONOMY AND MONOPOLES 1363

where all equalities hold by commutativity of certain diagrams and the leftover = is
specified by the following sequence of modifications

*F *F
Tyt Tt 2 - 1
ﬂ'?kt . wit id s, B id, s, *T
2 associator: 2 3 wo ) 3 ™
o é o ———————— Ty ldﬂ.*F —— o s (1 ].9)
7 *F *
myt ot ) w3t
*
o o T3t
7r§‘t 7rf,ft

where 4, is part of the pseudo-natural equivalence from ¢ and ¢, and [ is a left unifier.
Finally, by definition ¢ should be a modification v : id,, = A*g. Using our definition
of g, we can break it down as follows

Y ¢ idiiy, = A% idgg, = A* ( ;f) = A*g (120)
2

and such a modification can be achieved by

A*r*id AT w1 o [ I
T idtriy, == A"} (‘2) =A R (121)
2

t

where j; is the other part of the pseudo-natural equivalence from ¢ and ¢. This indeed
defines a descent object and that this assignment of descent data to trivialization data
extends to a 2-functor Ex? : Triv2(i)—=®es> (i) to include 1-morphisms and 2-morphisms
(see Lemma 2.3.1.,; Lemma 2.3.2., and Lemma 2.3.3. of [ScWal).

3.20. DEFINITION. Let (F triv,t) be a w-local i-trivialization of a 2-functor F' : Py(M)—=T,
i.e. an object of Triv2(i). The descent object associated to the m-local i-trivialization is
Ex2(F, triv,t). A similar definition is made for 1- and 2-morphisms.

3.21. TRANSPORT 2-FUNCTORS. We now wish to discuss smoothness for descent data.
However, to do this is not so simple as it was for ordinary functors. We will have to make
a detour to describe how to think of natural transformations as functors and modifications
as natural transformations by altering the source and target categories. For the purposes
of this document, we will make stricter assumptions than is done in [ScWal3| that are
sufficient for our purposes and simplify several of the arguments and constructions.

Let C and D be two strict 2-categories. Let Cy; denote the category whose objects
and morphisms are the objects and 1-morphisms of C respectively. Because C is strict,

this defines a category. Let AD be the category whose objects are morphisms Xy ER Y
of D. The set of morphisms in AD from X ER Yy to X, EN Y, are pairs of morphisms
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(x: Xj—X,,y: Yy—Y,) along with a 2-morphism ¢ : goz = yo f as in the diagram
Xyg<—"— Xy
\
Y,

9 y

g

f (122)

Yy

The composition is given by stacking

!

Xh T Xg T Xf Xh z’ox Xf
N poid
P oldg
h \ \ fo= ] gt | (123)
Y, —Y, Yy Y), Yy

y Y y'oy
One can check that under our assumptions, this forms a category.

Notice that AD has a bit more structure. It also has a partially defined operation

2

on objects and 1-morphisms given by “stacking vertically.” Suppose that Xy ER Yy and

Y RNy ¢ are two 1-morphisms in D then one can compose them and this gives a partially
defined associative and unital operation on objects of AD. Similarly, given morphisms in
AD which can be vertically stacked as in the diagram

X, X;
) \ ; X~ X;
ldg/0<p
Y;]-&y— Yf = g'og ,° flof . (124)
' oid ¢
g \ f! }/;] - Yf
Zg z Zf

This additional partially defined composition is written as ® in [ScWal3] so we stick with
this notation.
Associated to a pseudo-natural transformation p as in

/_\
D p C (125)
V\G/
is a functor F(p) : Cp.1 —= AD defined by
FX
x lpm (126)

GX
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on objects X in Cy, i.e. objects in C, and

Fy <L rx
y—"—x 22 pml & lpm (127)
GYTGX

on morphisms in Cp;, i.e. 1-morphisms in C. One can check this defines a functor.
Associated to a modification A as in

p C (128)

is a natural transformation F(A) : F(p) = F(o) defined by

FX<~——FX

X AN a(X)l &) lp(X). (129)

GX < GX
dgx
This defines a functor F : Hom(F, G)—Funct(Cy 1, AD), where Hom(F, G) is the category
whose objects are pseudonatural transformations and morphisms are modifications while
Funct(€, &) (between two ordinary categories £ and £’) is the category whose objects are
functors from £ to £ and whose morphisms are natural transformations.

Separately, notice also that if F' : C — D is a 2-functor then there is a functor
AF : AC — AD defined by

X FX;
lf AR lFf (130)
Y; FY;
on objects and
X, ~2 X, FX, <" FX;
a \ lr A R R |71 (131)
R 7} FY,~—FY;

on morphisms.

3.22. DEFINITION. A descent object (triv,g,v, f) as in Definition 3.17 is said to be
smooth if

i) the 2-functor triv : Po(Y) — Gr is smooth,
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i) the functor F(g) : Py(Y) —= AT is a transport functor with AGr-structure, and

iii) the natural transformations F () @ F(iduyiy,) = A*F(g) and F(f) : 753 F(g9) ®
i F(g) = w3 F(g) are morphisms between transport functors.

Smooth descent objects form the objects of a 2-category denoted by Des? (i)® and form
a sub-2-category of Des2 (7). Smoothness of descent 1-morphisms and descent 2-morphisms
is discussed in [ScWal3] following Definition 3.1.2.

3.23. DEFINITION. A m-local i-trivialization (F,triv,t) is said to be smooth if the asso-
ciated descent object EXi(F, triv, t) is smooth. The same can be said of 1-morphisms and
2-morphisms.

Smooth local trivializations, 1-morphisms, and 2-morphisms form a sub-2-category de-
noted by TrivZ(i)® of Triv2 (). Furthermore, Ex? restricts to an equivalence of 2-categories
of smooth data (Lemma 3.2.3. of [ScWal3]).

After all this formalism, it should be more or less clear now what the definition of

a transport 2-functor is by just abstracting what we did for the one-dimensional case
(Definition 3.2.1. of [ScWal3]).

3.24. DEFINITION. Let Gr be a Lie 2-groupoid, T" a 2-category, i : Gr—=T a 2-functor,
and M a smooth manifold. A transport 2-functor on M with values in a 2-category T
and with Gr-structure is a 2-functor tra : Po(M)—T such that there exists a surjective
submersion w: Y —= M and a smooth m-local i-trivialization (triv,t).

Transport 2-functors over M with values in T' with Gr-structure form the objects
of a 2-category Transér(M ,T). A 1-morphism of transport functors is a pseudo-natural
transformation of 2-functors for which there exists a common surjective submersion m
and smooth m-local i-trivializations of both 2-functors so that the associated descent 1-
morphism is smooth. A similar definition exists for 2-morphisms.

As a short summary, in the past two sections we introduced three categories for describ-

ing transport 2-functors. These were Des (i), Triv2 (i), and Transg, (M, T). The category
TrivZ(i) was used to describe local triviality of transport 2-functors and their morphisms
in Trans, (M, T'). We then constructed a 2-functor Ex2 : TrivZ(i)—=Des2 () that allowed
us to describe smoothness via the subcategory Des(i)* < Des> (i) from which we defined
Triv2 (i)® < Triv2(i).
3.25. THE RECONSTRUCTION 2-FUNCTOR: FROM LOCAL TO GLOBAL. The 2-functor
Ex? : TrivZ (i) —Des> (i) is an equivalence of 2-categories (Proposition 4.1.1. of [ScWa]).
To construct a (weak) inverse Rec? : Des? (i) —= Triv2 (i), we need to enhance the Cech
path groupoid so that it includes more data.

We do not require the full general definition of PJ (M) in Section 3.1 of [ScWa] for
our purposes, but briefly the general definition is obtained by keeping the same objects
and morphisms but replacing the relations that we imposed by 2-morphisms and setting
relations on those. There are also additional 2-morphisms given by thin bigons, thin
paths on intersections, and other formal 2-morphisms such as associators, unitors, and
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2-morphisms relating the formal product to the usual composition of paths. We therefore
warn the reader that although the following definition is not the same as that in [ScWal, we
use their general results and theorems which in fact rely on their more general definition.

3.26. DEFINITION. Let M be a smooth manifold and let m : Y —= M be a surjective
submersion. The Cech path 2-groupoid of M is the 2-category PF(M) whose set of
objects and 1-morphisms are the objects and morphisms of PT(M), respectively. The set
of 2-morphisms are freely generated by

i) thin bigons T" in 'Y,
i) thin paths © : o — 3 in Y2 with sitting instants thought of as 2-isomorphisms

T 5)1@%(@)

N

To(B) == ma(a)

(one should think of this as weakening the first relation in Definition 2.25 of PT(M)—
see Figure 10 for a visualization of this),

Figure 10: Thinking in terms of an open cover as a submersion, condition ii) above says
that if a thin path © : @ — § (with chosen representative) is in a double intersection,
there is a relationship between going along the path first and then jumping versus jumping
first and then going along the path. The two need not be equal.

iii) points Z in Y thought of as 2-isomorphisms

WQ(E)

Trzs(E/ “TXFAE) (133)

~—a

[
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(one should think of this as weakening the second relation in Definition 2.25 of
Pr(M)),

iv) points a in'Y thought of as 2-isomorphisms (id} is the formal identity)

/[\
A a (134)

Vv 7

A(a)

(one should think of this as weakening part of the third relation in Definition 2.25 of
Pr(M)),

v) and several other more technical generators that will not be discussed here.

There are several relations imposed on the set of 1-morphisms and 2-morphisms. We
will not discuss any of them, and the reader is referred to Section 3.1 of [ScWa] for the
details. As before, the compositions will be written with = and will be drawn vertically or
horizontally when dealing with 2-morphisms.

As before, we associate to every object (triv,g,v, f) in Des2 (i) a functor Ruiv.g.p.f)
PI(M)—T defined as follows. It sends y € Y to triv;(y), thin paths v in Y to triv,(v),
and jumps a € Y to g(a) : triv,(mi(a)) — triv;(ms(c)). For the basic 2-morphisms, it
makes the following assignments

y trivi()
2N Rtriv,g,0,f) e
Yy r T " trivy(y) trivi(D) triv;(z) (135)
\_/ \\l_l//
1) triv;(6)
for thin bigons I' : v = § in Y,
ma(a) <= () triv (ma(a)) £ triv, (1 (a))
R triv,g,v, \
7r2(9)l \ \m@ e ) tﬂw({m(@)\g(@<w({n(e)) (136)
7T2(5)<3_7Tl(ﬁ) tl"iVi(Wz(ﬁ));@tri\/i(ﬂl(ﬁ))
for thin paths © : « —  in Y2,
m(2) triv;(m2(Z))
7F23(f)/ = N\ 128 Prrivgw.p g(m23(E)) ; |E) g(m12(E)) (137)
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for points = in Y, and

ldjzk 1trivi (a)
2N Roriv,g,0,f) N
a Ay 4 ——>  trivi(a) ¢(e) triv(a) (138)
\_/ \\l_J//
A(a) 9(A(a))

for points a in Y. This defines a 2-functor R : Des> (i) — Funct(P5 (M), T) at the level
of objects. The rest of this 2-functor is defined in Proposition 3.3.2. of [ScWa)].

There is a canonical projection functor p™ : PJ (M) — Pa(M) defined in the same
way as p" : PJ(M)—="P1(M) on the level of objects and morphisms. On the level of
2-morphisms, p™ sends a thin bigon I" in Y to a the thin bigon #(T") in M. It sends a thin
path © in Y to the identity thin bigon id.(e) (the vertical identity) in M and it sends a
point = in Y] to the constant thin bigon at the point 7(Z) in M. Finally, it sends a point
a in Y to the constant thin bigon at the point 7(a) in M. We now move on to defining,
as before, a weak inverse s™ : Po(M) —PI (M) of the canonical projection functor. To
define s, we will constantly use the following important fact (Lemma 3.2.2. of [ScWal).

3.27. LEMMA. Let v : © —= ' be a thin path in M and let 4 and 7' be two lifts of
as 1-morphisms in Py (M) (the ezistence follows from our choices above when we defined
s Pr(M)—="PJ(M)). Then there exists a unique 2-isomorphism A : 5 = 4" in PF(M)
such that p™(A) = id,.

We will use this to define s™ : Po(M) — P57 (M) on thin bigons (we have already
defined s™ near (33) on objects and 1-morphisms). Let I : v = § be any thin bigon in M
as in Figure 11.

¢ r
T /N
N <N
— 38

Figure 11: A representative of a thin bigon I' in M drawn as a map of a square into M.
The s = 0 line is drawn on top in the figure on the right while the s = 1 line is drawn on
the bottom. The entire ¢ = 0 line gets mapped to the source point and the ¢ = 1 line gets
mapped to the target point.

As in the case of a path, because the domain is compact, there exists a decomposition
of the bigon I' (we abuse notation and write I" to mean a bigon and its thin homotopy
class relying on context to distinguish them) into smaller bigons {I';};, as in Figure 12,
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each of which fits into an open set U;. We use the same notation s; : U; —Y as before
for our local sections.

¢ r
T /_\
— 5 S

Figure 12: A decomposition of a representative of a thin bigon I' in M with a single sub-
bigon I'; highlighted. s™(I') will be defined as a composition of several s™(I';). Of course,
a general decomposition would not necessarily look like this, but such a decomposition
always exists by a thin homotopy so that the decomposed pieces are bigons.

Therefore, it suffices to define s™(I';) for a single one of the associated thin bigons
provided that we match up all sources and targets for the individual ones. Denote the
thin bigon by

zj “Fa' zj . (139)

Then the image of this under s™ is defined as the composition

s™(v5)

/N
55 (75)
SN

/

%) stFj) si(xj) =—s™(x;) . (140)
~

Sjjfj)

s7(5)

In other words, we have lifted I'; using the section s; : U;—Y, but to make sure that this
image matches up with how s™ was already defined on objects and 1-morphisms, we use
the obvious jumps and the unique 2-isomorphisms from Lemma 3.27 to match everything
(these are the unlabeled 1-morphisms and 2-morphisms). The image of the entire thin
bigon I' is then defined by vertical and horizontal compositions of all the s™(I';) so that
s™ respects compositions.

The 2-functor s™ is a weak inverse to p™ as in the case for the path groupoid (Propo-
sition 3.2.1. of [ScWal). However, a weak inverse in 2-category theory in this case means
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that there exists a pseudo-natural equivalence ¢ : s™op™ = idpg(ar) since p™ 0s™ = idp,(ur)-
This means there exists a weak inverse to ¢ which is written as § : idpya) = s™ o p™.
“Weak” means that there are invertible modifications i¢c : £ 0 ¢ = idgepr and je :
ididpg an = G o¢& that satisfy the zig-zag identities. The details are irrelevant for our

purposes but can be found in Section 3.2 of [ScWa]. An important consequence of s™
being a weak inverse to p” is the following (general categorical) fact reproduced here for
convenience (Corollary 3.2.5. of [ScWal).

3.28. COROLLARY. Any two weak inverses s™,s'™ : Po(M) —="PJ (M) of p™ are pseudo-
naturally equivalent.

We can define such a pseudo-natural equivalence 7 : s™ = s'™ by the following assign-
ment M 3 z + the jump from s™(z) to s (x) and P'M 3 v+ the unique 2-isomorphism
s™(y) = s'™(~y) specified by Lemma 3.27. We will exploit this fact when discussing exam-
ples of higher holonomy in Section 5.

As before, the 2-functor

s": Po(M)—PI (M)

induces a 2-functor s™ : Funct(PJ (M), T) — Funct(P2(M),T), the pullback along s™.
Similarly, Rec? is defined as the composition in the diagram

Rec?

Funct(Py(M), T) = Des?(3)

\ s : (141)

Funct(PZ (M), T)

As before, the image of Des> (i) under Rec? lands in Triv2(i) and the definition is the
same as it was before, only this time ( is a pseudo-natural equivalence between 2-functors
between 2-categories.

