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SOME INSIGHTS ON BICATEGORIES OF FRACTIONS:
REPRESENTATIONS AND COMPOSITIONS OF 2-MORPHISMS

MATTEO TOMMASINI

Abstract. In this paper we investigate the construction of bicategories of fractions
originally described by D. Pronk: given any bicategory C together with a suitable class of
morphisms W, one can construct a bicategory C [W−1], where all the morphisms of W
are turned into internal equivalences, and that is universal with respect to this property.
Most of the descriptions leading to this construction were long and heavily based on the
axiom of choice. In this paper we considerably simplify the description of the equivalence
relation on 2-morphisms and the constructions of associators, vertical and horizontal
compositions in C [W−1], thus proving that the axiom of choice is not needed under
certain conditions. The simpli�ed description of associators and compositions will also
play a crucial role in two forthcoming papers about pseudofunctors and equivalences
between bicategories of fractions.

1. Introduction

In [P1996] Dorette Pronk introduced the notion of (right) bicalculus of fractions, ge-
neralizing to the framework of bicategories the concept of (right) calculus of fractions,
originally described by Pierre Gabriel and Michel Zisman in [GZ1967] in the framework of
categories. To be more precise, given any bicategory C and any class W of 1-morphisms
in it, one considers the following set of axioms:

(BF1): for every object A of C , the 1-identity idA belongs to W;

(BF2): W is closed under compositions;
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(BF3): for every morphism w : A → B in W and for every morphism f : C → B, there
are an object D, a morphism w′ : D → C in W, a morphism f ′ : D → A and an
invertible 2-morphism α : f ◦ w′ ⇒ w ◦f ′;

(BF4): (a) given any morphism w : B → A inW, any pair of morphisms f 1, f 2 : C → B
and any 2-morphism α : w ◦f 1 ⇒ w ◦f 2, there are an object D, a morphism
v : D → C in W and a 2-morphism β : f 1 ◦v⇒ f 2 ◦v, such that the following
two compositions are equal:

B

D C A,

B

⇓ α

f1

f2

v

w

w

C

D B A;

C

⇓ β

f2

f1

v

v

w

(b) if α in (a) is invertible, then so is β;

(c) if (D′, v′ : D′ → C, β′ : f 1 ◦ v′ ⇒ f 2 ◦ v′) is another triple with the same
properties as (D, v, β) in (a), then there are an object E, a pair of morphisms
u : E → D and u′ : E → D′, and an invertible 2-morphism ζ : v ◦ u ⇒ v′ ◦ u′,
such that v ◦ u belongs to W and the following two compositions are equal:

D

E C

B,D′

C

⇓ ζ

⇓ β′

f1

f2

u

u′

v

v′

v′

C

D B;

E C

D′

⇓ β

⇓ ζ

f1

f2

u v

u′

v

v′

(BF5): if w : A→ B is a morphism in W, v : A→ B is any morphism and if there is an
invertible 2-morphism v⇒ w, then also v belongs to W.

For simplicity of exposition, in axioms (BF4a) and (BF4c) we omitted the associators
of C . Also in the rest of this paper we will omit all the associators of C , as well as the
right and left unitors (except for the few cases where we cannot ignore them discussing
coherence results); the interested reader can easily complete the proofs with the missing
associators and unitors (by coherence, any two ways of �lling a diagram of C with such
2-morphisms will give the same result). In particular, each statement in the rest of this
paper (except Corollaries 4.4 and 8.1) is given without mentioning the associators of C ,
(as if C is a 2-category), but holds also when C is simply a bicategory.

A pair (C ,W) is said to admit a (right) bicalculus of fractions if all the axioms (BF)
are satis�ed (actually in [P1996, � 2.1] condition (BF1) is slightly more restrictive than the
version stated above, but it is not necessary for any of the constructions in that paper).
Under these conditions, Pronk proved that there are a bicategory C [W−1] (called (right)
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bicategory of fractions) and a pseudofunctor UW : C → C [W−1], satisfying a universal
property (see [P1996, Theorem 21]). In order to describe the main results of this paper,
we need to recall brie�y the construction of C [W−1] as described in [P1996, � 2].

The objects of C [W−1] are the same as those of C . A morphism from A to B in
C [W−1] is any triple (A′,w, f), where A′ is an object of C , w : A′ → A is an element of
W and f : A′ → B is a morphism of C . In order to compose such triples, we need to �x
the following set of choices:

C(W): for every set of data in C as follows

A′ B B′
f v

(1)

with v in W, using axiom (BF3) we choose an object A′′, a pair of morphisms v′ in
W and f ′, and an invertible 2-morphism ρ in C , as follows:

A′′

A′ B′.B

ρ
⇒

v

f ′

f

v′

(2)

Then, given any pair of morphisms from A to B and from B to C in C [W−1] as
follows

f :=
(
A A′ B

)
w f

and g :=
(
B B′ C

)
v g

(3)

(with both w and v in W), one has to use the choice for the pair (f, v) in the set C(W),
in order to get data as in (2); after having done that, one sets g ◦ f := (A′′,w ◦ v′, g ◦ f ′).

Since axiom (BF3) does not ensure uniqueness in general, the set of choices C(W) in
general is not unique; therefore di�erent sets of choices give rise to di�erent compositions
of morphisms, hence to di�erent bicategories of fractions. Such di�erent bicategories are
equivalent by [P1996, Theorem 21] (using the axiom of choice).

Given any pair of objects A,B and any pair of morphisms (Am,wm, fm) : A → B
for m = 1, 2 in C [W−1], a 2-morphism from (A1,w1, f 1) to (A2,w2, f 2) is an equivalence
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class of data (A3, v1, v2, α, β) in C as follows

A1

A3A B,

A2

⇓ β⇓ α

f2

f1

v1

v2
w2

w1

(4)

such that w1 ◦ v1 belongs to W and such that α is invertible in C (in [P1996, � 2.3] it is
also required that w2 ◦ v2 belongs to W, but this follows from (BF5)). Any other set of
data

A1

A′3A B

A2

⇓ β′⇓ α′

f2

f1

v′1

v′2
w2

w1

(5)

(such that w1 ◦ v′1 belongs to W and α′ is invertible) represents the same 2-morphism
in C [W−1] if and only if there is a set of data (A4, z, z′, σ1, σ2) in C as in the following
diagram

A1

A′3 A4 A3,

A2

⇒
σ1

⇐
σ2

v′2

z

v2

v′1

z′

v1

(6)

such that:

• w1 ◦ v1 ◦ z belongs to W;

• σ1 and σ2 are both invertible;
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• the compositions of the following two diagrams are equal:

A′3 A1

A4 A3

A′3 A2

A,
⇓ σ1

⇓ α
⇓ σ2

z′

v′1

v2

z

w1z′

v′2

w2

v1
A1

A4 A′3 A;

A2

⇓ α′
z′

w1

v′2 w2

v′1

(7)

• the compositions of the following two diagrams are equal:

A′3 A1

A4 A3 B,

A′3 A2

⇓ σ1

⇓ β
⇓ σ2

z′

v′1

v2

z

f1

f2

z′

v′2

f2

v1

A4 A′3

A1

B.

A2

⇓ β′
z′

f1

v′2

v′1

(8)

For symmetry reasons, in [P1996, � 2.3] it is also required that w1 ◦ v′1 ◦ z′ belongs to
W, but this follows from (BF5), using the invertible 2-morphism w1 ◦σ1 : w1 ◦ v′1 ◦ z′ ⇒
w1 ◦ v1 ◦ z, so we will always omit this unnecessary technical condition. The previous
relation is an equivalence relation. We denote by[

A3, v1, v2, α, β
]

:
(
A1,w1, f 1

)
=⇒

(
A2,w2, f 2

)
(9)

the class of any data as in (4); these classes are the 2-morphisms of the bicategory of
fractions. With an abuse of notation, we will say that �diagram (4) is equivalent to (5)�
meaning that �the data (A3, v1, v2, α, β) are equivalent to the data (A′3, v′1, v′2, α′, β′)�.
Analogously, we will say that �(4) represents (9)� meaning that �the data (A3, v1, v2, α, β)
represent (9)�. We denote the morphisms of C [W−1] by f, g, · · · and the 2-morphisms
by Γ,∆, · · · . Even if C is a 2-category, in general C [W−1] will only be a bicategory
(with trivial right and left unitors, but non-trivial associators if the set of choices C(W)
is non-unique). From time to time we will have to take care explicitly of the associators
of C [W−1]; whenever we will need to write them we will use the notation ΘC ,W

• .

Until now we have not described how associators and vertical/horizontal compositions
of 2-morphisms are constructed in C [W−1]. For such constructions, in [P1996, � 2.2, � 2.3
and Appendix] it is required to �x an additional set of choices:

D(W): for any morphism w : B → A in W, any pair of morphisms f 1, f 2 : C → B and
any 2-morphism α : w ◦f 1 ⇒ w ◦f 2, using axiom (BF4a) we choose a morphism
v : D → C in W and a 2-morphism β : f 1 ◦ v⇒ f 2 ◦ v, such that α ◦ v = w ◦β.
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Having �xed also this additional set of choices, the descriptions of associators and
vertical/horizontal compositions in [P1996] are very long and they do not allow much
freedom on some additional choices that are done at each step of the construction (see
the explicit descriptions in the next pages). Di�erent sets of choices D(W) (with a �xed
set of choices C(W)) might appear to lead to di�erent bicategories of fractions, having
the same objects, morphisms, 2-morphisms and unitors, but (a priori) di�erent associa-
tors and vertical/horizontal compositions. The bicategories obtained with di�erent sets
of choices D(W) (with a �xed set of choices C(W)) are obviously equivalent (using the
already mentioned [P1996, Theorem 21]), but one cannot get better results using only the
statements of [P1996].

In this paper we will prove that the choices D(W) are actually not necessary because
di�erent sets of choices D(W) (with a �xed set of choices C(W)) give the same bicate-
gory of fractions instead of simply equivalent ones. In the process of proving this fact,
we will also considerably simplify the descriptions of associators and vertical/horizontal
compositions in C [W−1], thus providing a useful set of tools for explicit computations in
any bicategory of fractions.

In order to prove these results, we will �rst need a simple way of comparing (repre-
sentatives of) associators and vertical/horizontal compositions induced by di�erent sets
of choices D(W). More generally, since the current way of comparing representatives of
2-morphisms (based on the existence of a set of data (A4, z, z′, σ1, σ2)) is too long, we will
prove (and then use) the following comparison result for any pair of 2-morphisms with
the same source and target in C [W−1].

1.1. Proposition. (comparison of 2-morphisms in C [W−1]) Let us �x any pair
(C ,W) satisfying conditions (BF), any pair of objects A,B, any pair of morphisms fm :=

(Am,wm, fm) : A → B for m = 1, 2 and any pair of 2-morphisms Γ,Γ′ : f 1 ⇒ f 2 in
C [W−1]. Then there are an object A3, a morphism v1 : A3 → A1 in W, a morphism
v2 : A3 → A2, an invertible 2-morphism α : w1 ◦ v1 ⇒ w2 ◦ v2 and a pair of 2-morphisms
γ, γ′ : f 1 ◦ v1 ⇒ f 2 ◦ v2, such that:

Γ =
[
A3, v1, v2, α, γ

]
and Γ′ =

[
A3, v1, v2, α, γ′

]
. (10)

In other words, given any pair of 2-morphisms with the same source and target in
C [W−1], they admit representatives which only di�er (possibly) in the last variable.
Moreover, given any pair of 2-morphisms Γ,Γ′ : f 1 ⇒ f 2 with representatives satisfy-
ing (10), the following facts are equivalent:

(i) Γ = Γ′;

(ii) there are an object A4 and a morphism z : A4 → A3 in W, such that γ ◦ z = γ′ ◦ z;

(iii) there are an object A4 and a morphism z : A4 → A3, such that v1 ◦ z belongs to W
and such that γ ◦ z = γ′ ◦ z.
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This result implies that the universal pseudofunctor UW : C → C [W−1] mentioned
above in general is not 2-full, neither 2-faithful, but only 2-full and 2-faithful �modulo
morphisms of W� (for more details, see Remark 3.5).

Using Proposition 1.1 we will show some simple procedures (still long, but shorter
than the original ones in [P1996]) in order to compute:

(i) the associators of C [W−1]: in Proposition 4.1 we show how to compute associa-
tors in a way that does not depend on the set of choices D(W);

(ii) vertical composition of 2-morphisms: in Proposition 5.1 we will prove that this
construction does not depend on the set of choices C(W) nor on the set of choices
D(W). In other words, vertical compositions are the same in any bicategory of
fractions for (C ,W) (a priori we only knew that objects, morphisms, 2-morphisms
and unitors are the same in any bicategory of fractions for (C ,W));

(iii) horizontal composition of 2-morphisms with 1-morphisms on the left (Propo-
sition 6.1) and on the right (Proposition 7.1): in both cases we will prove that the
composition does not depend on the set of choices D(W).

We omit here the precise statements of the four propositions mentioned above since
they are rather long and technical. Note that the explicit construction of representatives
for associators and vertical/horizontal compositions in a bicategory of fractions will still
depend:

• on a choice of representatives for the 2-morphisms that we want to compose (in
Propositions 5.1, 6.1 and 7.1);

• on some additional choices of data of C (these are the choices called (F1) � (F10)
in the next sections).

However, any two representatives (for an associator or a vertical/horizontal compo-
sition), even if they are constructed in di�erent ways and hence appear di�erent, are
actually representatives for the same 2-morphism. If you need to use the constructions
described in Propositions 4.1, 5.1, 6.1 or 7.1 for associators and vertical/horizontal com-
positions but you don't remember the precise statements, the general philosophy behind
all such results is the following:

(a) �rstly, you have to use the set of choices C(W) in order to construct the compositions
on the level of 1-morphisms of C [W−1] (see (3));

(b) now you need to construct a representative of a 2-morphism between the morphisms
constructed in (a). If you need to compute associators, jump to point (c) below; if
you need to compute compositions of the form (ii) and (iii), then the diagram that
you want to construct can be partially �lled with 2-morphisms of C , coming from any
chosen representatives for the 2-morphisms that we are composing;
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(c) the missing �holes� in the diagram that you are constructing can be �lled using axioms
(BF3) and (BF4) �nitely many times (an example of such an iterative procedure can
be found in the remarks following each proposition mentioned above);

(d) in general, axioms (BF3) and (BF4) do not ensure uniqueness: in (c) you might
get di�erent ��llings� for the holes, and hence di�erent diagrams. The results in
Propositions 4.1, 5.1, 6.1 and 7.1 ensure that di�erent choices in (b) and (c) induce
diagrams representing the same 2-morphism in C [W−1]. So you do not have to worry
about the choices made above: you simply take the equivalence class of the diagram
that you constructed, and you are done.

Each horizontal composition in any bicategory can be obtained as a suitable combi-
nation of compositions of the form (ii) and (iii). Thus Propositions 5.1, 6.1 and 7.1 prove
immediately that horizontal compositions in C [W−1] do not depend on the set of choices
D(W). This, together with (i) and (ii), implies at once the main result of this paper:

1.2. Theorem. (the structure of C [W−1]) Let us �x any pair (C ,W) satisfying condi-
tions (BF). Then the construction of C [W−1] depends only on the set of choices C(W),
i.e., di�erent sets of choices C(W) (for any �xed set of choices C(W)) give the same
bicategory of fractions, instead of only equivalent ones.

In particular, we get immediately:

1.3. Corollary. Let us suppose that for each pair (f, v) with v in W as in (1) there is
a unique choice of (A′′, v′, f ′, ρ) as in C(W). Then the construction of C [W−1] does not
depend on the axiom of choice. The same result holds if �unique choice� above is replaced
by �canonical choice� (i.e., when there is a canonical choice of pullback diagrams or iso
comma squares for axiom (BF3)).

In Section 8 we will show some explicit applications of the results mentioned so far.
In particular, we will describe a simple procedure for checking the invertibility of a 2-
morphism in any bicategory of fractions:

1.4. Proposition. (invertibility of 2-morphisms in C [W−1]) Let us �x any pair
(C ,W) satisfying conditions (BF), any pair of morphisms fm := (Am,wm, fm) : A→ B

in C [W−1] for m = 1, 2 and any 2-morphism Γ : f 1 ⇒ f 2. Then the following facts are
equivalent:

(i) Γ is invertible in C [W−1];

(ii) Γ has a representative as in (4), such that β is invertible in C ;

(iii) given any representative (4) for Γ, there are an object A4 and a morphism u : A4 →
A3 in W, such that β ◦ u is invertible in C ;

(iv) given any representative (4) for Γ, there are an object A4 and a morphism u : A4 →
A3, such that v1 ◦ u belongs to W and such that β ◦ u is invertible in C .
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Note that in (4) α is always invertible by the de�nition of 2-morphism in C [W−1].

As another application, we obtain a nice description of some associators in C [W−1] in
terms of the associators in the original bicategory C . For the precise statement we refer
directly to Corollary 8.1.

We are going to apply all the results mentioned so far in the next two papers [T2014(a)]
and [T2014(b)], where we will investigate the problem of constructing pseudofunctors and
equivalences between bicategories of fractions.

In the Appendix of this paper we will give an alternative description of 2-morphisms
in any bicategory of fraction, inspired by the results of Proposition 1.1. This alternative
description is not further exploited in this paper since it does not interact well with
vertical and horizontal compositions; it does seem interesting for other purposes as it
is considerably simpler than the description given above: instead of having classes of
equivalence where each representative is a collection of 5 data (A3, v1, v2, α, β) as in (4),
we have classes of equivalence where each representative is a collection of 3 data of C . In
addition, the equivalence relation in this alternative description is much simpler than the
one recalled above.

2. Notations and basic lemmas

Wemainly refer to [L] and [PW, � 1] for a general overview on bicategories, pseudofunc-
tors (i.e., homomorphisms of bicategories), lax natural transformations and modi�cations.
For simplicity of exposition, each composition of 1-morphisms and 2-morphisms will be
denoted by ◦, both in C and in C [W−1].

In the rest of this paper we will often use the following four easy lemmas. Even if
each of them is not di�cult for experts in this area, they may be harder for inexperienced
readers; so we give a detailed proof for each of them.

2.1. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF). Let us �x any mor-
phism w : B → A in W, any pair of morphisms f 1, f 2 : C → B and any pair of
2-morphisms γ, γ′ : f 1 ⇒ f 2, such that w ◦ γ = w ◦ γ′. Then there are an object E and a
morphism u : E → C in W, such that γ ◦ u = γ′ ◦ u.

Proof. We set:

α := w ◦ γ : w ◦f 1 =⇒ w ◦f 2.

Then condition (BF4a) is obviously satis�ed by the set of data:

D := C, v := idC , β := γ : f 1 ◦ v =⇒ f 2 ◦ v .
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Since we have also α = w ◦ γ′ by hypothesis, (BF4a) is also satis�ed by the data:

D′ := C, v′ := idC , β′ := γ′ : f 1 ◦ v′ =⇒ f 2 ◦ v′ .