As a short summary, in this section we introduced a weak inverse functor Reci :
Des? (i) —=Triv2 (i) for Ex2 : TrivZ (i) —=Des>(i) by using the 2-groupoid Py (M) associ-
ated to the surjective submersion 7 : Y — M to lift points, thin paths, and thin bigons
in M to points, thin paths and/or jumps, and thin bigons and/or jumps in PJ (M),
respectively.

3.29. DIFFERENTIAL COCYCLE DATA. In this section, we will give a brief review of
an equivalence between differential forms and smooth 2-functors following Section 2 of
[ScWall]. This will allow us to describe parallel transport locally in terms of differential
cocycle data. We will leave out several proofs but will provide pictures that we find
illustrate the necessary ideas behind the statements. We first remind the reader of the
“Lie algebra” of a Lie crossed module.

Given a Lie crossed module (H,G, 7, a) (recall Definition 3.2) there is an associated
differential Lie crossed module (H,G,T,«), where 7 : H— G is the differential of 7 :

H—G, a: G— Der(H) is the differential of the associated action (given the same
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name) « : G x H—=H (“Der” stands for derivations). The differential Lie crossed module
data satisfy
QI(B’)(B) =[B', B] (142)

and
T(aa(B)) = [A,1(B)] (143)

forall Ae G and B,B € H.

Note that by restricting the action « to {g} x H for any g € G and differentiating with
respect to the second coordinate, we obtain a Lie algebra homomorphism o, : H — H.
Both a and «, are important for understanding the differential cocycle data of Section
3.29. A more thorough review can be found in [BaHul1].

3.29.1. FROM 2-FUNCTORS TO 2-FORMS. Let B& be a Lie 2-group and (H, G, T, a) its
corresponding crossed module. Given a strict smooth 2-functor F : Po(X)—=B®&, we will
obtain differential forms A € Q'(X; G) and B € Q*(X; H). These will form the objects of
a 2-category Z%(®). By our previous discussion and since our 2-categories Py(X) and B®
are strict and the 2-functor F' is strict, the restriction of F' to P;(X) is smooth. Therefore,
we obtain a differential form A € Q'(X; G) by the results of Section 2.27. To obtain the
differential form B € Q*(X; H) we will “differentiate” the composition

HEH %G & px, (144)

where py is the projection onto the H factor and F, is F' restricted to 2-morphisms.

Infinitesimally, a bigon is determined by a point and the two tangent vectors that
begin to span it. Therefore, let x € X and vy, vy € T, X and let I' : R2—= X be a smooth
map such that

0 0

r'((0,0)) = x, [(s,t=0)=v, & En [(s=0,t) = vs. (145)

68 s=0

Let Yg : R? — P2R? be the (smooth) map that sends (s,t) to the thin homotopy class
of the bigon in Figure 13. This is unambiguously defined after modding out by thin
homotopy because a thin bigon in R? is determined by its source and target thin paths
in R2.

Then we use this to define a smooth map Fr by the composition of smooth maps

& %G prx &e pR? 22 R2, (146)
This gives an element of the Lie algebra H by taking derivatives

O*Fr

B.(vy, == H.
(1, 02) 2501 | 0. €4

(147)

Furthermore, this element is independent of the choice of I" provided that equation (145)
still holds. In fact, we get a smooth differential form B € Q*(X; H).
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RN (s,1)

Te )

Figure 13: A point (s,t) in R? gets mapped to the bigon in R? shown on the right under
the map Xg.

Now let I' : v = 4 be a thin bigon between two thin paths. The source-target matching
condition, which says 7(py(F(TI")))F(v) = F(0), implies

dA + %[A, Al = (B). (148)

All of these claims are proved in Section 2.2.1 of [ScWall].

3.29.2. FROM 2-FORMS TO 2-FUNCTORS. Starting with a G-valued 1-form 4 € Q'(X; G)
on X and a H-valued 2-form B € Q?(X; H) on X we want to define a smooth functor
Po(X) — B&. From Section 2.27.2, we have already defined the functor at the level of
objects and thin paths. What remains is to define F} : P2X —=H x G. To do this, we will
define a function k4 p : BX—H on bigons in X (we do not mod out by thin homotopy).
Given a bigon ¥ : [0,1] x [0, 1] — X, we can pull back the 1-form A and the 2-form B to
[0,1] x [0, 1], obtaining ¥*(A) € QL([0,1] x [0,1]; G) and ¥*(B) € Q*([0,1] x [0, 1]; H).

To define k4 p, we first introduce an H-valued 1-form Ay, € Q'([0, 1]; H) obtained by
integrating over one of the directions for the bigon. It is defined by

d 1 * 5 2
(As)s (5 ::—fodmﬂ(z*w_l (7 Blan (5 =) ) (149)

where 7, is defined to be the straight vertical path from (s,0) to (s,) in [0,1] x [0, 1]
as in Figure 14. Note that in expression (149), it is assumed that 3,vs, refers to the thin
homotopy class of the path (otherwise, applying the function F; would not make sense).
Therefore, the parametrization of v, is irrelevant.

Besides the path-ordered integral expression from the term F (2. (7s+)), the expression
for Ay, is an ordinary integral. Also note that Ay, depends on X. In particular, it is not
invariant under thin homotopy.

3.30. REMARK. Incidentally, although Schreiber and Waldorf in [ScWall] made their
own arguments for how to obtain such a formula for As, this formula appears in a
special case as early as 1977 in the work of Goddard, Nuyts, and Olive on magnetic
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.....................................................

Figure 14: The path 7, is the straight vertical path from the point (s,0) to (s,t) in
[0,1] x [0, 1].

monopoles [GoNuOIl77] on the right-hand side of equation (2.9) and it may have been
known earlier [Ch75]. The special case [GoNuOIl7T7] considered is the case of the crossed
module (G, G,id, «) with o being the ordinary conjugation action.

Finally, to every bigon X : v = 9§, we define

kas(X) = ar ) (P exp {— f: Ag}) . (150)

In Figure 15, this integral is schematically drawn as a power series of graphs with
marked points and paths analogous to Figure 5. Each of the paths drawn has a path-
ordered integral expression attached to it, and therefore each expression has an additional
power series of the form we discussed for the ordinary path-ordered integral.

................................................................... ’ S
5 ' '
y J &l J &ls,
= <A\ <\ >
s

T P TP PP TPPPIPPIT ) P danensneenedd Gieeeshseense e i d

Figure 15: The path-ordered integral P exp {— Sé Ag} is depicted schematically as an
infinite sum of terms expressed by placing B at the endpoints of the paths, along which
we’ve computed parallel transport using A making sure to keep the later s-valued terms
on the right. The picture is to be interpreted similarly to the one-dimensional case once
we've integrated along the t direction (vertical) to obtain Asy.
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3.31. DEFINITION. The group element ka p(X) is called the surface transport associated
to the bigon ¥ and the differential forms A and B.

k4 p only depends on the thin homotopy class of ¥ and therefore factors through a
smooth map F, : P2X — H on thin homotopy classes of paths. This map together with
Fy define a strict smooth 2-functor F' : Py(X) —= B& (Proposition 2.17. of [ScWall]).

3.32. REMARK. Historically, understanding the appropriate generalization of the path-
ordered integral to surfaces was a difficult task. It was not obvious which formulas were
correct or even what the criteria for correctness should be. The language of functors allows
one to make this precise. The criteria for correctness is that surface holonomy should be
expressed in terms of a transport 2-functor. Any formula that satisfies these functorial
properties, has the local constraint given by equation (148), and changes appropriately
under gauge transformations (which we have so far only discussed globally but will discuss
differentially soon), can be rightfully called surface transport. The specific formula in
equation (150) is only one such formula that works. However, there could be many other,
potentially simpler formulas, that also describe 2-holonomy. In Section 4 for instance, we
prove that for certain structure 2-groups, the formula (150) agrees with one that is easily
computable in terms of homotopy classes of paths.

3.32.1. LOCAL DIFFERENTIAL COCYCLES FOR TRANSPORT 2-FUNCTORS. By similar
considerations to the previous sections, we can differentiate transport functors and use
their properties to obtain relations among all the differential data. All the information
in this section is discussed in more detail in [ScWal3]. In particular, the functions,
differential forms, and their relations are all derived. We merely reproduce the results
here for use in later calculations.

3.33. DEFINITION. Let Z%(®)® be the category defined as follows. An object of Z%(&)®
is a pair (A, B) of a 1-form A€ QY(X;G) and a 2-form B € Q*(X; H) satisfying

7(B) =dA+ %[A, Al. (151)

A I-morphism from (A, B) to (A', B") is a pair (h,¢) of a smooth map h : X — G and
a 1-form o € QY X; H) satisfying

A+ 1(p) = Adp(A) — h*0 (152)
and ]
B'+au(p) +dp+ Sl ] = ay(B). (153)

The composition is defined by

(P oy (0)+47)

(A”,B”) (h',¢") (AI,B/) (h,p) (A, B) i (A//7 B//)

(A, B). (154)
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A 2-morphism from (h, ) to (I, ¢"), which are both 1-morphisms from (A, B) to (A, B'),
1s a smooth map f : X — H satisfying

h' =7(f)h (155)
and B
¢+ (B oap)(A) = Ads(p) — [70. (156)
The vertical composition is defined by
(hs) (ho)
f
(A", B <—(h'U,<p’)— (A,B) = (A, B 7t (A B). (157)
\y
(h//7<p//) (h 7<p )

The horizontal composition is defined by

(h1,01) (ha,p2) (hihz,an, (p2)+¢1)
(h1#1) (hyp5) (h’lh’2,ah/1 (@5)+¢1)

As in Section 2.27.3, these arguments define 2-functors

Px
Z2(8)° —_~ Funct®(X, B&) , (159)

Dx

which turn out to be strict inverses of each other (Theorem 2.21 of [ScWall]).

As before, this was for globally defined differential data corresponding to globally
trivial transport 2-functors. Transport 2-functors on M are not necessarily of this type,
but they are locally trivializable via some surjective submersion 7 : Y — M and a m-local
i-trivialization. By similar arguments to the discussion in Section 2.27.3, we are led to
the following, rather long and complicated, definition.

3.34. DEFINITION. Let m : Y —= M be a surjective submersion. Define the 2-category
Z%(®)* of differential cocycles subordinate to m as follows. An object of Z%(&)® is a
tuple ((A, B), (g,¢),v, f), where (A, B) is an object in Z2(G), (g,¢) is a 1-morphism
from 7} (A, B) to w5(A, B) in Z215(8), ¥ is a 2-morphism from id(a g to A*(g,¢) in
ZZ(8), and f is a 2-morphism from mis(g,p) o miy(g, @) to mi5(g,¢). A 1-morphism
from ((A, B),(g,0), %, [) to (A", B), (¢, ¢), ¥, [') is tuple ((h, §),€), where (h, §) is a 1-
morphism from (A, B) to (A’, B") in ZZ(®) and € is a 2-morphism from 7} (h, $)o(g, ) to
(9, ") omi(h, @) in Z2 15 (&). A 2-morphism from ((h, ¢),€) to (W, ¢'),€) is a 2-morphism
E from (h,¢) to (W, ¢') in ZZ(®).
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The above generalizations produce functors

P‘rr
Z2(B)* _ Des2(i)® (160)

-

Dx

exhibiting an equivalence of 2-categories whenever i : B& —T' is an equivalence.

3.35. DIRECT LIMITS. In this section, we get rid of the dependence on the surjective sub-
mersion in the categories introduced in the prequel. Several of our 2-categories depended
on the choice of a surjective submersion. These 2-categories were Triv2(i)®, Des2(i)%,
and Z2(®)®. Changing the surjective submersion gives a collection of 2-categories depen-
dent on this surjective submersion. One can take a limit over the collection of surjective
submersions in this case. This will be a slight generalization of what was done in Section
2.30. However, there are subtle issues in terms of defining the many compositions.

The general construction is done as follows. Let S, be a family of 2-categories
parametrized by surjective submersions 7 : Y —=M and let F'(() : Sy—Sro¢ be a family
of 2-functors for every refinement ¢ : Y'—=Y of 7 satisfying the condition that for any it-
erated refinement (' : Y'—Y" and ¢ : Y'—Y of 7 : Y—=M then F({'o() = F(¢")oF(().
In this case, an object of Sy := lim _ Sy is given by a pair (7, X) of a surjective submersion
7m:Y —= M and an object X of S;. A 1-morphism from (7, X;) to (ma, X3) consists of a
common refinement

Y S (161)

together with a 1-morphism f : (F(y1))(X1) — (F(y2))(X2) in S¢. It is written as a pair
(¢, f). The composition

(5, X3) <29 (7, x,) 20 (7 x) (162)

consists of the pullback refinement

Z13
pr pr
y \23
ZlQ 223

NP7 (163
i\ Yo /o Vs
LA

M
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along with the composition (F(prys))(g) o (F(pryp))(f). A 2-morphism from (¢, f) to
(¢', f') consists of an equivalence class of pairs (w, &), where w is a common refinement of
¢ and ¢’ as in the following diagram

W

7
A
i
¢
1

4

M

(164)

and « is a 2-morphism « : F(2)(f) = F(2')(f"). Two such pairs (wy, ;) and (wq, ag) are
equivalent if they agree on the pullback.

After getting rid of the specific choices of the surjective submersions, we can take the
limits of all the categories we have introduced. We make the following notation, slightly
differing from that of [ScWal3]:

Trivy, (i) := lim Triv2 (i) (165)
Desy (1) := lim Des? (1) (166)
Z3(M;®)% = lim Z2(&)*. (167)

™

Then from our previous discussions, we collect the functors we have introduced relating
all these categories to Transge (M, T) after taking such limits over surjective submersions:

P Rec? v
Z2(M;8)° _ Desn, (1) ___ Triva, (i) ___ Transie (M, T) (168)
D Ex2 c

Under the conditions that ¢ : B& —T is an equivalence of categories, all of the above
2-functors are equivalence pairs. Without the smoothness assumptions, a simpler version
of some of these equivalences is proven in Proposition 4.2.1. and Theorem 4.2.2. of [ScWal]
while the equivalences in (168) are proven in Theorem 3.2.2., Lemma 3.2.3., and Lemma
3.2.4. of [ScWal3]. Completely analogous versions of comments regarding the assumptions
on i made before (59) apply here as well.

3.36. SURFACE TRANSPORT, 2-HOLONOMY, AND GAUGE INVARIANCE. In Section 2.31,
we described a procedure that began with a transport functor and produced a group-
valued parallel transport operator for thin loops with markings. We discovered that the
value of holonomy changed by conjugation depending on the markings for the loops, the
choice of a local trivialization procedure, and by using an isomorphic transport functor.
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In this section, we will analyze holonomy along surfaces in an analogous manner. The
main difference is that bigons have source and target paths so that a closed surface has
a marking of one lower dimension, and is therefore not in general just a point as it was
for loops. For the examples we give later in this paper, we specialize to spheres with a
point marking. Such a surface is depicted as a bigon from the constant loop at a point
x to itself (see Figure 16 below and [HoTs93]). However, a sphere can be more generally

N

Figure 16: A based sphere viewed as a bigon ¥ : id, = id,.

described as a bigon from a loop to itself, so we analyze parallel transport for such bigons
to cover these extra cases. This analysis is completely independent of what types of Lie
2-groups B® we use. For simplicity, we assume that i : B& — T is a full and faithful
2-functor. This will differ from the presentation in Section 5 of [ScWal3], where surface
holonomy was defined using the reduced 2-group. We will not be making this restriction.

3.37. DEFINITION. A 2-group-valued transport extraction is a composition of functors
(starting at the left and moving clockwise)

¢ > Triv?(i)® — Bx?
VRN

Transge (M, T) Des? (i)™ . (169)

‘U\ rI\I'iV2 (2) © Rec?