Then by (BF4c) there are an object E, a pair of morphisms u, u′ : E → C (with u in
W) and an invertible 2-morphism ζ : u⇒ u′, such that:(

γ′ ◦ u′
)
◦
(
f 1 ◦ ζ

)
=
(
f 2 ◦ ζ

)
◦
(
γ ◦ u

)
.

Using the coherence axioms on the bicategory C and the fact that ζ is invertible, this
implies that γ ◦ u = γ′ ◦ u.

The next two lemmas prove that if conditions (BF) hold, then conditions (BF3),
(BF4a) and (BF4b) hold under less restrictive conditions on the morphism w. To be
more precise, instead of imposing that w belongs to W, it is su�cient to impose that
z ◦w belongs to W for some morphism z in W (as a special case, one gets back again
(BF3), (BF4a) and (BF4b) when we choose z as a 1-identity).

2.2. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF). Let us choose any
quadruple of objects A,B,B′, C and any triple of morphisms w : A → B, z : B → B′

and f : C → B, such that both z and z ◦w belong to W. Then there are an object D, a
morphism w′ in W, a morphism f ′ and an invertible 2-morphism α as follows:

D A

C B B′.

α⇑

zf

w′ w

f ′

Proof. Since z ◦w belongs to W, we can apply axiom (BF3) to the pair of morphisms
(z ◦f, z ◦w), so we get an object E, a morphism t : E → C in W, a morphism g : E → A
and an invertible 2-morphism γ : z ◦f ◦ t ⇒ z ◦w ◦ g. Since z belongs to W, we can
apply (BF4a) and (BF4b) to the invertible 2-morphism γ. So there are an object D, a
morphism r : D → E in W and an invertible 2-morphism α : f ◦ t ◦ r ⇒ w ◦ g ◦ r, such
that γ ◦ r = z ◦α. Then we set f ′ := g ◦ r : D → A and w′ := t ◦ r : D → C; this last
morphism belongs to W by construction and (BF2). This su�ces to conclude.

2.3. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF). Let us choose any
quadruple of objects A,A′, B, C and any quadruple of morphisms w : B → A, z : A→ A′

and f 1, f 2 : C → B, such that both z and z ◦w belong to W. Moreover, let us �x any
2-morphism α : w ◦f 1 ⇒ w ◦f 2. Then there are an object D, a morphism v : D → C
in W and a 2-morphism β : f 1 ◦ v ⇒ f 2 ◦ v, such that α ◦ v = w ◦β. Moreover, if α is
invertible, so is β.
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B

D C A A′,

B

⇓ α

f1

v

wf2

w

z

C

D B

C

A A′.⇓ β
w z

f1
v

v f2

Proof. Since z ◦w belongs to W, we can apply (BF4a) to the 2-morphism

z ◦α : (z ◦w) ◦ f 1 =⇒ (z ◦w) ◦ f 2.

So there are an object E, a morphism t : E → C in W and a 2-morphism γ : f 1 ◦ t⇒
f 2 ◦ t, such that:

z ◦α ◦ t = z ◦w ◦ γ.

Since z belongs to W, by Lemma 2.1 there are an object D and a morphism r : D → E
in W, such that:

α ◦ t ◦ r = w ◦ γ ◦ r . (11)

Then we de�ne v := t ◦ r : D → C; this morphism belongs to W by construction
and (BF2). Moreover, we set β := γ ◦ r : f 1 ◦ v ⇒ f 2 ◦ v. Then from (11) we get that
α ◦ v = w ◦ β. Moreover, if α is invertible, then by (BF4b) so is γ, hence so is β.

2.4. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF), any triple of objects
A,B,C and any pair of morphisms w : C → B and z : B → A, such that both z and z ◦w
belong to W. Then there are an object D and a morphism v as below, such that w ◦ v
belongs to W:

D C B A.
v w z

Proof. First of all, we apply axiom (BF3) on the pair (z, z ◦w). Since z ◦w belongs to
W by hypothesis, there are an object R, a morphism p in W, a morphism q and an
invertible 2-morphism α as below:

R

B C.A

α
⇒

z ◦w

q

z

p

Now let us apply axioms (BF4a) and (BF4b) to the invertible 2-morphism α : z ◦ p⇒
z ◦(w ◦ q). Since z belongs to W by hypothesis, there are an object D, a morphism
r : D → R in W and an invertible 2-morphism β : p ◦ r⇒ w ◦ q ◦ r, such that α◦ r = z ◦β.
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By construction both p and r belong toW, hence also p ◦ r belongs toW by axiom (BF2).
Since β is invertible, then by (BF5) we conclude that also w ◦ q ◦ r belongs to W. Then
in order to conclude it su�ces to de�ne v := q ◦ r : D → C.

3. Comparison of 2-morphisms in a bicategory of fractions

In this section we are going to prove Proposition 1.1. First of all, we need the following
lemma. In most of this paper this result will be applied with A = A′ and z = idA, but
we need to state it in this more general form since the presence of a non-trivial z will be
crucial in a couple of points in the paper.

3.1. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF), and any set of data
as follows in C , such that z, z ◦w1, z ◦w2, z ◦w1 ◦ p and z ◦w1 ◦ r all belong to W, and
such that ς and η are both invertible:

A1

EAA′

A2

⇓ ς
z

p

q
w2

w1
A1

F .AA′

A2

⇓ η
z

r

s
w2

w1

Then there are:

(1 ) a pair of objects G and A3;

(2 ) a morphism t1 : G→ E, such that p ◦ t1 belongs to W;

(3 ) a morphism t2 : G→ F ;

(4 ) a morphism t3 : A3 → G in W;

(5 ) a pair of invertible 2-morphisms ε and κ in C as follows:

E

G

A1 F ,

ε
⇒

t1 t2

p r G

A3

A2 G,

κ
⇒

t3 t3

s ◦ t2 q ◦ t1
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such that ς ◦ t1 ◦ t3 is equal to the composition of the following diagram:

G E

A3

F A1

G E A2 A.

⇓ κ

⇓ ε

⇓ η

t2t3

q w2

t1

r

w1

t3

p

t1

s

(12)

The choice of symbols in Lemma 3.1 may seem curious at �rst. It makes sense once
we combine this lemma with Lemma 3.2 below.

Proof. Step 1. First of all, let us prove the special case when A = A′ and z = idA.
In this case the hypotheses imply that w1, w2, w1 ◦ p and w1 ◦ r all belong to W. Since
both w1 and w1 ◦ p belong to W, by Lemma 2.4 there are an object E ′ and a morphism
v : E ′ → E, such that p ◦ v belongs to W.

Since both w1 and w1 ◦ r belong to W, by Lemma 2.2 there are an object G, a mor-

phism t̃
1

: G → E ′ in W, a morphism t2 : G → F and an invertible 2-morphism ε as
follows:

G

EE ′ F .A1

ε
⇒

v r

t2

p

t̃
1

We set t1 := v ◦ t̃
1

: G → E. By construction p ◦ v and t̃
1
both belong to W; so by

(BF2) the morphism p ◦ t1 = p ◦ v ◦ t̃
1
belongs to W, so condition (2) is veri�ed.

By hypothesis and construction, both w1 and p ◦ t1 belong to W, hence w1 ◦ p ◦ t1 also
belongs to W. So using axiom (BF5) on the invertible 2-morphism

ς−1 ◦ t1 : w2 ◦ q ◦ t1 =⇒ w1 ◦ p ◦ t1,

we get that w2 ◦ q ◦ t1 also belongs to W. Since w2 belongs to W by hypothesis, using
Lemma 2.2 we conclude that there are an object H, a morphism z1 : H → G in W, a
morphism z2 : H → G and an invertible 2-morphism φ as follows:

H

G G.A2

φ
⇒

q ◦ t1

z2

s ◦ t2

z1



270 MATTEO TOMMASINI

Now let us denote by α : (w2 ◦ q ◦ t1)◦z2 ⇒ (w2 ◦ q ◦ t1)◦z1 the following composition:

E A2

G F A1 A.

H A2G E

⇓ ε−1 ⇓ ς

⇓ φ−1 ⇓ η−1

w2

s

z1

t1z2 q

t2

t1 p

r

q

w2

w1

(13)

Since all the 2-morphisms above are invertible, so is α; moreover we already said that
w2 ◦ q ◦ t1 belongs to W. Therefore using axioms (BF4a) and (BF4b) on α, we get an
object A3, a morphism z3 : A3 → H in W and an invertible 2-morphism β : z2 ◦ z3 ⇒
z1 ◦ z3, such that α◦z3 = (w2 ◦ q ◦ t1)◦ β. The previous identity together with (13) implies
that the following composition

EG

F A1

A

H

H G E A2A3

⇓ β

⇓ ε

⇓ φ ⇓ η
z3

z3 z1

s

z1

t1

z2

q

t2

t1

p

r

w2

w1

(14)
is equal to the following one:

A1

A3 H G E A.

A2

⇓ ς

w2

w1p
z3 z1

q

t1

Since both z1 and z3 belong to W by construction, so does t3 := z1 ◦ z3 : A3 → G by
(BF2). Then in order to conclude it su�ces to de�ne κ as the composition of φ and β
as on the left hand side of (14). So we have proved the lemma in the special case when
A = A′ and z = idA.

Step 2. Let us prove the general case: for that, we consider the diagrams:

A1

EA′A′

A2

⇓ z ◦ ς
idA′

p

q
z ◦w2

z ◦w1
A1

F .A′A′

A2

⇓ z ◦ η
idA′

r

s
z ◦w2

z ◦w1
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Using Step 1, there are:

(1) a pair of objects G and Ã3;

(2) a morphism t1 : G→ E, such that p ◦ t1 belongs to W;

(3) a morphism t2 : G→ F ;

(4) a morphism t̃
3

: Ã3 → G in W;

(5) a pair of invertible 2-morphisms ε and κ̃ in C as follows:

E

G

A1 F ,

ε
⇒

t1 t2

p r G

Ã3

A2 G,

κ̃
⇒

t̃
3

t̃
3

s ◦ t2 q ◦ t1

such that z ◦ ς ◦ t1 ◦ t̃
3
is equal to the composition of the following diagram:

G E

Ã3

F A1

G E A2 A A′.

⇓ κ̃

⇓ ε

⇓ η
z

t2t̃
3

q w2

t1

r

w1

t̃
3

p

t1

s

Since z belongs to W by hypothesis, we can apply Lemma 2.1 to the previous identity.

So there are an object A3 and a morphism u : A3 → Ã3 in W, such that ς ◦ t1 ◦ t̃
3 ◦ u

coincides with the following composition:

G E

A3 Ã3

F A1

G E A2 A.

⇓ κ̃

⇓ ε

⇓ η
u

t2t̃
3

q w2

t1

r

w1

t̃
3

p

t1

s

Then it su�ces to set t3 := t̃
3 ◦ u and κ := κ̃ ◦ u in order to prove the general case.
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3.2. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF), any pair of objects
A,B, any pair of morphisms fm := (Am,wm, fm) : A→ B for m = 1, 2, and any pair of

2-morphisms Γ,Γ′ : f 1 ⇒ f 2 in C [W−1]. Let us �x any representative (E, p, q, ς, ψ) for
Γ and (F, r, s, η, µ) for Γ′ as follows:

A1

EA B,

A2

⇓ ς ⇓ ψ

f2

f1

p

q
w2

w1
A1

FA B.

A2

⇓ η ⇓ µ

f2

f1

r

s
w2

w1

(15)

Let us �x any set of data (1 ) � (5 ) as in Lemma 3.1. Then Γ, respectively Γ′, has a
representative as follows:

A1

A3A B,

A2

⇓ ς ◦ t1 ◦ t3 ⇓ ψ ◦ t1 ◦ t3

f2

f1

p ◦ t1 ◦ t3

q ◦ t1 ◦ t3
w2

w1

A1

A3A B,

A2

⇓ ς ◦ t1 ◦ t3 ⇓ ϕ

f2

f1

p ◦ t1 ◦ t3

q ◦ t1 ◦ t3
w2

w1

(16)
where ϕ is the following composition:

G E

A1

A3

F

A2 B.G E

⇓ κ

⇓ ε

⇓ µ

t3

rt3

t1

f1

q

t2

s

t1

p

f2

(17)

Proof. Since f 1 and f 2 are morphisms in C [W−1], w1 and w2 belong to W. Moreover,
since Γ and Γ′ are 2-morphisms in such a bicategory, w1 ◦ p and w1 ◦ r also belong to W.
So a set of data (1) � (5) as in Lemma 3.1 exists. Now we claim that:

(a) the following two diagrams are equivalent, i.e., they represent the same 2-morphism
of C [W−1]:
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A1

EA B

A2

⇓ ς ⇓ ψ

f2

f1

p

q
w2

w1

A1

A3A B;

A2

⇓ ς ◦ t1 ◦ t3 ⇓ ψ ◦ t1 ◦ t3

f2

f1

p ◦ t1 ◦ t3

q ◦ t1 ◦ t3
w2

w1

(b) the following two diagrams are equivalent:

A1

FA B

A2

⇓ η ⇓ µ

f2

f1

r

s
w2

w1

A1

A3A B.

A2

⇓ ς ◦ t1 ◦ t3 ⇓ ϕ

f2

f1

p ◦ t1 ◦ t3

q ◦ t1 ◦ t3
w2

w1

In order to prove such claims, let us consider the following set of data:

A1

A3 A3 E,

A2

⇒
ip ◦ t1 ◦ t3

⇐
iq ◦ t1 ◦ t3

q ◦ t1 ◦ t3

t1 ◦ t3

q

p ◦ t1 ◦ t3

idA3

p

A1

A3 A3 F .

A2

⇒
ε ◦ t3

⇐
κ

q ◦ t1 ◦ t3

t2 ◦ t3

s

p ◦ t1 ◦ t3

idA3

r

(18)

Then claim (a) follows at once using the set of data on the left hand side of (18) and
from the description of 2-cells of C [W−1]. Claim (b) follows easily using the set of data
on the right hand side of (18) together with the identities of (12) and of (17).

3.3. Corollary. Let us �x any pair of morphisms fm := (Am,wm, fm) : A → B for

m = 1, 2 and any 2-morphism Φ : f 1 ⇒ f 2 in C [W−1]. Moreover, let us �x any set of
data in C as follows



274 MATTEO TOMMASINI

A1

E,A

A2

⇓ ς

p

q
w2

w1

such that w1 ◦ p belongs to W and ς is invertible. Then there are an object A3, a morphism
t : A3 → E such that p ◦ t belongs to W, and a 2-morphism ϕ : f 1 ◦ p ◦ t ⇒ f 2 ◦ q ◦ t in
C , such that Φ is represented by the following diagram:

A1

A3A B.

A2

⇓ ς ◦ t ⇓ ϕ

f2

f1

p ◦ t

q ◦ t
w2

w1

(19)

Proof.The proof follows the same ideas mentioned in the proof of Lemma 3.2 for Γ′ := Φ;
it su�ces to set t := t1 ◦ t3. The fact that p ◦ t belongs to W follows from (BF2) together
with conditions (2) and (4) in Lemma 3.1.

3.4. Lemma. Let us �x any pair (C ,W) satisfying conditions (BF), any pair of objects
A,B, any pair of morphism fm := (Am,wm, fm) : A → B for m = 1, 2 and any pair of

2-morphisms Γ,Γ′ : f 1 ⇒ f 2 in C [W−1]. Let us suppose that there are an object A3,
a pair of morphisms v1 and v2 (such that w1 ◦ v1 belongs to W) and 2-morphisms α, γ
and γ′ in C (with α invertible) as below, such that the following diagrams represent Γ,
respectively Γ′:

A1

A3A B,

A2

⇓ γ⇓ α

f2

f1

v1

v2
w2

w1
A1

A3A B.

A2

⇓ γ′⇓ α

f2

f1

v1

v2
w2

w1

Then the following facts are equivalent:

(i) Γ = Γ′;

(ii) there are an object A4 and a morphism z : A4 → A3 in W, such that γ ◦ z = γ′ ◦ z;

(iii) there are an object A4 and a morphism z : A4 → A3, such that v1 ◦ z belongs to W
and such that γ ◦ z = γ′ ◦ z.
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Proof. Let us suppose that (i) holds and let us prove (iii). Using the description of 2-cells
of C [W−1] that we recalled in the Introduction, there is a set of data (E1, r1, r2, σ, ρ) in
C as in the internal part of the following diagram

A1

A3 E1 A3,

A2

⇒
σ

⇐
ρ

v2

r1

v2

v1

r2

v1

such that:

• w1 ◦ v1 ◦ r1 belongs to W;

• σ and ρ are both invertible in C ;

• α ◦ r2 is equal to the following composition:

A3 A1

E1 A3 A;

A3 A2

⇓ α

⇓ σ

⇓ ρ
r2

v1

r2

v2

w2

v2

w1

v1

r1

(20)

• γ′ ◦ r2 is equal to the following composition:

A3 A1

E1 A3 B.

A3 A2

⇓ γ

⇓ σ

⇓ ρ
r2

v1

r2

v2

f2

v2

f1

v1

r1

(21)

Since Γ is a 2-morphism in C [W−1], w1 and w1 ◦ v1 both belong to W; so by
Lemma 2.3 applied to σ there are an object E2, a morphism r3 : E2 → E1 in W and an
invertible 2-morphism σ̃ : r2 ◦ r3 ⇒ r1 ◦ r3, such that v1 ◦ σ̃ = σ ◦ r3.

Since w1 ◦ v1 belongs to W, by (BF5) applied α−1 we get that also w2 ◦ v2 belongs to
W; since also w2 belongs to W, by Lemma 2.3 applied to ρ ◦ r3 there are an object E3,
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a morphism r4 : E3 → E2 in W and an invertible 2-morphism ρ̃ : r1 ◦ r3 ◦ r4 ⇒ r2 ◦ r3 ◦ r4,
such that v2 ◦ ρ̃ = ρ ◦ r3 ◦ r4. Using (20), this implies that α ◦ r2 ◦ r3 ◦ r4 is equal to the
following composition:

E1 A1

E3

E2 E1 A3 A.

E2 E1 A2

⇓ ρ̃

⇓ σ̃

⇓ α

w2

r4

r3 w1v1

r4

v2

r3

r2

r2

r1

r3

Since α is invertible by hypothesis, the previous identity implies that w1 ◦ v1 ◦ σ̃ ◦ r4 =
w1 ◦ v1 ◦ ρ̃−1. Since w1 ◦ v1 belongs to W, by Lemma 2.1 there are an object E4 and a
morphism r5 : E4 → E3 in W, such that

σ̃ ◦ r4 ◦ r5 = ρ̃−1 ◦ r5 . (22)

From (21) we get that γ′ ◦ r2 ◦ r3 ◦ r4 ◦ r5 is equal to the following composition:

E1 A1

E4 E3

E2 E1 A3 B.

E2 E1 A2

⇓ ρ̃

⇓ σ̃

⇓ γ

r5 f2

r4

r3 f1
v1

r4

v2

r3

r2

r2

r1

r3 (23)

From (22) and (23) we conclude that

γ′ ◦ r2 ◦ r3 ◦ r4 ◦ r5 = γ ◦ r2 ◦ r3 ◦ r4 ◦ r5 . (24)

By construction we have that w1 ◦ v1 ◦ r1 belongs to W, so also w1 ◦ v1 ◦ r2 belongs to
W (using (BF5) on w1 ◦σ). By construction r3, r4 and r5 also belong to W. Using (BF2),
we conclude that also the morphism w1 ◦ (v1 ◦ r2 ◦ r3 ◦ r4 ◦ r5) belongs to W.