We write the composition (169) as Z. By the reconstruction procedure of Section
3.25, £ assigns G-valued elements to thin paths for every transport functor F' as well as
H-valued elements to thin bigons (more on this below). Technically, thin bigons will be
assigned elements in H x G but as is discussed in Section 3.1, particularly after the proof of
Theorem 3.3, such elements are completely determined by their source, an element of G,
and their projection in H. Z will also assign G-valued and H-valued gauge transformations
for every 1-morphism n : F'—=F" of transport functors. In addition, Z will assign H-valued
2-gauge transformations for every 2-morphism A : 7 = 1n’. A pseudo-natural equivalence
2. id = £ describes how to relate the transport functor to the locally trivialized one.
Although modifications of pseudo-natural transformations are allowed, we will not analyze
them in this paper. Such modifications are to be interpreted as relating the two different
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ways of choosing the pseudo-natural transformations that relate the transport functor to
the locally trivialized one.

Just as before, we briefly review what the composition of 2-functors defining Z are.
For a transport 2-functor F, we choose a local trivialization ¢(F') = (r, F, triv,t). Then we
extract the local descent object Ex*(w, F\ triv,t) = (7, triv, g, ¢, f). Then, we reconstruct
a transport 2-functor Rec?(m, triv, g, 1, f) and then forget the trivialization data keeping
just the 2-functor v(Rec?(m, triv, g, 1, f)). The resulting transport 2-functor, written as
4, is defined by (see Section 3.25)

Py(M) 25 T

M 3z — i(e) =: triv,(s™(z)),
P'M 37 = Rgemy(s™(7)), and
P?M 3% — Ry (s7(2)).

(170)

Points in M get sent to i(e) by construction. Because ¢ is full and faithful, the 1-morphisms
Ry (87 (7)) + i(#)—=i(e) determine unique elements of G. Similarly, the 2-morphisms
Rp,2 (o)) (87(X)) determine unique elements in H.

The interested reader can explicitly define the compositor and the unitor for the 2-
functor 4. We won’t need the precise details for our analysis when studying surface
holonomy. All we need to know is that the 2-functors defining Z are (weakly) invertible.

We’d like to restrict surface holonomy to thin homotopy classes of marked spheres
for the purpose of this paper (in general, one would like to restrict to the more general
space of thin homotopy classes of marked closed surfaces) and eventually thin free spheres.
First we make a definition of the thin marked sphere space, which should be thought of
as analogous to the thin marked loop space.

3.38. DEFINITION. The marked sphere space of M is the set
GM :={¥ e BM | s(X) =t(2) and s(s(X)) = t(t(X))} (171)

equipped with the subspace smooth structure. Elements of ©M are called marked spheres.
Similarly, the thin marked sphere space of M is the smooth space

&’M = {S e P’ M | 5(X) = t(X) and s(s(X)) = t(t(X))}. (172)
Elements of &M are called thin marked spheres.

3.39. REMARK. Note that elements of &?>M need not look like embedded spheres in M.
Indeed, they might look like pinched croissants as Figure 17 indicates (or worse). This
won’t matter in any of our calculations or proofs.

3.40. DEFINITION. The Z-2-holonomy of F, written as hol}, is defined as the projection
to H of the restriction of parallel transport of a transport 2-functor F' to the thin marked
sphere space of M :

hol% := py o 4 o &M — H. (173)
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Figure 17: A pinched croissant is an example of a thin marked sphere.

3.41. REMARK. Note that hol§ 1s the same notation used for thin loops with values in
G. This should cause no confusion because thin loops are always written using lower case
Greek letters such as 7y, 9, etc. while thin spheres are written using upper case Greek letters
such as 2,1, etc.

We now pose three questions analogous to those for 1-holonomy.

i) How does hol§ depend on the choice of a thin marked sphere? Namely, suppose
that two thin marked spheres ¥ and ¥/, with possibly different markings, are thinly
homotopic without preserving the marking (see Definition 3.42). Then, how is hol% (%)
related to hol%(%')?

ii) How does holI; depend on F'? Namely, suppose that n : FF'— F’ is a morphism of
transport functors. How is hol% related to hol} in terms of n?

i) How does hol} depend on #, the choice of trivialization? Namely, suppose that #’
is another trivialization. Then how is hol’ related to hol%,?

Due to the fact that we are restricting ourselves to marked spheres instead of arbitrary
surfaces, the answer will be closely related to the 1-holonomy case and will be given by a
generalized version of conjugation. As before, we need to define what we mean by thin free
sphere space and then we’ll proceed to answer the above questions. Denote the smooth
space of spheres in M by SM = {¥: S? — M | 3 is smooth}.

3.42. DEFINITION. Two smooth spheres ¥ and ¥' in M are thinly homotopic if there
exists a smooth map h : S* x [0,1] —= M such that

i) there exists an € > 0 with h(t,s) = X(t) for s < e and h(t,s) = X'(t) for s = € and
for allt € S? and

ii) the smooth map h has rank < 2.

The space of equivalences classes is denoted by S*M and is called the thin free sphere
space of M. Elements of S?M are called thin spheres.

3.43. DEFINITION. Define a function f : &M — SM by sending a marked sphere ¥ :
[0, 1] x [0, 1]—=M to the associated smooth map f(X) : S*—=M obtained from identifying
the top and bottom of the second interval and then pinching the two ends (see Figure 18).
f is called the forgetful map.
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Figure 18: The definition of f : GM — SM. This definition makes sense even when
Yy # .y = x is a special case.

3.44. LEMMA. There exists a unique map f? : &*M —= S2M such that the diagram
6M ——6&%2M

f‘ ‘fQ (174)
SM — S2M

commutes (the horizontal arrows are the projections onto thin homotopy classes).

PRrROOF. The proof is analogous to the case of loops. One chooses a representative, applies
f, and then projects. The map is well-defined by the thin homotopy equivalence relation
on S2M. [

Note that there is also a function ev; : &*M — £'M given by evaluating a thin
marked sphere at its source/target. This function forgets the sphere and remembers only
the source thin marked loop.

3.45. DEFINITION. A marking of thin spheres is a section m : S?M — &2M of f? :
S2M — S%M.

3.46. LEMMA. A marking of thin spheres exists.

PROOF. Let [X] € G2M be a thin sphere and choose representative X : S? —= M in SM.
Pick a point e on the equator viewed as a loop ¢ : e—= e. The image of £ under ¥ defines
a loop, 7 : ¥ —=x, where x := %(s). There exists a thin homotopy h : S% x [0,1] — M
from X to a smooth map ¥, : S —= M such that the family of loops in Figure 19 on
the domain of ¥, define a marked sphere & : v = ~. Projecting to thin marked spheres
defines m(|X]). To see that this is well-defined, let ¥’ € SM be another representative.
Then there exists a thin unmarked homotopy h:Y =3, Composing this with the thin
homotopy h gives h o h:Y =3, By the thin homotopy equivalence relation on S?M,
this defines a section of f2. [

We now proceed to answering the above questions in order.
i) Let m,m’ : S2M — &%M be two markings for thin spheres in M. Let [Z] € S2M

be a thin sphere and let ¥ : v = ~ with v : £ —z be a representative of m([X])
and X' : v = +" with 7/ : 2’ — 2’ be a representative of m’([X]). Note that these
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Figure 19: By a thin homotopy, the region around the equator is made to sit at the loop
¢ around the equator so that the nearby loops drawn in the shaded region agree with /.
The family of all these loops define a marking.

Figure 20: Two different representatives 3 (the ‘inner’ sphere in green extending left)
and X' (the ‘outer’ sphere in purple extending right) of two markings of a thin sphere
are shown. The extensions do not enclose any volume so that both spheres are thinly
homotopic. Their respective sources are vy : © — x and 7' : 2’ — 2/, neither of which lie
on the other’s image. Compare this to Figure 23 where the two marked loops do lie on a
common sphere.

representatives need not have associated marked loops that lie on some common
image. Figure 20 depicts such a possible situation.

As in the case of loops, we can use thin homotopy to draw both marked loops on
the same sphere (a more precise statement will be given shortly). First notice that
there is a thin homotopy h : S? x [0,1] — M with A( - ,s) = X for s < € and
h( -,s) =% for s = 1 — € for some ¢ > 0. Such a homotopy allows us to choose a
sphere 3 € SM, a path 7./, : —=2', and three bigons Yo tidg = 7, Xpy 1Y = idy,
and A : v, 0707, with the following properties. First 3 can be expressed as either
of the compositions

E'y’w’ ldm O A O idfyw,w
flid,, o3, oidy - or flidy oYy oid, (175)
A )

Yy
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(in either order vertically). Second, the composition of bigons

ldm O A O idfyzlm
ldm O Z’y’z’ O id’Ya;/:c (176)
b

Y

is thinly homotopic to ¥ preserving the marked loop 7 : x — 2. Third, the compo-

sition of bigons
E'y'x’

0 Xy 0idy— (177)
A

is thinly homotopic to ¥’ preserving the marked loop +' : ' — 2. This is depicted
in Figures 21 and 22.

id

V!

Figure 21: The domain of the homotopy h : S? x [0,1] — M is drawn as a solid ball with
a smaller solid ball removed from the center. It depicts X as the inner sphere and >’ as
the outer sphere. The marked loop v : * — z of ¥ is drawn on the northern hemisphere
while the marked loop 7' : ' — 2’ of ¥’ is drawn on the southern hemisphere (by a thin

hom

otopy, one can always position the marked loops in this way). The homotopy h allows

us to choose a sphere X, drawn somewhat in the middle (in orange), that contains both

base

d loops v and 7" and is thinly homotopic to both ¥ and ¥'. As a result, there exists

a path v, : ¢ — 2’ on X. We continue this analysis in Figure 22.

These last two equations let us write the bigon ¥ in terms of ¥’ and vice versa. In
fact, we have

A
0¥ 0ids (178)
A

¥ =id

V! x
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Yz A o
SV

Figure 22: From the sphere X in Figure 21, the top cap defines a bigon Y 1 idy = 7,
drawn on the left in this figure. The path ~,, : * — 2z’ in Figure 21 defines a bigon
A Yprp 0y 07z, = 7 drawn in the middle of this figure. The bottom cap defines a bigon
Yy o7y = idy drawn on the right.

up to thin homotopy preserving the marked loop ' : 2’ —=xa'. There is also a similar
expression for ¥ preserving the marked loop v : z — .

The above argument says that given two marked spheres, with possibly different
markings, that are thinly homotopic without preserving the markings, one can always
choose a representative of such a thin sphere in M with two marked loops so that the
associated two marked spheres (coming from starting at either marking) are thinly
homotopic to the original two with a thin homotopy that preserves the marking.
More precisely, we proved the following.

3.47. LEMMA. Let m,m’ : S2M —= &2 M be two markings. Let [X] € S*M be a thin
sphere in M and write [y] : z—x for evi(m([X])) and [y'] : 2'—=2' for evi(w/'([X])).
Then, there exists representatives v and ' of [y] and ['], respectively, a path vy, :
x — o' with sitting instants and three bigons ¥., : id, = v, Xpy @ 7y = idy, and
A Yy 077 0 Yme = 7', such that the following three properties hold (see Figure 23).

i) The vertical composition of ¥, id, , 0¥, 0idy—, and A in the order given (or
a cyclic permutation of this order) and forgetting the marking is a representative
of [X].

1dmoA01dwz,I

.. . © . . . .
i) | idvioSaeidy, | is a representative of m([X]) as a bigon.
o
Soe

Z’Ylil
i) (idwz,zozizoid%> is a representative of w'(|X]) as a bigon.
[e]

A

Therefore, without loss of generality, we can choose a single representative 3 of a
thin free sphere [X] with a decomposition as in the Lemma. We use ¥ to denote the
bigon in ii) of Lemma 3.47 and 3’ to denote the bigon in iii). The two are related by
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9

Figure 23: For every thin sphere and two markings, there exists a representative with
a decomposition as in Lemma 3.47. On the left is a bigon ¥ : v = v with v : x — =.
The shaded region depicts the surface swept out between s = 0 and some small s. In the
middle is another bigon ¥’ : 4/ = +' with v/ : ' — 2/ and a path 7., : * — 2’ with sitting
instants. On the right is a bigon A : 4/, 0 v 0 7z, = 7/ relating the two marked loops as
n (180).

7
I=
v ¥
/—\ . /\ -
o Y o — 2! =< T » r=——79 (179)
~_ ¥~ AR e
v 7
|
,yl
ie. _
A
Yy =id,, oY oidy— (180)
A
By functoriality of the transport 2-functor 4, we have

holy (2') = pu (4(%)

~—

% (A)
-1 (181)
=DPH id@(m)@(gw)id@(m)
% (D)
where C' @ 4o(Varz) G (Va) G (Vwrz) = Go(Vare ©V2 07z ) 18 @ combination of compositors
and associators. Writing out this composition in the 2-group B® gives

(pu (A(A)) 7L, 4:(+))
(pH(C)717 51‘-7‘(/790’3& o7yo m))
(e, 4(Yara) (holF@),sz( ))(e, 4(Tm)) - (182)
(p(C), me) (1) 4 (7rz))
(pH( ( )) (%r’ Oﬁyof}/a:z))



ii)

GAUGE INVARIANT SURFACE HOLONOMY AND MONOPOLES 1387

Multiplying these results out using the rules of 2-group multiplication (see equations
(83) and (84)) and taking the H component gives

ol (&) = prr(A(A)Pa (@), (BOIZ(D) pr(O) (o (AANT (o
= Or(p(4(A))pr(C)) G (Vyr,) (holI;(E)) )

This result says that the 2-holonomy changes by a-conjugation under a change of
marking for a thin sphere.

Now suppose that  : F'— F’ is a 1-morphism of transport 2-functors. Then, for
every thin path v : £ —y we have a 2-isomorphism (remember that Z~(z) = i(e)
and - (z) = i(e) for all x € M)

|
2t () 7, % (7) (184)
RS

satisfying the condition that for any thin bigon X : v = 4, with § : x —y another
path, the diagram

() (185)

i) 4w i)

commutes. In this diagram, the £(6) in the back is not shown. This diagram com-
muting means that

% (’Y) _ g4 (166)
e (2)id g () #(0)
and writing this out using group elements gives
Pa(4O)AWAG) e A0 pa(4 (), 4() (187
(pr(4(X)), 4 (7))(e, 4(x)) (pu(4(0)), 4(y)4:(5))

which after evaluating both sides and projecting to H yields

(4 (2)pu(4(7)) = pu(4(9))azy (pa(4(X))) . (188)
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Solving for py (4~ (X)) gives
(4 (X)) = pua(4(0)agw) P (4()) pr(4()) (189)

Now, after specializing to the case where the source and targets of > are all the same,
ie. y = x and § = v, so that we are comparing this transport along thin marked
spheres, this reduces to

hol} (%) = pu(4(7) g (hol3(2)) pu(4(7) ™!

(190)
= Qrpy (4 ()4 (hOlL()) -

This says that holl,; when restricted to thin marked spheres changes under a-conjug-
ation when the functor F' is changed to a gauge equivalent one F”.

Suppose that another 2-group transport extraction procedure Z ' was chosen. Any
two such procedures are pseudo-naturally equivalent, i.e. if Z ' was another such
choice, then there exists a weakly invertible pseudonatural transformation s: Z’ =
7. This follows from the fact that each 2-functor in the composition of 2-functors
that define Z is an equivalence of 2-categories and weak inverses are unique up
to pseudo-natural equivalences. Therefore, for every transport 2-functor F' we have
a l-morphism of transport functors Jr : 4’ — #4.. Of course, we also have a map
assigning to every l-morphism of transport functors n : F'— F’ a 2-morphism
4y 1 Jp = Jp satisfying naturality, but we will not need this fact for the following
observation because we are dealing with strict Lie 2-groups. The 1-morphism of
transport functors Jr assigns to every point € M a morphism Jg(x) : 4/ (x)—4-(z)
and to every path v : x —y a 2-isomorphism

é‘w(w)\ Jp(vx \é‘w’(v) (191)

satisfying the condition that for a thin bigon ¥ : v — ¢ between two thin paths
v,0 : © —y the diagram

i(*) e i(e)

/
\ /
/
(%) g’g)z

40| == |40 6L 46),
\

4 (%) (192)

i(e) i(e)

I (y)
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commutes. This result is very similar to the previous one and is given by

holy: (3) = sy (e (r)ar(a) (hO1Z (X)) (193)
which is again just a-conjugation.