By hypothesis w1 also belongs to W. So by Lemma 2.4 there are an object A4 and
a morphism r6 : A4 → E4, such that the morphism v1 ◦ r2 ◦ r3 ◦ r4 ◦ r5 ◦ r6 also belongs to
W. We set z := r2 ◦ r3 ◦ r4 ◦ r5 ◦ r6 : A4 → A3 (so that v1 ◦ z belongs to W). Then (24)
implies that γ′ ◦ z = γ ◦ z, so (iii) holds.

Now let us assume (iii) and let us prove (ii). By hypothesis v1 ◦ z belongs to W; more-
over w1 belongs to W because f 1 is a morphism in C [W−1]. Then by axiom (BF2) also
w1 ◦ v1 ◦ z belongs to W. Again by hypothesis w1 ◦ v1 belongs to W. So by Lemma 2.4
there are an object A′4 and a morphism z′ : A′4 → A4, such that z ◦ z′ belongs to W. By
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(iii) we have γ ◦ z = γ′ ◦ z, hence γ ◦ (z ◦ z′) = γ′ ◦ (z ◦ z′), so (ii) holds.

Lastly, if (ii) holds, then (i) is obviously satis�ed using the de�nition of 2-morphism
in C [W−1] and axiom (BF2).

3.5. Remark. Let us �x any pair of objects A, B, any pair of morphisms f 1, f 2 : A→ B
and any 2-morphism ρ : f 1 ⇒ f 2 in C . As explained in [P1996, � 2.4], the universal
pseudofunctor UW : C → C [W−1] is such that UW(fm) is the triple (A, idA, f

m) : A→ B
for each m = 1, 2, and UW(ρ) is the 2-morphism represented by the following diagram:

A

AA B.

A

⇓ ρ⇓ iidA

f2

f1

idA

idA
idA

idA

(25)

Now let us �x any 2-morphism Φ : UW(f 1) ⇒ UW(f 2). Using Corollary 3.3 with
(A1, A2, E,w1,w2, p, q, ς) := (A,A,A, idA, idA, idA, idA, iidA), there are an object A′, a
morphism t : A′ → A in W and a 2-morphism ϕ : f 1 ◦ t ⇒ f 2 ◦ t, such that Φ is
represented by the following diagram:

A

A′A B.

A

⇓ ϕ⇓ it

f2

f1

t

t
idA

idA

(26)

Therefore the following facts are equivalent:

(a) Φ is in the image of UW;

(b) there is a 2-morphism ρ : f 1 ⇒ f 2 in C , such that (26) is equivalent to (25).

Since the class of (25) is equal to
[
A′, t, t, it, ρ ◦ t

]
, by Lemma 3.4 we get that (b) is

equivalent to:

(c) there are a 2-morphism ρ : f 1 ⇒ f 2 in C , an object A′′ and a morphism z : A′′ → A′

in W, such that ϕ ◦ z = ρ ◦ t ◦ z.

Therefore in general the universal pseudofunctor UW is not 2-full, but only �2-full
modulo morphisms of W�. It is 2-full if and only if the pair (C ,W) satis�es the following
condition (in addition to the usual set of axioms (BF1) � (BF5)):
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(BF6): for every pair of morphisms f 1, f 2 : A→ B, for every morphism t : A′ → A in W
and for every 2-morphism ϕ : f 1 ◦ t ⇒ f 2 ◦ t, there are an object A′′, a morphism
z : A′′ → A′ in W and a 2-morphism ρ : f 1 ⇒ f 2, such that ϕ ◦ z = ρ ◦ t ◦ z.

Now let us �x another 2-morphism ρ ′ : f 1 ⇒ f 2. Using (25) and Lemma 3.4, the
following facts are equivalent:

• UW(ρ) = UW(ρ ′);

• there are an object Ã and a morphism u : Ã→ A in W, such that ρ ◦ u = ρ ′ ◦ u.

This shows that in general the universal pseudofunctor UW is not 2-faithful, but only
�2-faithful modulo morphisms of W�.

Now we are able to give the following proof:

Proof of Proposition 1.1. Let us �x any representatives (15) for Γ and Γ′ as in
Lemma 3.2, any set of data (1) � (5) as in Lemma 3.1. Using Lemma 3.2, there are
representatives for Γ and Γ′ as in the �rst part of Proposition 1.1: it su�ces to set
α := ς ◦ t1 ◦ t3, γ := ψ ◦ t1 ◦ t3, γ′ := ϕ, v1 := p ◦ t1 ◦ t3 and v2 := q ◦ t1 ◦ t3 in diagram
(16).

Using the data (2) and (4), we get that v1 belongs to W. Moreover, w1 belongs to W
because f 1 is a morphism of C [W−1]. Hence w1 ◦ v1 also belongs to W, so we can apply
Lemma 3.4 in order to get the second part of Proposition 1.1.

3.6. Remark. By induction and using the same ideas mentioned in this section, one
can also prove that given �nitely many 2-morphisms Γ1, · · · ,Γn in C [W−1], all de�ned
between the same pair of morphisms, there are data A3, v1, v2, α, γ1, · · · , γn, such that v1

belongs to W, α is invertible and Γm = [A3, v1, v2, α, γm] for each m = 1, · · · , n. In other
words, given �nitely many 2-morphisms with the same source and target, each of them
admits a representative that di�ers from the other ones only in the last variable at most.
However, in general the common data (A3, v1, v2, α) depend on the 2-morphisms chosen:
if we add another 2-morphism Γn+1 to the collection above, then the new common data
for Γ1, · · · ,Γn+1 in general is of the form (A4, v1 ◦ z, v2 ◦ z, α ◦ z) for some object A4 and
some morphism z : A4 → A3 in W.

4. The associators of a bicategory of fractions

As we mentioned in the Introduction, in order to prove Theorem 1.2 we need to show
that the constructions of associators and vertical/horizontal compositions do not depend
on the set of �xed choices D(W), but only on the choices C(W) (at most). We start with
the description of associators in any bicategory of fractions:
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4.1. Proposition. (associators of C [W−1]) Let us �x any triple of 1-morphisms in
C [W−1] as follows:

f :=
(
A A′ B

)
,

u f

g :=
(
B B′ C

)
,

v g

h :=
(
C C ′ D

)
.

w h

(27)

Let us suppose that the set of �xed choices C(W) gives data as in the upper part of
the following diagrams (starting from the ones on the left), with u1, u2, v1 and u3 in W
and δ, σ, ξ and η invertible:

A1

A′ B B′,
⇒
δ

f1

f

u1

v

A2

A1 C C ′,
⇒
σ l

g◦f1

u2

w

B2

C ′,CB′
⇒
ξv1

w

g1

g

A3

B2,BA′
⇒
ηu3

v ◦ v1

f2

f (28)

so that by [P1996, � 2.2] one has

h ◦
(
g ◦ f

)
=
(
A A2 D

)
,

u ◦ u1 ◦u2 h◦l

(29)(
h ◦ g

)
◦ f =

(
A A3 D

)
.

u ◦u3 h◦g1◦f2

(30)

Then let us �x any set of data in C as follows:

(F1): an object A4, a morphism u4 : A4 → A2 such that u ◦ u1 ◦ u2 ◦ u4 belongs to W (for
example, using (BF2) this is the case if u4 belongs to W), a morphism u5 : A4 → A3

and an invertible 2-morphism γ : u1 ◦ u2 ◦ u4 ⇒ u3 ◦ u5;

(F2): an invertible 2-morphism ω : f 1 ◦ u2 ◦ u4 ⇒ v1 ◦f 2 ◦ u5, such that v ◦ω is equal to
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the following composition:

B′A1

B;A4 A′

A3 B2 B′

A2 ⇓ δ−1

⇓ γ

⇓ η

u4

u2
f1

f

f2 v1

u5

u3

u1

v

v

(31)

(F3): an invertible 2-morphism ρ : l ◦ u4 ⇒ g1 ◦ f 2 ◦ u5, such that w ◦ ρ is equal to the
following composition:

C ′A2

A1

A4 B′ C.

B2 C ′
A3

⇓ ω

⇓ σ−1

⇓ ξu5

f2

g

l

g1

u4

f1

u2

v1

w

w

(32)

Then the associator ΘC ,W
h,g,f from (29) to (30) is represented by the following diagram:

A2

A4 D.A

A3

⇓ h ◦ ρ⇓ u ◦ γ

h◦g1◦f2

h◦l

u ◦ u3

u ◦ u1 ◦ u2
u4

u5

(33)

Given any other data as in (F1) � (F3), the diagram (33) induced by the new data is
equivalent to (33).

In particular:

• by de�nition of composition of 1-morphisms in a bicategory of fractions, the con-
struction of h ◦ (g ◦ f) and of (h ◦ g) ◦ f depends on the four choices in the set
C(W) giving the four triangles in (28), hence inducing the compositions in (29) and
(30) (di�erent sets of choices C(W) give di�erent, but equivalent, bicategories of
fractions);

• apart from the four choices in C(W) needed above, the associator in C [W−1] from
h ◦ (g ◦ f) to (h ◦ g) ◦ f does not depend on any additional choice of type C(W),
nor on any choice of type D(W);
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• hence the construction of associators in any bicategory of fractions does not depend
on the set of choices D(W). As we will mention below, each set of choices D(W)
induces a speci�c set of data (F1) � (F3), hence a speci�c diagram (33), but any
other set of choices D(W) gives a diagram that is equivalent to (33), i.e., it induces
the same 2-morphism in C [W−1].

4.2. Remark. Before proving Proposition 4.1, we remark that even if such a statement is
long, the construction described there is simpler than the original construction in [P1996].
As a consequence of the axioms, a set of data as in (F1) � (F3) is easy to construct, as
shown in Remark 4.3 below.

Proof. Step 1. Following [P1996, Appendix A.2], one gets immediately a set of data
satisfying conditions (F1) � (F3) and inducing the desired associator as in (33). In [P1996]
these data are induced by the additional �xed choices D(W), so they satisfy also some
additional properties that we don't need to recall here in full details (for example, u4

belongs to W; using (BF2) this condition is slightly stronger than condition (F1)). The
aim of this proof is to show that all these additional properties are actually not necessary,
because for any data satisfying (F1) � (F3) (even if not induced by the choices D(W)),
the induced diagram (33) is a representative for the associator ΘC ,W

h,g,f .

Since in [P1996] the associator is induced by a particular set of data (F1) � (F3), in
order to prove the claim it is su�cient to show that any 2 di�erent sets of data as in (F1)
� (F3) induce diagrams of the form (33) that are equivalent. So let us �x any other set
of data satisfying (F1) � (F3), as follows:

(F1)′: an object Ã4, a morphism ũ4 : Ã4 → A2 such that u ◦ u1 ◦ u2 ◦ ũ4 belongs to W, a

morphism ũ5 : Ã4 → A3 and an invertible 2-morphism γ̃ : u1 ◦ u2 ◦ ũ4 ⇒ u3 ◦ ũ5;

(F2)′: an invertible 2-morphism ω̃ : f 1 ◦ u2 ◦ ũ4 ⇒ v1 ◦f 2 ◦ ũ5, such that v ◦ ω̃ is equal to
the following composition:

B′A1

B;Ã4 A′

A3 B2 B′

A2 ⇓ δ−1

⇓ γ̃

⇓ η

ũ4

u2
f1

f

f2 v1

ũ5

u3

u1

v

v

(34)

(F3)′: an invertible 2-morphism ρ̃ : l ◦ ũ4 ⇒ g1 ◦ f 2 ◦ ũ5, such that w ◦ ρ̃ is equal to the
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following composition:

C ′A2

A1

Ã4 B′ C.

B2 C ′
A3

⇓ ω̃

⇓ σ−1

⇓ ξũ5

f2

g

l

g1

ũ4

f1

u2

v1

w

w

(35)

Then proving the claim is equivalent to proving that (33) is equivalent to:

A2

Ã4 D.A

A3

⇓ h ◦ ρ̃⇓ u ◦ γ̃

h◦g1◦f2

h◦l

u ◦u3

u ◦ u1 ◦u2
ũ4

ũ5

(36)

Step 2. We want to construct a pair of diagrams that are equivalent to (33), respec-
tively to (36), and that share a common �left hand side�. For this, we follow the procedure
explained in Lemmas 3.1 and 3.2. Using Lemma 3.1, there are a pair of objects F 1 and
F 2, a triple of morphisms t1, t2 and t3, such that both u4 ◦ t1 and t3 belong to W, and a
pair of invertible 2-morphisms ε and κ in C as follows

A4

F 1

A2 Ã4,

ε
⇒

t1 t2

u4 ũ4
F 1

F 2

A3 F 1,

κ
⇒

t3 t3

ũ5◦ t2 u5 ◦ t1

such that u ◦ γ ◦ t1 ◦ t3 is equal to the following composition:

A4

F 1

Ã4

A2

A1

F 2 A3

A′

F 1 A4

A.

⇓ ε

⇓ κ

⇓ γ̃
u

t1

ũ5
t3

t1t3 u5

t2

u3

u1
u4

ũ4

u2

(37)
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Using Lemma 3.2 and the previous identity, diagram (33) is equivalent to

A2

F 2A B

A3

⇓ u ◦ γ ◦ t1 ◦ t3 ⇓ h ◦ ρ ◦ t1 ◦ t3

h◦g1◦f2

h◦l
u4 ◦ t1 ◦ t3

u5 ◦ t1 ◦ t3
u ◦ u3

u ◦u1 ◦ u2

(38)

and diagram (36) is equivalent to

A2

F 2A B,

A3

⇓ u ◦ γ ◦ t1 ◦ t3 ⇓ h ◦ ζ

h◦g1◦f2

h◦l
u4 ◦ t1 ◦ t3

u5 ◦ t1 ◦ t3
u ◦u3

u ◦u1 ◦ u2

(39)

where ζ is the following composition:

A4F 1 A2

F 2

Ã4

C ′.F 1 A4 A3 B2

⇓ ρ̃

⇓ ε

⇓ κ
ũ5

t1

t3

t1t3

t2 ũ4 l

u4

g1f2u5 (40)

Step 3. Now the claim is equivalent to proving that (38) and (39) are equivalent.
Since they have already a common �left hand side�, it su�ces to prove that h ◦ ρ ◦ t1 ◦ t3

and h◦ζ are equal if pre-composed with a suitable morphism of W; then we will conclude
using Lemma 3.4(ii).

Step 4. Since u ◦ γ ◦ t1 ◦ t3 coincides with (37), by Lemma 2.1 there are an object F 3

and a morphism t4 : F 3 → F 2 in W, such that γ ◦ t1 ◦ t3 ◦ t4 is equal to

A4

F 1

Ã4

A2

A1

F 3 F 2 A3

A′.

F 1 A4

⇓ ε

⇓ κ

⇓ γ̃

t4

t1

ũ5
t3

t1t3 u5

t2

u3

u1
u4

ũ4

u2

(41)



284 MATTEO TOMMASINI

Let us denote by φ the composition below:

A4

F 1 Ã4

A2

A1

B′.

F 2

A3

B2F 1 A4F 3

⇓ ω̃

⇓ ε

⇓ κ
t4 v1

f1

t3

t1

ũ5

t3

t1
u5

t2

f2

u4

ũ4

u2

(42)

Using (34), we get that v ◦φ is equal to the following composition:

A4

F 1

Ã4

A2

A1

F 3 F 2 A3

A′

F 1 A4 B2 B′

B.

B′

⇓ ε

⇓ κ

⇓ γ̃

⇓ δ−1

⇓ η

f2 v1

v

v

f1

f

t4

t1

ũ5
t3

t1t3 u5

t2

u3

u1

u4

ũ4

u2

Then using (41), we get that v ◦φ coincides also with the following composition:

B′A1

B.A4 A′

A3 B′B2

A2

F 1F 2F 3

⇓ δ−1

⇓ γ
⇓ η

t4
u4

u2

t1t3

f1

f

f2 v1

u5

u3

u1

v

v

Using (31), we conclude that v ◦φ coincides also with v ◦ω ◦ t1 ◦ t3 ◦ t4. Since g =
(B′, v, g) is a morphism in C [W−1], v belongs to W. So by Lemma 2.1 there are an
object F 4 and a morphism t5 : F 4 → F 3 in W, such that φ◦ t5 = ω ◦ t1 ◦ t3 ◦ t4 ◦ t5. Using
(42), this implies that ω ◦ t1 ◦ t3 ◦ t4 ◦ t5 is equal to the following composition:

A4

F 1 Ã4

A2

A1

B′.

F 2

A3

B2F 1 A4F 3F 4

⇓ ω̃

⇓ ε

⇓ κ
t5 t4 v1

f1

t3

t1

ũ5

t3

t1
u5

t2

f2

u4

ũ4

u2

(43)

Step 5. Using (40) and (35), w ◦ ζ ◦ t4 ◦ t5 is equal to the following composition:



SOME INSIGHTS ON BICATEGORIES OF FRACTIONS 285

A4 C ′

F 1 Ã4

A2

A1

B′

F 2

A3

B2

C.

F 1 A4 C ′F 3F 4

⇓ ω̃

⇓ ξ

⇓ ε ⇓ σ−1

⇓ κ
t5 t4

v1
f1

t3

t1 w

ũ5

t3

t1 g1

l

u5

t2

f2

g

u4

w

ũ4
u2

Using (43) we conclude that w ◦ ζ ◦ t4 ◦ t5 coincides also with the composition

C ′A2

A1

A4 B′ C.

B2 C ′
A3

F 1F 2F 3F 4 ⇓ ω

⇓ σ−1

⇓ ξ

t5 t3 t1t4

u5

f2

g

l

g1

u4

f1

u2

v1

w

w

Using the previous identity and (32), we conclude that w ◦ ρ ◦ t1 ◦ t3 ◦ t4 ◦ t5 = w ◦ ζ ◦
t4 ◦ t5. Using Lemma 2.1, this implies that there are an object F 5 and a morphism
t6 : F 5 → F 4 in W, such that ρ ◦ t1 ◦ t3 ◦ t4 ◦ t5 ◦ t6 = ζ ◦ t4 ◦ t5 ◦ t6. This implies that:

(h ◦ ρ ◦ t1 ◦ t3) ◦ (t4 ◦ t5 ◦ t6) = (h ◦ ζ) ◦ (t4 ◦ t5 ◦ t6). (44)

Step 6. By construction the morphisms t4, t5 and t6 all belong to W, so their
composition also belongs to W by (BF2). So (44) and Lemma 3.4(ii) imply that (38) and
(39) are equivalent, so we conclude by Step 3.

4.3. Remark. In order to �nd a set of data (A4, u4, u5, γ, ω, ρ) as in (F1) � (F3) you can
follow the construction in [P1996, Appendix A.2]. However, such a procedure is long: a
shorter construction is the following one. First of all, we use axiom (BF3) in order to get
data as in the upper part of the following diagram, with u4 in W and γ invertible:

A2

E

A′ A3.