In conclusion, when restricted to a sphere, 2-holonomy changes under a-conjugation
in each of the three situations described above. This should therefore also be called gauge
covariance as in the case for loops. This motivates the following definition.

3.48. DEFINITION. Let (H,G,T,«) be a crossed module. The a-conjugacy classes in H,
denoted by H/«, is defined to be the quotient of H under the equivalence relation

h ~h' < there exists a g € G such that h = ay(h'). (194)

Denote the quotient map by q : H— H /«.

As before, we have a similar theorem for gauge-invariance of 2-holonomy.

3.49. THEOREM. Let M be a smooth manifold, B& a Lie 2-group, T a 2-category, and
suppose that i : B& —=T s a full and faithful 2-functor. Let F' be a transport 2-functor
and £ a 2-group-valued transport extraction. Let S?M,S2M, m, holl; and q be defined as
above. Then the composition

Hio & H & g2y & 52 (195)
18
i) independent of m,
ii) independent of the equivalence class of F,
ii1) and independent of the equivalence class of Z.

This theorem lets us make the following definition.

3.50. DEFINITION. Let [F| be an equivalence class of transport 2-functors. The gauge
invariant 2-holonomy of [F] is defined to be the smooth map in the previous theorem,

namely

holl1:= goholf om : S2M — H /o (196)
where F is a representative of [F|, £ is a group-valued transport extraction, and m :
S2M —= S2M is a marking for thin spheres in M. Let ¥ € S2M. If hol¥)(2) is such
that ¢~ (hol¥1(X)) is a single element, we will say that hol™(X) is gauge invariant and
abusively write holF1(X) instead of ¢~ (hollF1(2)).
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3.51. REMARK. A result analogous to Theorem 3.49 was obtained in the context of a
cubical category approach to 2-bundles in [MaPill].

We now compare this result to that in [ScWal3], where the reduced group associated
to a 2-group was introduced in order to obtain a well-defined 2-holonomy independent of
the marking as well as the representative of the transport functor used.

3.52. DEFINITION. Let B® be a 2-group with associated crossed module (H,G, T, ). The
reduced group of B& is &,cq := H/|G, H|, where |G, H] = (h™'ay(h) | ge G,h e H), i.e.
the subgroup of H generated by elements of the form h™'ay,(h).

The analogue of the reduced 2-group in the case of ordinary holonomy for princi-
pal G bundles with connection is G/|G,G], the abelianization of G. Recall, [G,G] =
{99'g71g' ' | g, ¢ € G) is a normal subgroup, called the commutator subgroup, of G so the
quotient is an abelian group, in fact in a universal sense.

3.53. LEMMA. Let G be a group, |G, G] its commutator subgroup, and G/Inn(G) conju-
gacy classes in G. The map G/Inn(G)—G/[G, G] given by taking a conjugacy class [g],
choosing a representative, and projecting to the quotient G/[G,G], is

i) well-defined,

ii) surjective,

iii) and need not be injective in general.
PROOF.

i) The map G/Inn(G)—G/[G, G] is well-defined because if ¢’ was another representa-
tive of [g], then there would be a g € G such that ggg—' = ¢', and under the quotient
map, the difference between g and ¢’ is ¢'g™! = ggg~'g ' € [G, G].

ii) Since G — G/[G, G] is surjective, and the map G/Inn(G) — G/[G, G] defined by
choosing a representative is well-defined, the map G/Inn(G)—G/[G, G] is surjective.

iii) To see why the map G/Inn(G)—G/[G, G] is, in general, not injective, consider the
following example [DuFo04]. Let S,, be the symmetric group on n letters, i.e. it is the
permutation group of n elements. Let A,, be the alternating group on n letters. This
group is defined as the kernel of the homomorphism S, — {—1, 1} given by taking
the sign of the permutation. It turns out this kernel is also the commutator subgroup
of S,. Furthermore, its index is [S,/[Sn, Sn]] = [Sn/An] = [Sn © An] = 2. On the
other hand, let’s compute the conjugacy classes of S,, for some small n. The simplest
case actually suffices, although we’ll quote some results for higher n to indicate that
the difference between conjugacy classes and abelianization gets bigger. For n = 3,
the set of conjugacy classes in Sz is given by the following elements. The identity
element, written as (), is in its own class. The elements (1, 2), (1,3), and (2, 3) are
in their own class. Finally, the elements (1,2,3) and (1,3,2) are in their own class.
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Therefore, the set of conjugacy classes for S3 is given by a 3-element set whereas
the abelianization is a 2-element group. For Sy, the set of conjugacy classes is a
set of 5 elements. For Ss, the set of conjugacy classes is a set of 7 elements. The
abelianization, however, is always of order 2.

Therefore, conjugacy classes contain at least as much information about ordinary
holonomy as do elements of the abelianization, and they are exactly the elements needed
to define holonomy in a gauge invariant way due to Theorem 2.47.

In a similar way, the reduced group ®,.4 of a 2-group B® is analogous to the abelian-
ization and does not contain the full information of 2-holonomy in general. One needs
an analogue of conjugacy classes for 2-holonomy. The candidate, for spheres at least, is
a-conjugacy classes, H/a. In fact, we have a similar fact concerning a-conjugacy classes
and the reduced group.

3.54. LEMMA. Let (H,G,T,a) be a crossed module, B® the associated 2-group, Breq 1=
H/|G, H] the reduced group of B®, and H/« the a-conjugacy classes in H. The map
H/oo —= B,eq given by taking a conjugacy class [h], choosing a representative, and pro-
jecting to the quotient H/[G, H], is

i) well-defined,

ii) surjective,
iii) and need not be injective in general.
PROOF.

i) Let h and A’ be two representatives. Then there exists a g € G such that ay(h) =
and so the difference between h and h' is h™'h' = h™ta,(h) € |G, H].

ii) Since H — H/|G, H] is surjective, and the map H /o — ®,q defined by choosing a
representative is well-defined, the map H /o — &,.q is surjective.

iii) To see why the map H/a —= &, is, in general, not injective, consider the special
case where H = (G, 7 = id, and « is the ordinary conjugation. Then this case reduces
to the previous case of Lemma 3.53.

Although the previous example suffices to show why a-conjugacy classes H /« contain
more information than the reduced group in general, holonomy along spheres takes
values in ker 7 < H by the source-target matching condition. Therefore, it is also
important to find an example of a crossed module (H, G, 7, «) such that ker7 = H
and the map H/a— B,¢q is not injective.

Take H := Z,, the (additive) cyclic group of order p, where p > 3 is prime. Set
G := Aut(Z,), the automorphism group of Z,. Let 7 be the trivial map and « := id
be the identity map. (Z,, Aut(Z,), T, a) defines a crossed module.
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Every element of Aut(Z,) is of the form oy, with k € {1,2,...,p—1} and is determined
by where it sends the generator: o,(1 mod p) := k mod p. For this proof, denote the
a-conjugacy class of an element m € Z, by |[m]. For all k, 6,(0 mod p) =0 mod p
so that 0 mod p is fixed under the « action. However, since o,(1) = £ mod p, the
set of a-conjugacy classes of (Z,, Aut(Z,), 7, a) is Z,/a = {[0],[1]}, which is just a
2-element set. However, the reduced group is trivial. To see this, consider generators
of [Aut(Z,), Z,], which are of the form (ox(m) —m) mod p with ke {1,2,...,p—1}
and m € {0,1,2,...,p — 1}. Set m = 1 and k = 2. Then (ox(m)—m) mod p =
1 mod p. Therefore, the generator of Z, is in the subgroup [Aut(Z,),Z,| which
means [Aut(Z,),Z,] = Z,. Thus Z,/[Aut(Z,),Z,| = Z,/Z, = {e}.

In this case, one can make sense of gauge-invariant quantities coming from 2-holonomy
without passing to the reduced group as is done in [ScWal3]. In the case of the examples
considered in Section 5, one even gets a fixed point under the a action, in which case one
does not need to pass to the a-conjugacy classes.

3.55. DEFINITION. Let (H,G,T,a) be a crossed module. Denote the fixved points of H
under the o action by

Inv(a) :={h e H | ay(h) = h for all g € G}. (197)
3.56. LEMMA. In the notation of Definition 3.55, Inv(a) is a central subgroup of H.
PROOF. Let h,h' € Inv(«). Then

ag(h') = oy (R)og (W) = it/ (198)

for all ¢ € G. Thus, Inv(a) is closed. a4(e) = e for all g € G says e € Inv(w). Let
h € Inv(a), then ay(h™") = (ay(h))™! = h™! showing that h~! € Inv(«). Finally, Inv(«)
is central because

hkh™ = a,my(k) = k (199)

for all h e H and k € Inv(«). =

This will have physical relevance when discussing monopoles, which, as we will show,
take values in Inv(a).

4. The path-curvature 2-functor associated to a transport functor

In this section, given a principal G-bundle with connection and a choice of a subgroup
of m(G), we construct a principal 2-bundle with connection whose structure 2-group
is a covering 2-group obtained from G and the subgroup of m1(G). This assignment is
functorial. We describe it on all levels introduced in the review, namely as a globally
defined transport functor, in terms of descent data, and via differential cocycle data.
These constructions respect all of the functors relating these different levels.
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4.1. THE PATH-CURVATURE 2-FUNCTOR. The transport 2-functor defined later in this
section is motivated by the study of magnetic monopoles in gauge theories as described in
[HoTs93]. Some of the earlier accounts of similar descriptions can be found in the work of
Wu and Yang in [WuYa75] under the name ‘total circuit’ and also in the work of Goddard,
Nuyts, and Olive in [GoNuOI77]. Of course, several others worked on understanding the
“topological quantum number” due to a magnetic charge in terms of just the magnetic
charge alone, but the three references mentioned are the ones that have influenced us. We
argue in Section 5 that in the case where the base space is a 3-manifold, this transport
2-functor has 2-holonomy along a sphere which is given by the magnetic flux through that
sphere. Therefore, we give a mathematically rigorous description of non-abelian flux for
magnetic monopoles in a non-abelian gauge theory. A more detailed description of the
physics will be given in that section, but first we explain the mathematical structure.

The starting data consist of (i) a principal G-bundle, where G is a connected Lie
group, with connection over a smooth manifold M, and (ii) a subgroup N of m(G). By
the main theorem of [ScWa09], the first part of the data corresponds to a transport functor
tra : Py (M) — G-Tor with BG structure. From this data, we will construct a transport
2-functor which we call the path-curvature 2-functor. We will discuss two interesting cases
for the choice of N although other choices are important for applications in physics so
we keep this generality for future applications. When N = m;(G), the path-curvature
2-functor coincides with the curvature 2-functor of Schreiber and Waldorf [ScWal3]. The
choice N = {1}, the trivial group, will be more appropriate in the context of gauge theory
and computing invariants. This is the case we focus on for all our computations in Section
5.

To set up this example, we introduce the following Lie 2-group associated to any
connected Lie group G. Let G be the universal over of G (we will describe what happens
for arbitrary covers later) and denote the covering map by 7 : G —= G. An explicit
construction of G in terms of homotopy classes of paths will be useful for our purposes

G :={h:]0,1]1—G | h(0) = e and h is continuous}/. (200)

where h ~ k' if h(1) = h'(1) and there exists a homotopy h = h' relative the endpoints.
G naturally acquires a topology as the quotient space of a subspace of paths. Denote
the equivalence class representing a path with square brackets as in [h] or [t — h(t)],
where it is understood that ¢ takes values in [0,1]. The multiplication in G is defined
by choosing representatives and multiplying them pointwise (later we will show that this
multiplication can be described in another way that is sometimes more convenient for our

examples). Let o : G— Aut(G) be the conjugation map a,([]) := [ghg™], meaning

ay([h]) = [t = gh(t)g™'], (201)

where the concatenation means multiplication in G. Define 7 : G —= G to be evaluation
at the endpoint,
7([h]) := h(1). (202)
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4.2. PROPOSITION. (é, G, T, ) defined in the previous paragraph is a Lie crossed module.

PROOF. It is useful to recall the definition of a crossed module (Definition 3.2) at this
point. Since the equivalence relation involves homotopy relative endpoints, 7 is well-
defined. o is well-defined because h ~ A’ implies ghg~—' ~ gh’g~'. The topological space
G has a unique smooth structure making the map 7 a homomorphism and a smooth
covering map, i.e. a smooth surjective submersion with the property that for every g € G,
there exists an open neighborhood U containing g such that each component of 77 (U)
maps to U diffeomorphically. This follows from some basic differential topology (see for
example Theorem 2.13 of [Le03]). Conjugation in G is a smooth map, and because « is
well-defined, « is therefore smooth. The only things left to check are the crossed module
identities. First, let [h],[h'] € G and let h and A’ be representatives of [h] and [h']
respectively. Then the map

-1

[0,1] % [0,1] 3 (s, 1) — h((1 —8) + st) h’(t)h((l )+ st) (203)

is a homotopy (relative endpoints) from the path ¢ — h(1)W/(¢)h(1)~! (when s = 0) to
the path ¢ — h(t)R/(t)h(t)™' (when s = 1). Therefore,

-y ([W]) = [t — h(1)A (t)h(1)7']
= [t — h(t)B'(t)n(t) "] (204)
= [h][P][R71],

which is the first identity (80). For the second identity, let ¢ € G and [h] € G with a
representative h. Then

m(ay([h])) = [t — gh(t)g~'] = gh(1)g~" = g7([])g~", (205)

which proves the other identity (81). n

— h
— h

4.3. DEFINITION. The Lie crossed module (@, G, T,a) defined above is called the universal
cover crossed module associated to a Lie group G. The associated Lie 2-group, denoted by
Gy, 18 called the universal cover 2-group associated to the Lie group G.

In fact, the only way to give a smooth covering map a Lie crossed module structure is
the way we have done so above. This follows from the following Lemma.

4.4. LEMMA. Let (H,G,T,«) be a crossed module (not necessarily Lie) with 7 : H—G
a surjective homomorphism. Then « is conjugation in H by a choice of lift, namely

ag(R') = hh'h™,  forallge G,h € H (206)

for some h with T(h) = g.
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PROOF. First we prove that conjugating by a lift is well-defined. Let h € H be another
lift with 7(h) = g. Then

~ ~ —1 - -
hh' B! (hh’h‘1> — W R

= (W), (R~ by (80)
= ag(h’)ag(h’ 1) (207)
= ag(h'h"™ )
= ay(e)

™

since o, : H—= H is a homomorphism. The claim that a,(h’) = hh'h™! for a choice of
lift h of g then follows from the identity (80) since ay(h') = a ) (h') = h'h™! for some
h because 7 is surjective and a lift always exists. n

4.5. LEMMA. Let (H,G,1,«) be a Lie crossed module with 7 : H—=G a smooth covering
map. Then « is conjugation in H by a choice of lift, namely

ag(R') = hh'h™,  forallge G,W € H (208)

for some h with T(h) = g.