γ
⇒

u4 u5

u1 ◦ u2 u3

Then we use (BF4a) and (BF4b) in order to get an object F , a morphism z : F → E
in W and an invertible 2-morphism ω : f 1 ◦ u2 ◦ u4 ◦ z ⇒ v1 ◦f 2 ◦ u5 ◦ z, such that v ◦ω
is equal to the following composition:
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A1 B′

F E A′ B.

A3 B2 B′

A2

⇓ γ

⇓ η

⇓ δ−1
u2

u4
v

z

f2 v1

u3

u5

u1

f1

v

f

Then we use again (BF4a) and (BF4b) in order to get an object A4, a morphism
r : A4 → F in W and an invertible 2-morphism ρ : l ◦ u4 ◦ z ◦ r⇒ g1 ◦ f 2 ◦ u5 ◦ z ◦ r, such
that w ◦ ρ is equal to the following composition:

A2 C ′

A4 F B′ C.

A3

B2 C ′

A1

⇓ ξ

⇓ ω

⇓ σ−1

w

g

u4◦ z w

r

g1

u5◦ z

f2

l

v1

u2

f1

Then it su�ces to de�ne u4 := u4 ◦ z ◦ r, u5 := u5 ◦ z ◦ r, γ := γ ◦ z ◦ r and ω := ω ◦ r.
Note that u4 belongs to W by construction and (BF2). Since u, u1 and u2 belong to
W by hypothesis or construction, (F1) holds by (BF2). Also (F2) and (F3) are easily
veri�ed. Above we used axioms (BF3) and (BF4), hence the data that we found are in
general non-unique.

In the following Corollary, di�erently from the previous statements, we need to explici-
tly use the associators and the right and left unitors for C . We denote these 2-morphisms
by θa,b,c : a◦(b◦c)⇒ (a◦b)◦c (for any triple of composable morphisms a, b, c), respectively
by πa : a ◦ idA ⇒ a, respectively by υa : idB ◦ a⇒ a (for any morphism a : A→ B).

4.4. Corollary. Let us �x any pair (C ,W) satisfying conditions (BF), any triple of
morphisms f, g, h as in (27) and let us suppose that B = B′, C = C ′, v = idB and
w = idC. Moreover, let us suppose that the set of �xed choices C(W) gives data as in the
upper part of the following diagram, with u3 in W and η invertible:

A3

B.BA′
⇒
η

u3

idB ◦ idB

f2

f (45)

Then
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h ◦
(
g ◦ f

)
=
(
A A′ D

)
,

(u ◦ idA′ )◦idA′ h◦(g◦f)

(46)(
h ◦ g

)
◦ f =

(
A A3 D

)
u ◦ u3 (h◦g)◦f2

(47)

and the associator ΘC ,W
h,g,f from (46) to (47) is represented by the following diagram:

A′

A A3 D,

A3

⇓ β⇓ α

(u ◦ idA′ )◦idA′ h◦(g◦f)

(h◦g)◦f2

u3

idA3

u ◦ u3

(48)

where α is the following composition

A′

A′

A3

A

A3

⇓ πu

⇓ π−1u ◦u3

⇓ πu

u ◦ idA′

u

u ◦ u3
u3

idA3

idA′

u

and β is the following one:

CA′

B

A3 B D.B

A3

⇓ θ−1h◦g,f,u3

⇓ θh,g,f

⇓ η

⇓ υidB

⇓ π−1(h◦g)◦f2

⇓ υf2

idA3

u3

f◦u3

f2

idB ◦ idB

idB

(h◦g)◦f2

f

f2

g◦f

h

h◦g

h◦g

4.5. Remark. If C is a 2-category, then the associators θ• and the unitors π• and υ• are
all trivial; moreover, idB ◦ idB = idB. We recall that the �xed choices C(W) imposed by
Pronk on any pair (f, v) assume a very simple form in the case when either f or v are
an identity (see [P1996, p. 256]), so the quadruple (A3, u3, f 2, η) of (45) coincides with
(A′, idA′ , f, if ). So if C is a 2-category, then the morphisms (46) and (47) coincide, and
the associator (48) is the 2-identity of this morphism.
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Proof of Corollary 4.4. This is the �rst proof where we explicitly need to use asso-
ciators and unitors of C because we cannot prove the statement only in the special case
of a 2-category and then appeal to coherence results for the general case. First, anyway,
we prove this special case.

By the already mentioned [P1996, p. 256], since both v and w are identities, one gets
that the 4 diagrams of (28) (chosen from left to right) assume this simple form:

A1 := A′

A′ B B′ = B,
⇒

δ := if
f1:=f

f

u1:=idA′

v=idB

A2 := A′

A1 = A′ C C ′ = C,
⇒

σ := ig◦f
l:=g◦f

g◦f1=g◦f

u2:=idA′

w=idC

B2 := B

C ′ = C,CB′ = B
⇒

ξ := ig
v1:=idB

w=idC

g1:=g

g

A3 := A′

B2 = B.BA′
⇒

η := if
u3:=idA′

v ◦ v1=idB

f2:=f

f
(49)

Then identities (46) and (47) follow at once from (29) and (30). In order to compute
the associator, according to Proposition 4.1 we have to �x any set of data as in (F1) �
(F3). For that, we choose:

• A4 := A′, u4 := idA′ , u5 := idA′ and γ := iidA′ ;

• ω := if ;

• ρ := ig◦f .

Then the claim follows from Proposition 4.1. In the general case when C is a bicate-
gory, by [P1996, p. 256] the �rst diagram in (49) is given by

A1 := A′

A′ B B′ = B,
⇒

δ := υ−1f ◦ πf
f1:=f

f

u1:=idA′

v=idB

and analogously for the second diagram and for the third one in (49); the fourth diagram
must be replaced by (45). Indeed, if C is simply a bicategory, in general we cannot write
v ◦ v1 = idB ◦ idB in a simpler form, hence we cannot say anything more precise about the
data in diagram (45) (it is completely determined as one of the �xed choices in the set
C(W), so we have no control over it). The data of (F1) � (F3) above have to be changed
according to these choices; then the statement follows again from Proposition 4.1.
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5. Vertical composition

Following the plan explained in the Introduction, in this section we will prove that the
vertical composition in C [W−1] does not depend on the set of choices D(W) (actually,
it does not depend on C(W) either). In doing that, we will also provide a simple way of
computing a representative for the vertical composition of any pair of 2-morphisms Γ1,Γ2

in any bicategory of fractions, having �xed representatives for Γ1 and Γ2.

5.1. Proposition. (vertical composition) Let us �x any pair of objects A,B, any
triple of morphisms fm := (Am,wm, fm) : A → B for m = 1, 2, 3 and any pair of 2-

morphisms Γ1 : f 1 ⇒ f 2 and Γ2 : f 2 ⇒ f 3 in C [W−1]; let us �x any representative for
Γ1, respectively for Γ2, as follows:

A1

A4A B,

A2

⇓ β1⇓ α1

f2

f1

u1

u2
w2

w1
A2

A5A B.

A3

⇓ β2⇓ α2

f3

f2

u3

u4
w3

w2

(50)

Then let us �x any set of data in C as follows:

(F4): an object C, a morphism t1 in W, a morphism t2 and an invertible 2-morphism ρ
in C as below:

A4

C

A2 A5.

ρ
⇒

t1 t2

u2 u3

Then the vertical composition Γ2 ◦ Γ1 is represented by the following diagram

A1

C B,A

A3

⇓ γ⇓ ξ

f3

f1

w3

w1

u1 ◦ t1

u4 ◦ t2

(51)

where ξ and γ are the following compositions:
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ξ :

A1A4

C A2 A,

A5 A3

⇓ ρ
⇓ α1

⇓ α2

w3

w1

u2

u3

t2

w2

t1

u4

u1

(52)

γ :

A1A4

C A2 B.

A5 A3

⇓ ρ
⇓ β1

⇓ β2

f3

f1

u2

u3

t2

f2

t1

u4

u1

(53)

Given any other pair of representatives (50) for Γ1 and Γ2, and any other set of data
as in (F4), the diagram (51) induced by the new data represents the same 2-morphism as
(51).

In particular, the vertical composition in C [W−1] does not depend on the set of choices
C(W) nor on the set of choices D(W), hence it is the same in any bicategory of fractions
constructed from the pair (C ,W).

5.2. Remark. Since Γ2 is a 2-morphism in C [W−1], both w2 and w2 ◦ u3 belong to W.
Therefore by Lemma 2.2 a set of choices as in (F4) always exists, but in general it is not
unique.

The proof of Proposition 5.1 mostly relies on the following:

5.3. Lemma. Let us assume the same notations as Proposition 5.1. Moreover, let us
choose:

(F4)′: an object D, a morphism p1 in W, a morphism p2 and an invertible 2-morphism
µ as follows:

A4

D

A2 A5.

µ
⇒

p1 p2

u2 u3

Let ϕ and δ be the following compositions:
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ϕ :

A1A4

D A2 A,

A5 A3

⇓ µ
⇓ α1

⇓ α2

w3

w1

u2

u3

p2

w2

p1

u4

u1

(54)

δ :

A1A4

D A2 B.

A5 A3

⇓ µ
⇓ β1

⇓ β2

f3

f1

u2

u3

p2

f2

p1

u4

u1

(55)

Then the following diagram

A1

D B,A

A3

⇓ δ⇓ ϕ

f3

f1

w3

w1

u1 ◦ p1

u4 ◦ p2

(56)

represents the same 2-cell of C [W−1] as diagram (51).