PRrROOF. The claim holds even if 7 is just surjective. The proof follows from Lemma 4.4
viewing H and G as groups (ignoring smooth structure) and using the identity a,(h') =
oy (h') for some lift h of g. =

Given any subgroup N < 71(G), we can construct another Lie 2-group in a similar
way but by using a different equivalence relation. Define

Gy :={h:[0,1]— G | h(0) = e and h is continuous}/., (209)

. h —
where h ~y h' if h(1) = K/(1) and [ﬁ] € N, where I/ denotes the reverse path and we
use a vertical representation for the concatenation of paths in this context

h h(2t) for0<t<?
o (t) =1, ) 2. (210)
h R'(2—2t) for5<t<1

4.6. DEFINITION. An equivalence class of paths under the ~y equivalence relation in
equation (209) will be denoted by [h]n or [t — h(t)|n and will be called an N-class.

4.7. PROPOSITION. Let G be a connected Lie group, N < m(G) a subgroup, and Gy as
in (209). Then for [h]n € Gy, the function T : Gy —= G given by

7 ([h]N) := h(1), (211)
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with h a choice of a representative of [h]y, is a well-defined homomorphism. Further-

more, Gy has a unique smooth structure so that T is a smooth covering map. Finally,
(Gn,G, 1, a) with a : G— Aut(Gy) defined by

ag ([h]n) = [t — gh(t)g~ I (212)
1s a Lie crossed module.

PRrROOF. 7 is well-defined by definition of the equivalence relation ~y . 7 is a homomor-
phism because 7([h]x[F]n) = ()R (1) = 7([A]n)7([F']x). Gy has a natural topology
coming from the quotient space of a subspace of paths in G. Because 71 (G) is abelian,
the conjugacy class of N is N itself. Therefore, by a standard theorem of constructing
covering spaces (see for instance Chapter 3 of [Ma99]) 7 : Gy — G is a covering map.
By another standard result in differential topology (see Proposition 2.12 of [Le03]), there
is a unique smooth structure on Gy making 7 a smooth covering map. By construction,
Gy has a continuous multiplication making it a topological group. The only things left
to prove is that the multiplication and inversion maps in Gy are smooth. This can be
done locally using the smoothness of multiplication and inversion in G and the fact that
7 is a local diffeomorphism. Therefore, Gy is a Lie group. Since 7 is smooth, 7 is a Lie
group homomorphism. a4 is a well-defined group homomorphism for all g € G' because
it can be described as conjugation. It is smooth because for any g € G, there exists an
open neighborhood U around g, a diffeomorphism ¢ : U —V, with V' a component of
7 1(U), so that U 3 ¢’ — ay coincides with conjugation by ¢(g') by the proof of Lemma
4.5. Since conjugation is smooth for any Lie group, « is smooth. Therefore, (G' N, G, T, )
is a Lie crossed module. n

Note: We use the same notation 7 and « for the maps instead of 7 and ay since we
typically fix N in any given context.

4.8. DEFINITION. Let G be a Lie group and N a subgroup of m(G). Then (Gn,G,T,a)
as described in Proposition 4.7 is called the N-cover crossed module of G. Its associated
2-group is called the N-covering 2-group and is denoted by BGy. We sometimes abusively
say covering crossed module or covering 2-group without referring to N explicitly.

Let N < m(G) be a subgroup of the fundamental group of a Lie group G. We will
¥ Tor; 01 (see the
beginning of Section 3.21) is G-Tor. Although the category G-Tor is not a Lie groupoid,
notice that the set of morphisms between any two G-torsors is isomorphic to G and
therefore has a unique smooth structure. Furthermore, the composition is a smooth map
and is modeled by the group multiplication map G x G — G. By this we mean that by
choosing basepoints a, b, and ¢ in G-Torsors A, B, and C respectively, the composition

now construct a 2-category G-Tory whose underlying 1-category (GTTEN)

G-Tor(B, C) x G-Tor(A, B) — G-Tor(A, C) (213)

agrees with the multiplication G x G—=G under the isomorphisms specified by the choice
of basepoints. Therefore, the composition is smooth. Thus, G-Tor is enriched in smooth
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manifolds. Using this fact, we can extend G-Tor to an interesting 2-category GmN in
a non-trivial way.

Let A and B be two G-torsors and let ¢, : A— B be two morphisms of G-torsors.
We define the set of 2-morphisms from ¢ to ¢, drawn as

A, (214)

to be the set of N-classes of paths from ¢ to ¢ in G-Tor(A, B). This means the following.

4.9. DEFINITION. Let N < m1(G) be a subgroup. Two paths ¥ : p—=1 and X' : p—=1)
in G-Tor(A, B), drawn as

v A, (215)

are said to be N-equivalent if under the diffeomorphism defined by

G-Tor(A,B)—G

SO'_)G,

(216)

the homotopy class of the loop g . p—=, which gets sent to an element of m1(G) under

this diffeomorphism, is an element of N. The class associated to 3 is called an N-class of
paths and is denoted by [Z]n.

The choice of diffeomorphism (216) where ¢ +— e is merely for convenience. In par-
ticular, the element [; : g0—>g0] is independent of this diffeomorphism. To see this, if

any other diffeomorphism was chosen, say sending some other morphism ¢’ : A— B to
e € GG, then there exists a unique g € G so that ¢ - g = ¢’ so that ¢ + g~!. In this case,
one gets a loop based at g—!. To get one at e, we merely multiply by g to obtain a loop
based at e € G. This loop is exactly the same as ; under the diffeomorphism defined by

@ — e. Therefore, the homotopy class is independent of the diffeomorphism chosen.

Vertical composition is defined on representatives as concatenation of paths. Horizon-
tal composition can be defined using the G x G— G multiplication. More explicitly, for
two composable 2-morphisms as in

/\ /—\
C “[E']N B “[E]N A , (217)
\_/ \_/
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choose representatives of such paths so that ¥ : [0,1] — G-Tor(4, B) and ¥’ : [0,1] —
G-Tor(B,C) with X(0) = ¢, 3(1) = ¢,3'(0) = ¢, and X'(1) = ¢'. Define the horizontal
composition to be the N-class of the path ¥’ o ¥ defined by

s (X oX)(s) =X (s)oX(s) forse|0,1], (218)

where the composition on the right-hand-side is the usual composition of morphisms in
G-Tor. We check that horizontal composition is well-defined. Suppose that ¥ ~5 2 and
Y ~n . We must show that X' o X ~y @ 0, ie.

¥oX
° eN (219)
QECRY)
but a representative of this is given by
Yok ) 5Y(25) 0 (2s) for 0 < s <3
(e} S =
00O Q(2—-25)0Q(2—-2s) fori<s<l

(220)

B p¢ b
(o)

which gives two elements of N (after taking the homotopy class) and since N is a sub-
group the result is also an element of N. A similar argument is used to show that the
interchange law holds. Therefore, G-Tory defines a strict 2-category. We summarize this
as a definition.

4.10. DEFINITION. Let G be a Lie group and N < m1(G) a subgroup of the fundamental
group. The 2-category Gm]v has objects and 1-morphisms that of G-Tor. The com-
position of 1-morphisms is the same as that in G-Tor. The set of 2-morphisms between
G-torsor morphisms ¢ and ¢ in G-Tor(A, B) are N-classes of paths from ¢ to 1. The
vertical composition of 2-morphisms is concatenation of representative paths. The hori-
zontal composition of 2-morphisms is the pointwise composition of G-torsor morphisms
after choosing representatives.

4.11. REMARK. When N = m(G) the 2-categories G-Tory and G-Tor of [ScWa13] are
equivalent because there is a unique w1 (G)-class of paths between any two morphisms of
G-torsors (since every loop is m1(G)-equivalent to every other loop).

We will now start describing the path-curvature 2-functor, the structure 2-groupoid,
and prove that it is indeed a transport 2-functor in the sense of Definition 3.24.

4.12. LEMMA. Let tra € Transgo(M, G-Tor) be a transport functor and let N < 71(G)

be a subgroup. Let Ky(tra) : PQ(M)—>G?F—o\rN be the following assignment. At the level
of objects and 1-morphisms Ky(tra) agrees with tra : Py(M) — G-Tor. For every thin
bigon T' : v = 6 in Py(M), choose a representative bigon, also denoted by T', and let

Ky(tra)(I') :== [s — tra(l'( - ,9))]y s (221)
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i.e. the N-class of the path from tra(y) to tra(d) going along tra(T'( - ,s)) as a function of
s € [0,1]. The notation means that T'( -, s) is a thin path with respect to the first coordinate
for each fized s, and is depicted as a one-parameter family of G-torsor morphisms

©

pEnlC = 4 (222)

¥

This assignment is well-defined, i.e. the function s — tra(I'( - ,s)) defines a continuous
path and Ky (tra)(T') is independent of the choice of representative bigon.

Ky is called the path-curvature 2-functor associated to tra and N < m(G).

PROOF. The assignment in (221) is well-defined since ordinary homotopy is a special case
of thin homotopy. More explicitly first notice that for a given bigon I" : v = ¢ the function
s — tra(I'( - ,s)) is smooth because tra is a transport functor (this follows for instance
from Theorem 3.12 of [ScWa09] and the fact that G-Tor(tra(x), tra(y)) is diffeomorphic
to ). Now, suppose that I" is another representative bigon for the thin bigon I'. Then
there exists a thin homotopy H : [0,1] x [0,1] x [0,1] — M with H(t,s,0) = T'(t,s)
and H(t,s,1) = I'(t,s). Thus (s,r) — tra(H( - ,s,r)) is a smooth homotopy from
s— tra(I'(-,s)) tos— tra(I"( -, s)), which in particular is a homotopy. Thus Ky (tra)(I")
is well-defined. Similar arguments show that vertical and horizontal compositions are
respected under this assignment. Therefore, Ky(tra) defines a strict 2-functor. =

We construct a 2-functor i : BG N—>G—/T—0\rN as follows. By definition, a 2-morphism
in BGy is of the form

o (hy.g) e (223)

h(1)g

where [h]y is viewed as an N-class of a path h in G starting at the identity e in G and
ending at a point written as 7([h]y) = h(1). The image of this under iy is defined to be

Lg

RN

G [SHL}L(s)g]N G 5 (224)

Lhayg

where s — Ly s, is the path in G-Tor(G,G) = G corresponding to the path s — h(s)g
in G under this isomorphism. At this point it is not clear why the vertical composition is
respected under 7.
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4.13. LEMMA. Let (H,G,T,«) be a covering crossed module with elements of H thought
of as certain equivalence classes of paths in G starting at the identity e € G. Let h and h'
be two representatives of elements |h],[W'| € H. Denote the targets of h and h' by g and

g, respectively. Then
h

k) =1 5 |- (225)

where (W g)(t) := h'(t)g for all t € [0,1], and the vertical composition is the composition
of paths starting with the one on top.

PROOF. A homotopy is given by

W (st)h((2 — s)t for 0 <t <3

(t,s) > (st)h((2 = s)t) o ? 2 (226)
W((2—=s)t—1+s)h(st+1—s) fori<t<l1

with s = 0 projecting to [h?g] and s = 1 projecting to [W'h] = [A'][R]. =

We now come to one of our main theorems.

4.14. THEOREM. The path-curvature 2-functor Ky(tra) defined above is a transport 2-
functor with BGy-structure.

PROOF. To prove this, we must provide a my-local iy-trivialization of Ky (tra) and show
that the associated descent object is smooth. This will be done in several steps, outlined
as follows.

i) Define trivy : Po(Y) — BGy and show it is a smooth strict 2-functor.

ii) Define a natural equivalence tx : 7* K y(tra) = iy o trivy.

)
)
iii) Explicitly construct the associated descent object (trivy, gn, ¥, fn)-
iv)

Show that the descent object is smooth.

i) To start, tra : Py (M)—G-Tor is assumed to be a transport functor, so there exists a
m-local i-trivialization (triv : Py (Y)—=BG,t : mitriv; = mitriv;), where 7 : Y — M
is a surjective submersion, and whose associated descent object Ex.(tra,triv,t) is
smooth. We first define my : Y—=M to be 7. Then we define trivy : Po(Y)—BGy
by making it agree with triv on the 1-category P;(Y) inside Py(Y'). For a thin bigon
I':v=46inY we define

trivy (I') := ([s — triv(D( -, 8))triv(y) 7], ,triv(v)) eGyxG (227)

Note that [s — triv([( -, s))triv(y) '], makes sense as an element of Gy because
Gy is precisely defined to be the set of N-classes of paths in G starting at the identity
of G. This is well-defined because thin homotopy factors through ordinary homotopy
(see Proof of Lemma 4.12).
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We first prove that trivy as defined is a strict 2-functor. It is already a strict 2-functor
at the level of objects and 1-morphisms. We first check that vertical composition of
bigons goes to vertical composition of bigons. Consider two bigons I' : v = ¢ and®
A : 0 = €. Their respected images under the assignment above gives

t.ri\lll(’}/) triv(y)
m T
triv(y) <—tiv(e)— triv(z) = triv(y) s:::}lvv((g)) triv(z) , (228)
trivi\}]’(A) ~_y
triv(e) riv(e)
which, after taking the Gy component, gives
[s = triv(A( -, 9))triv(6) triv(D( -, s))triv(y) '], (229)

while first composing in P»(Y) and then applying trivy gives’

()

A homotopy between these two representatives is given by H(s,r) :=

s — triv (E( : ,s)) triv(fy)llN ,triv(’y)) : (230)

triv(D( -, (r + 1)s))triv(y) ! for0<s< 3
triv(A( -, (r 4+ 1)s — r))triv(0) ttriv(C( -, (r + 1)s))triv(y) ™t for F <s<1-13% (231)
triv(A( -, (r + 1)s — r))triv(y) ! for 1 -5 <s<1
which indeed satisfies
H(s,0) = triv(A( -, s))triv(8) Mtriv(T( -, s))triv(y) " (232)
and
H(s,1) = tl“%V(F( : ,28))tr1v(7)'*1 ) for 0 < f <3 ' (233)
triv(A( -, 2s — D)triv(y)™" for1—3<s<1

This proves more than what we needed since all we had to show was that the two
elements are in the same N-class. Showing that the two representatives are homotopic
is stronger and implies they’re in the same N-class.

Now consider the horizontal composition of I' : v = ¢ and II : o = S written as
[Mol': oy = B od. First composing the thin bigons and then applying the map
trivy gives

trivy(IloT") = ([s — triv((H oI ( -, 3)>triv(a o 7)’1]1\[ ,triv(a o fy)) (234)

6Technically, A : § = ¢ and there is a thin homotopy ¥ : § = ¢’ but this means triv(d) = triv(d’) so
the above statement still holds.

"Again, this is technically not correct. One has to use a thin homotopy ¥ : § = &’ but the reader can
check that the proof follows through with a slightly modified homotopy.
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while first applying the map triv to each thin bigon and then multiplying in BGy
gives

pGN (tI’lVN(H)tI'lVN(F))

=[5 — triv(II( -, s))triv(e) " triv(a)triv(T( - ,s))triv('y)_ltriv(a)_l]]v
= [s — triv(II( -, 8))triv(T( -, 9))triv(aoy) '], (235)
= [s — triv((H ol)( - ,s))triv(a o 7)_1]1\/

because for every fixed s, parallel transport of paths is a homomorphism. Therefore,
trivy defines a strict 2-functor.

We now show that trivy is a smooth 2-functor. We already know trivy is smooth at
the level of objects and 1-morphisms. We must therefore show trivy : PY =Gy xG
is smooth. At this point, the reader should review Appendix A because we will recall
several facts in the proof of this claim. By Definition A.2, trivy is smooth if and only
if for every plot ¢ : U —= P?Y, the composition trivy o ¢ : U — Gy x G is a plot.
By Example A.3, trivy o ¢ is a plot if and only if it is smooth. By Example A.6,
trivyy o ¢ is smooth if and only if both projections pg o trivy o ¢ and pg o trivy o ¢
are smooth. Since we already showed that pg o trivy o = trivosop is smooth (here
s is the source of a thin bigon), it remains to show that Pa,, © trivy o ¢ is smooth.

For convenience for this proof, set f := pg o trivy. By definition, f o is given by

Usu [s > triv (p(u) ( - 5))triv(p(u)( ,o))*l]N : (236)
where we’ve chosen a representative bigon ¢(u) : [0,1] x [0,1] — Y, fixed s to get
a thin path ¢(u)( - ,s), and then applied triv (unfortunately, there is a lot of abuse
of notation to avoid an overabundance of brackets and symbols). The problem with
this is that although we know we can always choose bigons ¢(u), these choices need
not form a smooth family of bigons in an open neighborhood of u € U. Therefore,
proving smoothness this way will not work.

Instead, we use the smooth structures we’ve defined to construct such a smooth family
of bigons. P2?Y is the quotient of BY, bigons in Y, under thin homotopy and its
smooth structure was defined as such. Therefore, by Example A.5, ¢ : U—=P?Y is a
plot if and only if there exists an open cover {U;};e; of U and plots {p; : Uj—=BY }e;
such that

BY L Uj
q (237)
Py <5—U

commutes for all j € J. For the purposes of this proof, ¢ is the quotient map.
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Now, BY itself is a subspace of the space of smooth squares YI%* in Y. Denote
the inclusion of BY into Y% by k. By Example A4, ¢, : U; — BY is a plot if

2

and only if k o ¢, : U; — YI%1" are plots. By Example A.7, ko ¢; : U —yloap?
is a plot if and only if the associated function ko ¢; : U; x [0,1]> —Y defined by
k:ﬂo\g_o;(u, t,s) = (k: (goj(u))) (t,s) is smooth. This gives us our first desired fact: the
plot ¢ : U—= P%Y gives a smooth family of bigons ¢, : U;—= BY such that qo¢; =

¢|u,. Furthermore, since k o ¢; is a smooth map of finite-dimensional manifolds, it is
continuous and therefore the smooth family of bigons is also continuous.

By using another adjunction, the smooth map ]/CO\‘P;’ can be turned into a plot @ :
U; x[0,1] — Y01 that factors through paths with sitting instants and is defined by

k:/o?j(u, s)(t) := (k((pj (u))) (t, s). Using this, we get a smooth map U; x [0,1]—G
given by

—

(u, ) — triv (k; o @;(u, s)) triv (@(u, O))1 (238)

because triv is smooth on thin paths (we’ve taken the thin homotopy classes of the
paths @(u, s) and k/o;j(u, 0) in the arguments of triv). For each fixed u e U;
U, this gives a path in G starting at e and the N-class of this path coincides with
f(¢(u)) by commutativity of the diagram in (237). By continuity (which we proved
in the previous paragraph), for each u there exists a (sufficiently small) contractible
open neighborhood V' of w with w € V. < U, together with a (sufficiently small)
contractible open neighborhood W of f(p(u)) in Gy such that fle(V)) € W and
W maps diffeomorphically to 7(/W) < G under the smooth covering map 7. But
we just showed that the projection 7o f o ¢|ly : V—= G is smooth and since all
neighborhoods are small and contractible, a lift is uniquely specified, is smooth, and
agrees with f o ¢|y. Therefore, f o ¢ is smooth at the point u € U. By applying this
argument to all plots at all points, this proves that f = pg o trivy : P%Y — Gy is
smooth.

Our goal now is to define a natural equivalence ty : 7% Ky (tra) = iyotrivy. Note that
since tra is a transport functor, we have a natural isomorphism ¢ : 7*tra = 7 o triv.
Therefore, on points y € Y, i.e. objects of Po(Y), define tx(y) := t(y). For v € P'Y,
since t was a natural transformation for ordinary functors, the required diagram
already commutes so we set tx(7) := id.

Because of our definition of trivy and ¢ and since our target category is a strict
2-category, the associated descent data will not be too different from the ordinary
transport functor case. Namely, the modifications ¥y and fy are both trivial, i.e.
they are the identity 2-morphisms on objects. gy is also completely specified by ¢
since ty is specified by t.

As mentioned above, trivy is smooth. What’s left to show is that F(gx) : P1(Y1?) —
AG-Tory is a transport functor with ABGy-structure. First let’s explicitly describe
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ABGy and AGﬁo\rN. The objects of ABGy are 1-morphisms of BGy which are pre-
cisely elements of G. A morphism from g; to g, in ABGy is a pair of elements g3 and
g4 of G along with an element h € H fitting into the diagram

[ ] _9_3 [ ]
92 %{]2& |91 . (239)
O <——"-—0
94

Similarly an object of AG—/T—o\rN is a pair of objects P and P’ in Gﬁo\rN and a G-
equivariant map P ERY= morphism from P ER Qto PS5 Q) in AGﬁo\rN is a pair
of G-equivariant maps p: P— P’ and ¢ : Q — @)’ along with an N-class of a path
a:gop=>qo f asin the diagram

p
Q=70
By applying the general definition of F(gx), we have
i(triv(m (y))) = G

l/Lg(y) (241)
i(triv(m(y))) = G

P’ P

g

’. (240)

Y[Q] 5y F(gn)

and
i(triv(m1(7)))

G=—"""G

Ply[?] ) (yl 2l y) M Lg(y/)l X ng(y). (242)

G

i(triv(ma(7)))
Now, since g is part of the smooth descent object for the functor tra, there exists a
smooth natural isomorphism ¢ : m{triv = w3triv such that ¢ = id; o g. Using this
fact, one can define gy : witrivy = mitrivy in an analogous way to how gy was
defined from ¢ but this time using §. Furthermore, F(gy) factors through A(iy) via
F(gn) = A(in) o F(gn) since g = id; o g.
Therefore, this defines a global trivialization with the identity surjective submersion
id : Y2l — Y2 with the trivialization functor being F(gx) : Pi(Y?) — ABGy.
This functor is smooth since g is smooth. Furthermore, the descent object associated
to this transport functor is trivial because of the global trivialization. Thus F(gx)
defines a transport functor.

Thus Ky (tra) defines a transport 2-functor with BGy structure. ]
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4.15. DEFINITION. Let tra : Pi(M)—= G-Tor be a transport functor over M with BG
structure and values in G-Tor and let N < m(G) be a subgroup. Then the transport

2-functor Ky(tra) : Po(M)— G-Tory defined by

, tra(y)
— | T
r T +— tra [s—tra(T'( - ,s)]v  tra(x 243
S e R (243
é
tra(d)

1s called the path-curvature transport 2-functor associated to tra and N.

More can be said, although we will not prove the details since the proofs are simple.
The above construction is functorial. Namely, for any morphism of parallel transport
functors h : tra = tra’ with BG-structure with values in GG-Tor, there is a corresponding
1-morphism of parallel transport 2-functors hy : Ky (tra) = Ky (tra") with BGy-structure

with values in G-Tory. By viewing Transg (M, G-Tor) as a 2-category whose 2-morphisms
are all identities, this defines a 2-functor

Ky : Transhg (M, G-Tor) —= Transg (M, G-Tory). (244)

In fact, in the above proof, in steps i) and ii), we have also outlined the definition of a
2-functor (see equation (227) and surrounding text)

Ky Trivk (1) % — Triv2 (iy)*® (245)
given by the assignment
(tra, triv, t) — (Ky(tra), trivy, tx := 1) (246)
on objects (see Definitions 2.13 and 3.15) and
a—ay =« (247)

on morphisms (see Definitions 2.14 and 3.16). In these two assignments, we are viewing
a natural transformation as a pseudonatural transformation by assigning the identity
2-morphism to every l-morphism.

In steps iii) and iv) we have also outlined the definition of a 2-functor

KN Desk (1) —= Des? (iy)” (248)
given by the assignment
(triv, g) = (trivy, gy := g, ¥n =1, fx := 1) (249)
on objects (see Definitions 2.16 and 3.17) and

h— (hy :=h,ey :=1) (250)



1406 A. PARZYGNAT

on morphisms (see Definitions 2.17 and 3.18).
By definition, both squares in the diagram

Des' (1)% i Triv' (i)® <—— Transy, (M, G-Tor)

KR K%iv Ky (251)

Des?(in)® S Triv?(in)® < Transgg (M, G—/TEN)

commute (on the nose).
The path-curvature 2-functor associated to a transport functor is flat. To explain this,
we first define a modified version of the thin path 2-groupoid.

4.16. DEFINITION. Let X be a smooth manifold. If one drops condition ii) from Defini-
tion 3.13, then one obtains a 2-groupoid Iy (X)) that has points of X as objects, thin paths
for 1-morphisms, and (ordinary) homotopy classes of bigons for 2-morphisms.

[ScWal3] call this 2-groupoid the fundamental 2-groupoid. Although we prefer to
use that terminology for the usual fundamental 2-groupoid (whose 1-morphisms are also
ordinary homotopy classes of paths), we use this terminology for the purposes of this
paper to avoid confusion.

4.17. DEFINITION. A transport 2-functor F' : Po(M)—=T with Gr-structure is said to
be flat if it factors through the fundamental 2-groupoid I1o(M).

The curvature 2-functor K (tra) = K, (g)(tra) introduced in [ScWal3] is completely
determined on bigons by the boundary of the bigon. It is therefore obviously flat, but it is
even more restrictive than just that. Not only does it not depend on the homotopy class
of the bigon, it doesn’t depend on the bigon at all. On the other hand, the path-curvature
2-functor Ky(tra) introduced here depends on the homotopy class of the bigon.

4.18. COROLLARY. The path-curvature 2-functor Ky(tra) is flat.

PROOF. Let " and I” be two bigons that are smoothly homotopic (as opposed to just
thinly homotopic). Let H : [0,1]> —Y be a smooth homotopy from I' to I so that
H(t,s,0) = I'(t,s) and H(t,s,1) = I'(t,s). By compactness of [0,1]?, one can choose H
so that it has sitting instants around its boundary so that tra(H( - ,s,r)) is well-defined
for each s,7 € [0, 1]. Then

[0,1] x [0,1] —G

252
(5.7) > tra(H( - 5.7)) )
is a smooth homotopy from the path s — tra(I'( - ,s)) to the path s — tra(I"( - ,s)).
Therefore, since N-classes of paths is a quotient of the universal cover GG, the N-classes
of these paths agree. [
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4.19. A DESCRIPTION IN TERMS OF DIFFERENTIAL FORM DATA. In this section, we
prove several important and useful facts. The first theorem says that locally transport
functors whose structure 2-group is a covering 2-group can be described in terms of the
path-curvature 2-functor. The second part of this section contains a discussion about the
relationship between the path-curvature 2-functor specifically and its differential cocycle
data. As before, let m : Y —= M denote a surjective submersion, G a connected Lie group,
N < 7 (G) a subgroup, and 7 : Gn — G the cover of G defined by N. It is important
to note that 7 : Q — (G, the induced map of Lie algebras, is an isomorphism of Lie
algebras because 7 is a local diffeomorphism. Denote the 2-group associated to the Lie
crossed module (Gy, G, 7, a) by BGy.
First, we define a 2-functor K% : Z}(G) — Z2(Gn) by

(g ((a5= ot (a4 514A1) ) (0= 0. 0= 17 = D)
hs (h, g = 0)

on objects and morphisms, respectively.

Second, notice that specifically for the path-curvature 2-functor Ky(tra), and par-
ticularly its associated descent object K3 (tra), the analysis in Section 3.29 gives the
following differential cocycle data associated to K (tra). The assignment on thin paths
induces a 1-form A with values in G since the functor Ky (tra) agrees precisely with tra
on thin paths. On thin bigons, the assignment induces a 2-form B with values in Q
satisfying dA + 3[A, A] = 7(B). Since 7 is an isomorphism, B is determined by this
condition and is given by B = 7! (dA + 1[A, A]) . Therefore, the associated differential
cocycle data to the path-curvature 2-functor Ky (tra) is

D(KN*(triv, g)) = (A,B =7t (dA + %[A, A]> g, 0=0,f=1¢= 1> . (254)
Therefore, the two descriptions agree showing that the diagram
ZH(G) < Desk (i)
Kﬁl IK?Vcs (255)
Z2(Gn) <5 Desy(in)”

commutes. This analysis is actually a bit more general as the following theorem shows.

4.20. THEOREM. Let X be a smooth manifold and Fy : Po(X) —=BGy be any smooth
strict 2-functor. Then there exists a unique smooth functor F' : Py(X)—= BG such that
Fy = Kn(F).
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PROOF. The functor Dy : Funct®(Py(X), BGn) — Z%(Gn)® (defined around (159) in
Section 3.29) produces (A € Q'(X;G), B € Q*(X;Gy)) satisfying dA + L[4, A] = 7(B).
Since 7 : Q—>Q is an isomorphism, B = 77! (dA + %[A,A]). Restricting Fiy to
P1(X) gives a unique F' : P (X) — BG that satisfies Dx(F) = A. By the same token,
we have Dy (Ky(F)) = (A, 7' (dA+ 1[A, A])) which coincides with Dx(Fy). Since
Px : Z%(Gn)® —= Funct®(Po(X), BGy) is a strict inverse to Dx by Theorem 2.21 of
[ScWall], we conclude that Fiy = Kn(F). =

This theorem implies the following interesting and simple explicit formula for local 2-
holonomy for transport 2-functors with covering 2-groups as their structure 2-groupoids.
This is another one of our main results.

4.21. COROLLARY. The formula for local parallel transport for any bigon under any
smooth 2-functor Fy : Po(X) —=BGy is given by the formula

F(v)
Fxl oy r x | = els=>FT( - s)F(v) 'Ine (256)
\_/
5
F(5)

where F' is the 2-functor Fi restricted to 1-morphisms.

Finally, by Corollary 4.9 of [ScWa09], Theorem 2.21 of [ScWall], and Proposition
4.1.3 of [ScWal3], the functors P in each row of

ZHG)® L= Desl (i)
K]ZV| \Kf,” (257)
Z2(GN)* —= Des (in)”

are (weak) inverses to D so this diagram commutes weakly.

5. Examples and magnetic monopoles

As briefly mentioned above, the path-curvature transport 2-functor is motivated by con-
structions in physics. In 1931, Dirac [Di31] studied the charge of a magnetic monopole in
R? and found it to be quantized and proportional to SSQ R, where S? is a sphere enclosing
the magnetic monopole and R is the curvature of the U(1) bundle with connection over
R*\{+} where {+} < R? is the location of the monopole. Of course, the language of bundles
and connections was not around at the time, but the ingredients were there. Because R
is well-defined globally, the integral SSQ R is unambiguously defined. Furthermore, it is a
topological invariant in the sense that it only depends on the homotopy class of the sphere



GAUGE INVARIANT SURFACE HOLONOMY AND MONOPOLES 1409

in R*\{+}. However, for a non-abelian principal G-bundle with connection, R is not glob-
ally defined so it was not clear how to define the magnetic charge. In [WuYa75], [HoTs93],
and [GoNuOI77] the authors define the charge of a magnetic monopole in terms of a mag-
netic flux through a sphere by calculating the holonomy along a family of loops as in
Figure 16. This defines a loop at the identity of the group. Taking the homotopy class of
this loop was the definition of the magnetic charge in the physics literature. [GoNuOI177]
was closer to defining this flux as a double-path-ordered integral, but stopped short and
used other means to analyze it.

We want to point out here that it is not obvious that the methods described in the
literature make sense. For instance, is it necessary to begin with the constant loop?
What should this loop have anything to do with a magnetic flux, which was defined in
the abelian case to be SSQ R. Is the resulting quantity gauge invariant? What does gauge
invariance even mean? And how does one know that these concepts are even correct?

As we show in this section, the path-curvature transport 2-functor introduced in the
previous section describes magnetic flux in terms of surface holonomy. Furthermore,
since this magnetic flux is defined using surface holonomy, for which we have proven
gauge covariance in Section 3.36 (specifically Theorem 3.49), we can meaningfully ask if
the magnetic flux is a gauge invariant quantity. This would be the case if it is invariant
under a-conjugation. We review the interesting cases considered in the physics literature,
those of U(1) monopoles, SO(3) monopoles, and SU(n)/Z(n) for all n. We also consider
the cases U(n) for all n. For all of these examples, we take the subgroup N < m(G) to
be N = {1}, the trivial subgroup of 7 (G). This case is interesting in its own right as the
examples will illustrate.

We do this in two ways. We first start with a transport functor, described in terms
of its differential cocycle data, and use the methods of Section 3.25 and Section 3.36
to reconstruct a transport functor with group-valued holonomies. We then construct the
path-curvature 2-functor and compute surface holonomy. The other method we use, which
is equivalent by Theorem 4.20 and Corollary 4.21, is to use the surface-ordered integral
of equation (150) from [ScWall] and the definition of the differential cocycle data of the
path-curvature 2-functor discussed in Section 4.19. This is unnecessary due to Corollary
4.21 but we do it anyway for the reader’s convenience. In the process, we must choose
weak inverses s™ : Po(M)—="PF (M) to the projections p™ : PJ(M)—"Po(M) associated
to some surjective submersion 7 : Y — M. We will define the 2-functor s for the paths
and bigons of interest to us (rather than defining it for all paths and bigons) in the case
of the first example of U(1) monopoles. We then use the same 2-functor s™ for all other
examples.

For the following discussions, we will be using the following conventions depicted in
Figure 24 for describing coordinates on the sphere.

5.1. ABELIAN U(1) MONOPOLES. First, we will give an explicit example coming from
abelian magnetic monopoles. Let P[n] —= S? be the principal U(1)-bundle described by
the following local trivialization. Denote the northern and southern hemispheres by Uy
and Ug, respectively. We assume that Uy extends a little bit to the southern hemisphere
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Figure 24: The azimuthal angle ¢ is drawn in red and extends from the z axis (pointing
to the left) and goes counterclockwise in the xy-plane. The zenith angle 6 is drawn in
blue and extends from the z axis (pointing vertically) towards the xy-plane.

so that Uyg # @ (and similarly for Ug to the northern hemisphere). Let Y := Uy [ [ Us
and 7 : Y —= S? be the projection. Let sy : Uy —=Y and sg : Us—=Y be the obvious
sections. Define the transition function gyg : Uyg ~ S'—=U(1) along the equator to be

S'3 ¢ gng(d) := ™, (258)

where ¢ is the aziumuthal angle and n is an integer. Equip this bundle with a connection

Ay e QY (Un;U(1)) and Ag € QY (Us; U(1)) given by

Ay = 2%(1 — cos 6)do & Ag = —2%(1 + cos 0)de. (259)

These forms satisfy the property

An = gnsAsgns — dgnsgns (260)

on Uyg so that gyg, An, and Ag are the local differential cocycle data of a principal U(1)-
bundle with connection. Since i : BU(1) —U(1)-Tor is an equivalence of categories, this
differential cocycle data corresponds to a global transport functor (recall (59)).

We now consider the path-curvature 2-functor where N = {1} < m(S') = Z so that
the associated covering 2-group is (R, U(1), 7, &) with 7 : R—=U(1) the universal covering
map defined by ¢ +— €*®. The functor P : Z}(G)* — Des. (i) sends the differential
cocycle object (g, A) to triv : Py (Uy [ | Us)—BG defined by the path-ordered exponential
and the natural transformation g : 7} (triv;) = 75 (triv;) defined on components ¢ € S*
by i(gns(¢)). We partially define s™ : Py(S?) — P3(5?) as follows. We first make the

choice
5 (x) = sn(x) ?f rxeUy (261)
ss(xr) if ze SN\Uy

for objects. We'll be a little sloppy now and define a lift of thin paths and thin bigons on
representatives of thin homotopy classes. We only lift paths, labelled as vy, of the form
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Figure 25: A loop on the sphere is made to always start at the equator at the point e. In
this figure, the loop is drawn for some ¢ in the range 7 < 6 <.

depicted in Figure 25. The reason for this is because we will consider a sequence of such
loops starting at the constant loop at the point e on the equator (so that s™(e) = (e, N))
enclosing the sphere going from Uy to Ug and finally ending on the constant loop at the
point e as depicted in Figure 26. Therefore, we define the assignment on these loops to

—
S

Figure 26: Loops along the ¢ direction on the sphere of constant ¢ are drawn for § = 7
and two intermediate values in the range 0 < 6 < 7. However, each loop is made to start
at the point e so that the sphere is thought of as a bigon S? : id, = id,.

be

Sﬂ(f)/@) o SN*(’)/H) fo<i < % (262>
| ans(e) x seu(ye) rasn(e) i F<O<m

We now define the lift on two bigons. The first bigon ¥ is given by

[0,27] x [0,7/2] 3 (¢,0) — Sx(,0) = 76(0) (263)

and is a bigon id, = 7, which lands in Uy and covers the northern hemisphere. We
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send this bigon to s™(Xy) := sy«(Xn) in Py (S?) because our prescription (140) says
57 (ida)
i
SN*(ldo)
o /|\
FEn) = 5(e) e s (o) swefm) Sx(e) L 57(o) (261)
~_ Vv -
sN#(Vr/2)
id
ST((’YW/Q)

We do a similar thing for the bigon ¥¢ given by
[07 27T] X (7?/2, 7T] 2 (¢7 9) = ES(¢’ 9) = 79(¢) (265)

which is a bigon 7., = id, that lands in Us. This is a bigon covering the southern
hemisphere. However, our boundary data need to match up so that we’ll be able to
compose in Py (S?). Again, following (140)), this is given by

SW(’Y#/2)

85*(’7%/2)
asn(e) /l\ asn(e)
s"(Xg) = sT(e) —='ss(e) SS*éES) ss(®) =—s"(e) (266)
\\\\\__’////

Ss*ﬂid.)
|

Sw(ido)
where the ! signifies the unique 2-isomorphisms from Lemma 3.27. For the full bigon
Y :id, = id, depicting the full sphere as the composition ioN Dide = pp = id,, we

S
break it up into the two pieces defined above and compose vertically. The result of this
is

s™(ide):=sn%(ide)

S”(EN):”SN*(ZN)
SW(VW/Q)::SN*(’YW/Q)

SS*(

57(0) =2 o) so(e) <=2 gna) (267)

5™ (ce):=8nNx(ide)
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We rescale our angle 6 to s = % to be consistent with our earlier notation. Going from
Z2(BGy)™ to Trans%g{l} (M, G-Torgy) from above to define the global transport functor

applied to the sphere, we obtain the following diagram in G-Tor/;

ide

[ Liriv(sp (- o))

Ltriv('yﬂ,/Q)

1
idy,, .
! Ltrlvv('yﬂ_/2)

Ltriv('yﬂ_/z)

(268)

since iy o triv(y) = G for all y and so on for paths and bigons (see the definition of
Ritriv,gw,p) in Section 3.25) and gyg(¢ = 0) = gng(e) = 1. Furthermore, gyg on paths is
the identity since gys came from a natural transformation of ordinary functors between
ordinary categories. With these simplifications, the composition in (268) is given by

[S . {Ltriv(EN( . 25)) for 0
1
2

<41
2 (269)
Luiy(sg( - 2s-1))  for <1

which reduces to a computation on the group level. Therefore, all we have to do is compute
the homotopy class of the path

{triv(ZN( -, 2s)) for 0
S —>
1
2

1
2 270
triv(Xs( - ,2s—1)) for 1 (270)

in the group U(1) thanks to Lemma 4.13. This is easily calculable

vtz =i (5 (- 22)

1 gﬁ(l—cosﬁ)dda (271)

_ e—mﬂ(l—cos 0)

since the paths going along 6 do not contribute to the parallel transport since the con-
nection form only has a d¢ contribution. Similarly,

triv(Tg( - ,2s — 1)) = triv (25 < : ,QQ - 1>) = ginr(lteost) (272)
s
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As a sanity check, notice that

. I . ) ) .
e inm(1—cos §) _ e=inT _ pinm _ ezmr(l-‘rcosZ) (273)

showing that the matching condition (so that our path is continuous) is satisfied. This
matching condition was the one used, for instance, in [WuYaT75] (see equation (47)).
Notice that 1 —cos @ is a monotonically increasing function of 6 for 0 < 6 < 7 starting
at 0 when 6 = 0 and ending at 1 when 6 = Z. Therefore, e "™(17<3%) winds around the
circle starting at 1 and ending at e " = (—1)" winding around monotonically 5 times
clockwise if n is positive and counterclockwise otherwise. Now, the function 1 4 cos@ is
a monotonically decreasing function of ¢ for § < 6 < 7 starting at (—1)" when 6 = 0
and ending at 1 when 6 = 7. Therefore, e”™(1+59) winds around the circle starting at
™™ = (—1)" and ending at 1 winding around monotonically 5 times clockwise if n is
positive and counterclockwise otherwise. In other words, the loop goes a total of n times
around clockwise if n is positive and n times counterclockwise if n is negative and the

2-holonomy along S? is given by (using the notation of Definition 3.50)
holl"(S2) = —n. (274)

If we wanted to, we could have also computed this using differential forms and the formula
for 2-transport (150) of Schreiber and Waldorf [ScWall] locally and pasted the group
elements together vertically as above. Of course, by the equivalence between local smooth
functors and differential forms, our formula in terms of ordinary holonomy bypasses the
rather (a-priori) complicated surface holonomy formula (150) due to Corollary 4.21. It’ll
actually turn out that the surface holonomy formula (150) is not so complicated in this
particular case due to our choice of bigon representing the sphere and the differential
forms representing the connection. We will subsequently do this analysis strictly in terms
of the differential forms associated to the path-curvature 2-functor discussed in Section
4.19.
The curvature is given by

Ry = %Sin 0d0 A do € Q2(Uy; U(1)) (275)
and similarly for Rg € Q?(Us; U(1)). Therefore, the connection 2-form is given by
1 n
- 1 - - &
By =177 (Ry) 57 Ry 1. Sin 0do A do (276)

and similarly for Bg. The 1-form Ay, (see equation (149)) is given by

d 2m 0 0 n
— | =— do B —,— | = —sinf 277
(AEN)Q (d&) L ¢ (0,9) (69’ a¢) 92 Sin ( )
and the 2-transport along Xy is given by

kap(Sy) = Pexp {— LW/Q df (Asy)o (d%) }

/2
= —f df 2sine
0 2

(278)
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because the exponential map R — R is the identity. The 2-transport along g is done
similarly and is given by

mﬁmgz—f o " sin 0. (279)
/2 2
Vertically composing these results yields
T n /2 n
kap(Xs) + kap(EN) :_J d@—sin@—f df —sin 0
/2 2 0 2
g 280
=— f do = sin 0 (280)
0 2

=-n

because the group operation in R is addition. Therefore, the result obtained in terms of
the path-curvature 2-functor in terms of homotopy classes of paths in G agrees with the
double path-ordered exponential formula (150) of Schreiber and Waldorf [ScWall] from

the differential cocycle data, which is what we expect due to Corollary 4.21.

5.2. SO(3) MONOPOLES. Now we will give examples for non-abelian magnetic monopoles.
The first example will be similar to the abelian case since we will consider the following
principal SO(3) bundle over S? defined by the two open sets Uy and Ug with transition
function gyg : Uys =~ S* —= SO(3) to be

gns(@) = e %73 (281)
where

0 1
0

. y & J3 = (282)
0 -1

0
0
0

o O =
O = O
o O O

0
0

form a set of generators for the Lie algebra SO(3). One can give explicit connection forms
Axn and Ag on Uy and Ug respectively as follows

Ay = %(1 —cosf)dp & Ag = —%(1 + cos 0)d¢. (283)

These define local curvature 2-forms Ry and Rg. Indeed, the gauge transformation defined
above shows that

gnsAsgns — dgnsgys = As + J3dg
J.
= —53(1 + cos 0)dp + Jzdo

= %(1 — cos6)do

— Ay

(284)
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because all elements commute. The curvature 2-form is given by

1
RN = dAN + §[AN7AN] = %sin@ dé ~ d(b (285)
again because the elements commute. Since Ry = Rg on Uyg, this defines a SO(3)-
valued closed 2-form on S?. Let 7 : SU(2) — SO(3) be the double cover map so that
N = {1} < m(SO(3)) = Z,. Recall that the induced map on the level of Lie algebras
7:SU(2) — SO(3) is an isomorphism and is given by

1
) = J 2
I(2Z.Uz> Ji, (286)

where the o; are the Pauli matrices

01 0 —i 1 0
0'1:<1 O>, 0'2:<Z. OZ), & 0'3:<0 _1> (287)

As in the general case, define By := 77!(Ry) and Bgs := 77! (Rg), or explicitly
B= % sinf do A do (288)
i

since By = Bg on Uyg. By our analysis in Section 4.19, this defines the differential cocycle
data of the path-curvature 2-functor. We will compute the 2-holonomy in two different
ways. We will follow the same procedure as in the U(1) case and compute 2-holonomy in
terms of homotopy classes of paths and then we will use formula (150).

To help us with the first task, we first recall how SU(2) the way described above in
terms of the Pauli spin matrices is isomorphic to the universal cover of SO(3) described
in terms of homotopy classes of paths starting at the identity in SO(3). An isomorphism

—~—~——

SO(3) = SU(2) from the universal cover of SO(3) to SU(2) can be given by using
the universal property and the fact that SU(2) is simply connected. Given any path
v : [0,1] —= SO(3) starting at v(0) = I3, the 3 x 3 identity matrix, there exists a unique
lift 4 : [0,1] — SU(2) starting at (0) = I, and such that the diagram

SU(2)
- /1
K (289)
[0,1] —=50(3)
commutes. In this way, we can define a map
SO(3)— SU(2) (290)
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By using the universal property one more time, one can show that this map is well-defined.
Finally, it is a smooth diffeomorphism of covering spaces.

We can now check what the value of the path-curvature transport 2-functor is on
the sphere by doing the same computations as above but using the new SO(3)-valued
differential forms. The result for the bigon describing the northern hemisphere is given

by
(- 2 = (2 - 22))

_ 6% Sgﬁ(lfcose)dqﬁ (291)

wJ3(1—cos )

=€

since the paths going along 6 do not contribute to the parallel transport since the con-
nection form only has a d¢ contribution. The path-ordered exponential is reduced to an
ordinary exponential of an integral because only J3 is involved and J3 commutes with
itself. Similarly, the southern hemisphere gives

0
triv(Xg( -, 25 — 1)) = triv (25 ( 2= — 1)) = ¢ mJalltcost) (292)
s

Again, as a sanity check we show that the boundary values match up between the two
hemispheres along the equator:

€7TJ3(17COS 3) — e7TJ3 =Ty = 6771'&]3 _ e*ﬂ]3(1+COS %) (293)
Now we can compute the homotopy class of the path as 6 ranges from 0 to 7. Using
similar arguments, namely that 1 — cosf is a monotonically increasing function of ¢ for 6

between 0 and 7, we see that this defines a nontrivial loop in SO(3) at the identity which
agrees with our previous calculation. Therefore, the 2-holonomy along the sphere is

hol(5?) = —I. (294)

Now we will use the differential cocycle data and integrate using formula (150). First,
we compute Ay, for the northern hemisphere bigon. Because only o3 is involved in the
computation, everything commutes and conjugation is trivial. Therefore,

d 2m o 0 Tos |
(Asy )y (@) = — | do¢ By (%, %) =5 sin 6 (295)

0

and the 2-transport along >y is given by

s =pen - [k (3)]

0=m/2 703
= exp J ——ginf } .
2
0=0 l

(296)
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The 2-transport along g is done similarly and is given by

0=m
kagp(Ss) = exp { f 7% sin@} (297)
0=m/2 21
Vertically composing these results yields
o= mo3 . L0
kap(Xs)kap(Xn) = exp Tsmﬁ =™ = —lhyo (298)
=0

because again every term commutes. We will discuss what these group elements mean
after we finish a few more examples.

5.3. SU(n)/Z(n) MONOPOLES. Another collection of non-abelian examples arise from the
Lie group SU(n). The center of SU(n) is Z(n) where, in the fundamental representation,
elements in Z(n) are of the form

exp { 27:“ ! } T, (299)

where k € {0,1,...,n — 1} and I, is the n x n unit matrix. SU(n)/Z(n) is a Lie group
with fundamental group m(SU(n)/Z(n)) isomorphic to Z(n). To see this, recall that the
universal cover SU W(n) constructed via paths in SU(n)/Z(n) and modding out by
homotopy is naturally isomorphic to SU(n), which is simply connected, by the universal
property of universal covers. The isomorphism preserves the fibers over the identity in
SU(n)/Z(n) and restricts to the isomorphism between m;(SU(n)/Z(n)) and Z(n). The
previous example was the special case n = 2.

The equivalence relation on SU(n)/Z(n) says that two elements A and B of SU(n)
are equivalent if there exists a k € {0,1,...,n — 1} such that

-
AB™! = exp{ Tz}ﬂn. (300)

We denote the elements of equivalence classes with square brackets such as [A].

The possible SU(n)/Z(n) principal bundles over the sphere are determined by the
clutching function along the equator, which is a homotopy class of a loop S'—=SU(n)/Z(n)
which by the isomorphism above is precisely an element of Z(n). The quotient map is
written as 7 : SU(n) — SU(n)/Z(n) and is a covering map of Lie groups. Therefore, it
defines a Lie 2-group.

Let’s first consider the case for n = 3, which is relevant in the theory of quarks and
gluons (see Section 1.4 of [HoTs93]). We fix k € {0,1,2}. Define X to be the element in
the Lie algebra of SU(3) to be

o O

(301)

W | .
o O =
o = O
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The exponential of this matrix is unitary. We define transition functions by

_kgi

gns(9) == exp{—kr(X)} = [exp{—kopX}] = 0 e & 0 : (302)
0 0 e 3

The element X is a scalar multiple of the Gell-Mann matrix Ag. Note we have

gns (0) = gns (2m) = gns (4m) = [I3] € SU(3)/Z(3). (303)

The transition function defines a map ¢ — gns(¢) whose homotopy class determines a
principal SU(3)/Z(3) bundle characterized by the integer k € {0, 1, 2}.
We define a connection on this bundle analogously to the SO(3) case by setting

_ kr(X)
2

_kz(X)

Ay : (1—cost)dp & Ag = 5 (1 + cosf)do. (304)

A similar computation shows that this collection of 1-forms is consistent with the transi-
tion function. The connection 2-form is similarly given by

kX

and likewise for Bg. This defines an SU(3)/Z(3)-valued closed 2-form on S2.

Again, we can do the computation for the 2-holonomy in the two ways described
earlier. The first case is done by computing the homotopy class of the path of holonomies
using the definition of the path-curvature 2-functor of Definition 4.15. The second way is
via the differential forms associated to the path-curvature 2-functor described in Section
4.19 and equation (150). The computation is completely analogous to the previous two
examples.

For the first case, we have

egXSgﬂ(lfCOSG)dqb] if0<6< %
hol*(S%) = | 6 — )

[ean(lfcos@] fo<o<3g
0 — {[6k7rX(1+cos0)] i % <0<

(306)

e—gXSS”(l-&-cosG)dqb] if T <
f
f

27mik
=e€e 3 ]Ig.

As for the computation in terms of differential forms, also by analogous computations
to previous cases,

2m
(Asy)g 4N _ —f dgzﬁk—X sinf = —kw X sin6 (307)
a6 .
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and likewise for (Asy), () . Also

/2
kap(Xy) = exp {J kX sinf d@} (308)
0

and finally the 2-holonomy along the sphere is

27mik

hol®(5?) = k4 5(Xg)kap(Ey) = exp{2mkX} = e75 Is. (309)
For the general case of SU(n), by using the matrix
1
; 1
Xi= - (310)

1—n

the formulas for the transition function, connection 1-forms, and connection 2-forms are
all the same with this new X replacing the old one. Completely analogous computations
lead to a 2-holonomy along the sphere given by

2mik

w L, (311)

hol"(S2%) = ¢

where k € {0,1,...,n — 1}. The result is the magnetic charge of a magnetic monopole
computed as a non-abelian flux in SU(n)/Z(n) gauge theories.

5.4. U(n) MONOPOLES. We now discuss yet another collection of examples generalizing
the U(1) case. Consider the group U(n) of unitary n x n matrices. The Lie algebra, U(n)
consists of Hermitian matrices. The universal cover of U(n) is SU(n) x R. The covering
map 7 : SU(n) x R—=U(n) is defined by 7(4,t) := Ae?*™. The image of 7 is clearly a
U(1) subgroup of U(n). The fiber of this covering map is given by the kernel which is

ker T = {(A,t) ‘A: e ™ and det A = 2™ =1 — t = i kEZ}
n

_ {<eﬂn %) ke Z} (312)

~ Z.
Consider the Lie algebra element along this real line
X = (0,,1), (313)
where 0,, is the n x n zero matrix. Then its image in U(n) under 7 is

7(X) = 2mil,. (314)
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With this, for every integer k, we define the transition function, connection 1-forms,
and connection 2-forms completely analogously to the previous examples (specifically the
R —U(1) example), namely

gns(d) = €™, (315)
k k
An = 2—1(1 — cos 0),,d¢ & Ag = —2—2,(1 + cos 0)I,,dg, (316)
and L .
l?:z.1(§smﬂﬂnd9Ad¢)::—Z—QHQGMJ)dQAd¢ (317)
i T

In terms of the path of holonomies via the path-curvature 2-functor, the surface holonomy
is

k1, SO (1—cos 0)do

T ok if0<0<3

hol™)(5%) = |0~ {e B reost)ds i 2 < g <
) —0 ekZTH (1—cos 0) fo<h < % (318>
— Q*TH"(P&OSH) g <0<

=—-keZ.

If we want to compute the surface holonomy in terms of formula (150), we first compute

27
MM)<;>—Jd¢£$M«%D=§mwmmD (319)

0
so that we get

/2 k /2 k
kan(Sy) = Poxp —J‘ a0 5 sinf (0, 1) b = JM,—J a0 5 sinf (320)
0 0

and the 2-holonomy along the sphere is

hol*(S?) = ka 5(Ss)kas(Sn)

T /2

= (H"’_J do Esine) ]In,—J do EsinQ
/2 2 0 2

= (Hn, —J do Esin@)
0 2

= (I, k).

(321)
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5.5. MAGNETIC FLUX IS A GAUGE-INVARIANT QUANTITY. In this section we state a
theorem that is trivial to prove in the formalism presented above but gives an interesting
physical interpretation. As mentioned earlier, the definition of the magnetic flux in the
literature [HoTs93] is given as the homotopy class of a loop of holonomies. However, it
was not known [GoNuOI77] how to define it as a surface-ordered integral except in the
abelian case. The constructions in this paper use the theory of transport 2-functors as
models for 2-bundles with 2-connections to describe this loop of holonomies in terms of a
transport 2-functor. The equivalence between this description and the definition in terms
of surface holonomy is made precise. This motivates the following definition.

5.6. DEFINITION. Let P —= M be a principal G-bundle with connection over M and
denote the associated transport functor by tra. Let ¥ : S? —= M be the map of a smooth
sphere in M. Let N < m(G) be a subgroup, Gy —= G the associated N-cover, BGy the
associated Lie 2-group, and Ky(tra) the associated path-curvature transport 2-functor.
The 2-holonomy holE>E®1(53) s the magnetic flux of any magnetic monopole enclosed
by ¥ associated to tra and N.

All the previous examples relied on choices for the open cover, paths and bigons used
to describe the sphere, and choices of lifts of paths and bigons. It is not immediately clear
that the surface holonomy computed is independent of these choices. Theorems 3.49 and
4.20 give us two important results, the first of which tells us the magnetic flux is indeed
independent of these choices.

5.7. COROLLARY. Under the assumptions of Definition 5.6, the magnetic flux is a gauge-
invariant quantity (in terms of the notation of Definition 3.55)

hol K~ (r)l(%3) € Inv(a). (322)

PRrROOF. Choose a marking for the thin sphere as a thin bigon ¥ : v = ~ from a thin
loop to itself. Then Ky (tra)(3) € ker 7 by the source-target matching condition (recall
comment preceding (148)). By Theorem 3.49, 2-holonomy along a sphere for any gauge 2-
group is well-defined up to a-conjugation. But a-conjugation for covering 2-groups agrees
with ordinary conjugation by a lift by Lemma 4.5. Therefore, the a-conjugation action
restricted to G x ker 7 is trivial because ker 7 is a central subgroup of Gy by Lemma 3.4. m

A corollary of this and Theorem 4.20 is the following which relates the magnetic flux
to a surface integral of the magnetic field. This is more of a physics corollary than a math
corollary.

5.8. COROLLARY. The magnetic flux (Definition 5.6) can be computed as a surface inte-
gral by using (150) locally. This surface integral, which lands in the covering group, is the
analogue of SSQ R where in electromagnetism R is the electromagnetic field strength due
to the local potential A.

Therefore, the surface holonomies of transport 2-functors give a mathematically rigor-
ous explanation for the topological quantum number (the magnetic charge) associated to
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magnetic monopoles for gauge theories with any structure/gauge group in the language of
magnetic flux. It is topological in the sense that it only depends on the homotopy class of
the sphere by Corollary 4.18. Furthermore, it expresses this quantity as a group element
in the center of the universal cover of the gauge group. We emphasize that no Higgs field
was introduced to do these computations. This therefore gives a rigorous mathematical
result first mentioned by Goddard, Nuyts, and Olive at the end of Section 2 of their pa-
per [GoNuOI177] by using the notion of transport 2-functors introduced by Schreiber and
Waldorf in [ScWal3] to describe magnetic flux generalizing the notion from the theory of
electromagnetism to non-abelian gauge theories.

A. Smooth spaces

We will briefly state important definitions and smooth structures needed in this paper.
The category of finite-dimensional manifolds is not suitable for our purposes, nor is the cat-
egory of certain infinite-dimensional manifolds. This section reviews diffeological spaces,
which constitute one candidate for a notion of smooth spaces. For a review of smooth
spaces that also compares several other candidates, please refer to [BaHol1].

A.1. DEFINITION. A smooth space is a set X together with a collection of plots {p :
U — X}, called its smooth structure, where each U is an open set in some R™ (n can
vary) satisfying the following conditions.

i) If p : U—=X s a plot and 0 : V —=U, where V is an open set of some R™, is a
smooth map, then p o8 :V — X is a plot.

i) Every map R®— X is a plot.

i) Let o : U—=X be a function and let {U;};er be a collection of open sets covering U
with i; : Uy —= U denoting the inclusion. Then if ¢ oi; : Uj—= X s a plot for all
jel, then p:U—X is a plot.

A.2. DEFINITION. A function f : X —Y between two smooth spaces is smooth if for
every plot o : U—X of X, fop:U—Y is a plot of Y.

A.3. EXAMPLE. Let M be a smooth manifold. The manifold smooth structure has as its
collection of plots all infinitely differentiable functions ¢ : U —= M for various open sets
U in Fuclidean space. M with this collection of plots forms a smooth space. With this
smooth structure, for any two manifolds M and N, a function M — N is smooth if and
only if it is differentiable in the usual sense.

A.4. EXAMPLE. Let A be a subset of a smooth space X and denote the inclusion by
1: A — X. The subspace smooth structure on A has as its collection of plots all functions
¢ : U—=A such thatiop : U—=X are plots of X. With this smooth structure, the inclusion
1: A— X is smooth.




1424 A. PARZYGNAT

A.5. EXAMPLE. Let X be a smooth space, ~ an equivalence relation on X, and q :
X —=X/. the quotient map. The quotient smooth structure on X /. has as its collection
of plots all functions ¢ : U—= X/ such that there exists an open cover {U;}je; along

with plots p; : Uj—= X for X such that
Uj
IA (323)
U

commutes for all j € J. With this smooth structure, the quotient map q : X — X/ is
smooth.

A.6. EXAMPLE. Let X andY be smooth spaces. The product smooth structure on X xY
has as its collection of plots all functions ¢ : U— X x Y such that tx op : U—X
and my o @ : U—=Y are both plots of X and Y, respectively. Here mx : X xY — X
and Ty : X x Y —=Y are the projection maps and are smooth with respect to this smooth
structure.

A.7. EXAMPLE. Let X and Y be two smooth spaces. The mapping smooth structure on
the set of functions YX of X into Y is defined as follows. A function ¢ : U—=Y*X is a
plot if and only if the associated function ¢ : U x X —=Y, defined by ¢(u, x) := p(u)(x), is
smooth. With this smooth structure and the smooth structure on a product, the adjunction
ZXY =~ (Z¥)X s an isomorphism in the category of smooth spaces for all X,Y, Z.

Index of (frequently used) notation

Notation Name/description Location Page

G a Lie group Def 2.3 1325

BG a one-object groupoid Def 2.3 1325
Gr Lie groupoid/2-groupoid Def 2.4/3.6 1325/1355

G-Tor the category of G-torsors Def 2.8 1327

PX paths with sitting Def 2.9 1328

instants in X
BX bigons in X Def 2.10 1328
1 smooth space of

P'X thin paths in X Def 2.10 1328

P1(X) thin path groupoid of X Def 2.11 1329

L, left multiplication by ¢ Eqn (18) 1329

T “target” category/2-category Def 2.13 1330

i G T realization of structure Def 2.13 1330

groupoid in T’
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T:Y —M
triv
triv;

Triv’ ()

Rec! & Ex!
v & c

/
eiM
hol”

m
G/Inn(G)

holl#]

(H,G, T, )
Pa(X)

P?X
Triv2 (i)
Des (i)

a surjective submersion
local trivialization functor
triv; := ¢ o triv
category of m-local
i-trivializations
n-fold fiber product
ofm:Y—M
descent category
extraction functor
smooth descent category
category of smooth
m-local i-trivializations
category of transport
functors
Cech path groupoid of M
canonical projection
weak inverse to p”
Reconstruction functor
Lie algebra of G
path transport
path-ordered exponential
category of differential
cocycles subordinate to m
limit of Recl & Ex! over 7
forgets trivialization
& its weak inverse
group-valued
transport extraction
thin marked loop space of M
Z-holonomy of
a transport functor F'
thin loop/sphere markings
conjugacy classes in GG
gauge-invariant
holonomy /2-holonomy
crossed module
path 2-groupoid of X
smooth space of thin
bigons in X
2-category of
m-local i-trivializations
descent 2-category

Def 2.13
Def 2.13
Def 2.13

Def 2.13, 2.14

Eqn (20)

Def 2.16, 2.17
After Def 2.17
After Def 2.20

After Def 2.21

After Def 2.22
Def 2.25

Eqn (33)/Lem 3.27
Eqn (33)/Lem 3.27

Eqn (35)
Sec 2.27
Eqn (39)
Eqn (40)

Def 2.29
Eqn (59)
Eqn (59)

Def 2.33/3.37
Eqn (67)
Def 2.37/3.40
Def 2.41/3.45

Before Thm 2.47

Def 2.48/3.50

Def 3.2
Def 3.13

Def 3.13

After Def 3.15
Def 3.17-3.19

1425

1330
1330
1330

1330

1331

1331
1331
1332

1333

1333

1333

1335/1369

1335/1369
1336
1337
1338
1338

1340
1342
1342

1343/1379
1346
1346/1380

1347/1382
1352

1352/1389

1353
1360

1360

1361
1361
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Z3(&)"
&2M
S2M
H/o
Inv(a)
G
Gy
N
G-Tory
Ky(tra)
IN
trivy

I, (M)
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