Proof. Step 1. Let us apply Lemma 3.1 on the following pair of diagrams:

A4

CA2

A5

⇓ ρ

t1

t2

u3

u2
A4

D.A2

A5

⇓ µ

p1

p2

u3

u2

Then there are a pair of objects E1 and E2, a triple of morphisms q1, q2 and q3, such
that both t1 ◦ q1 and q3 belong to W, and a pair of invertible 2-morphisms ε and κ in C
as follows:

C

E1

A4 D,

ε
⇒

q1 q2

t1 p1
E1

E2

A5 E1,

κ
⇒

q3 q3

p2 ◦ q2 t2 ◦ q1
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such that ρ ◦ q1 ◦ q3 is equal to the composition of the following diagram:

E1 C

E2

D A4

E1 C A5 A2.

⇓ κ

⇓ ε

⇓ µ

q2q3

t2 u3

q1

p1

u2

q3

t1

q1

p2

(57)

Step 2. Using the de�nition of ξ in (52) together with (57), we get that ξ ◦ q1 ◦ q3 is
equal to the following composition:

A1A4

DE1

E2

C

CE1

A2 A.

A5 A3

⇓ µ

⇓ α1

⇓ α2

⇓ ε

⇓ κ

q2

q1

q1

t1

q3 t2

q3

w3

w1

u2

u3

p2

w2

p1

u4

u1

(58)

Using (58) and the de�nition of ϕ in (54), we conclude that ξ ◦ q1 ◦ q3 is also equal to
the following composition:

C

E1

A1

E2

D

E1 A3

A.
⇓ u1 ◦ ε

⇓ ϕ
⇓ u4 ◦κ

q2
u1 ◦p1

u4 ◦p2

q3

u1 ◦ t1

q3

w1q1

u4 ◦ t2 ◦ q1
w3

Step 3. Using the de�nition of γ in (53) together with (57), we get that γ ◦ q1 ◦ q3

is equal to the following composition:

A1A4

DE1

E2

C

CE1

A2 B.

A5 A3

⇓ µ

⇓ β1

⇓ β2

⇓ ε

⇓ κ

q2

q1

q1

t1

q3 t2

q3

f3

f1

u2

u3

p2

f2

p1

u4

u1

(59)

Using (59) and the de�nition of δ in (55), we conclude that γ ◦ q1 ◦ q3 is also equal to
the following composition:
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C

E1

A1

E2

D

E1 A3

B.
⇓ u1 ◦ ε

⇓ δ
⇓ u4 ◦κ

q2
u1 ◦ p1

u4 ◦ p2

q3

u1 ◦ t1

q3

f1q1

u4 ◦ t2 ◦ q1
f3

Step 4. Using Steps 2 and 3 together with Lemma 3.2 on the (classes of the) diagrams
(51) and (56), with the data (1) � (5) given by (E1, E2, q1, q2, q3, u1 ◦ ε, u4 ◦κ), we conclude
that the classes of the diagrams (51) and (56) have representatives that are equal. In other
terms, (51) and (56) represent the same 2-cell of C [W−1], as we wanted to prove.

Proof of Proposition 5.1. Following [P1996, p. 258], the vertical composition Γ2 ◦Γ1

can be computed by choosing any pair of representatives for Γ1 and Γ2 (as we did in (50)).
Having �xed such representatives, the construction of the vertical composition in [P1996]
is a special case of the construction of Proposition 5.1. In particular, the construction
in [P1996] a priori holds only for a speci�c set of data as in (F4), induced by the �xed
set of choices C(W) and D(W). Lemma 5.3 proves that any other set of data as in (F4)
induces the same 2-cell of C [W−1]. Since the construction in [P1996], does not depend
on the representatives for Γ1 and Γ2, the construction in Proposition 5.1 also does not
depend on the chosen representatives for Γ1 and Γ2, so we conclude.

6. Horizontal composition with 1-morphisms on the left

6.1. Proposition. (horizontal composition with 1-morphisms on the left) Let us
�x any morphism f := (A′,w, f) : A → B, any pair of morphisms gm := (Bm, vm, gm) :
B → C for m = 1, 2, and any 2-morphism ∆ : g1 ⇒ g2 in C [W−1]. Let us �x also any
representative for ∆ as below:

B1

B3B C.

B2

⇓ β⇓ α

g2

g1

u1

u2
v2

v1

(60)

Let us suppose that the �xed set of choices C(W) gives data as in the upper part of
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the following diagrams, with w1 and w2 in W, and ρ1 and ρ2 invertible:

A′

D1

B B1,

ρ1
⇒

w1 f1

f v1
A′

D2

B B2

ρ2
⇒

w2 f2

f v2 (61)

(so that by [P1996, � 2.2] we have gm ◦ f = (Dm,w ◦wm, gm ◦ fm) for m = 1, 2). Then
let us �x any set of data in C as follows:

(F5): we choose data as in the upper part of the following diagrams, with t1 and t2 in W,
and σ1 and σ2 invertible:

D1

D3

B1 B3,

σ1

⇒
t1 h1

f1 u1
D2

D4

B2 B3;

σ2

⇒
t2 h2

f2 u2 (62)

(F6): we choose any set of data as in the upper part of the following diagram, with t3 in
W and ϕ invertible:

D3

D5

A′ D4;

ϕ
⇒

t3 t4

w1 ◦ t1 w2 ◦ t2

(F7): we choose any invertible 2-morphism δ : h1 ◦ t3 ⇒ h2 ◦ t4, such that v1 ◦ u1 ◦ δ is
equal to the following composition:

B3

B3

D1 B1

A′ B.

D2 B2

B1

D5

D3

D4

⇓ (σ1)−1

⇓ α−1

⇓ (ρ1)−1

⇓ ρ2

⇓ σ2

⇓ ϕ

h2

h1

t3

t4

t1

t2

f

u2

u1

w2

u1

v1

v1

w1

f2 v2

f1

(63)
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Then ∆ ◦ f is represented by the following diagram

D1

A D5 C,

D2

⇓ ξ⇓ w ◦ϕ

g2◦f2

g1◦f1

w ◦w2

w ◦w1

t1 ◦ t3

t2 ◦ t4

(64)

where ξ is the following composition:

D3 B1

D5 B3 C.

D4 B2

D1

D2

⇓ σ1

⇓ (σ2)−1

⇓ β⇓ δ

t4

t1 f1

u2

t3 g1

h1

h2

t2 f2

g2

u1

(65)

Given any other representative (60) for ∆, and any other set of data as in (F5) �
(F7), the diagram (64) induced by the new data represents the same 2-morphism as (64).

Therefore, each composition of the form ∆ ◦ f does not depend on the set of choices
D(W).

6.2. Remark. Since (60) represents a 2-morphism in a bicategory of fractions, both v1

and v1 ◦ u1 belong to W, so by Lemma 2.2 there are data as on the left hand side of (62).
Since α is an invertible 2-morphism of C , by (BF5) also v2 ◦ u2 belongs to W; since g2 is
a morphism in C [W−1], v2 belongs to W. So using again Lemma 2.2 there are data as
on the right hand side of (62), hence we can always �nd data satisfying condition (F5).
By axiom (BF2) the composition w2 ◦ t2 belongs to W, hence a set of data as in (F6)
exists by (BF3). Since v1 ◦ u1 belongs to W, a set of data as in (F7) exists by (BF4), up
to replacing ϕ in (F6) with the composition of ϕ with a suitable morphism in W with
target in D5 (this is analogous to the procedure explicitly described in Remark 4.3). So
a set of data as in (F5) � (F7) exists, but in general it is not unique.

The proof of Proposition 6.1 relies on the following:

6.3. Lemma. Let us assume the same notations as Proposition 6.1. Moreover, let us �x
any set of data in C as follows:

(F5)′: we choose data as in the upper part of the following diagrams, with z1 and z2 in
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W, and γ1 and γ2 invertible:

D1

E3

B1 B3,

γ1
⇒

z1 l1

f1 u1
D2

E4

B2 B3;

γ2
⇒

z2 l2

f2 u2 (66)

(F6)′: we choose any set of data as in the upper part of the following diagram, with z3 in
W and ν invertible:

E3

E5

A′ E4;

ν
⇒

z3 z4

w1 ◦ z1 w2 ◦ z2

(F7)′: we choose any invertible 2-morphism η : l1 ◦ z3 ⇒ l2 ◦ z4, such that v1 ◦ u1 ◦ η is
equal to the following composition:

B3

B3

D1 B1

A′ B.

D2 B2

B1

E5

E3

E4

⇓ (γ1)−1

⇓ α−1

⇓ (ρ1)−1

⇓ ρ2

⇓ γ2

⇓ ν

l2

l1

z3

z4

z1

z2

f

u2

u1

w2

u1

v1

v1

w1

f2 v2

f1

(67)

Let ω be the following composition:

E3 B1

E5 B3 C.

E4 B2

D1

D2

⇓ γ1

⇓ (γ2)−1

⇓ β⇓ η

z4

z1 f1

u2

z3 g1

l1

l2

z2 f2

g2

u1

(68)
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Then the following diagram

D1

A E5 C

D2

⇓ ω⇓ w ◦ ν

g2◦f2

g1◦f1

w ◦w2

w ◦w1

z1 ◦ z3

z2 ◦ z4

(69)

represents the same 2-cell of C [W−1] as (64).

Proof. Step 1. Let us apply Lemma 3.1 on the following pair of diagrams:

D1

D5A′

D2

⇓ ϕ

t1◦ t3

t2 ◦ t4
w2

w1
D1

E5.A′

D2

⇓ ν

z1 ◦ z3

z2 ◦ z4
w2

w1

Then there are a pair of objects F 1 and F 2, a triple of morphisms p1, p2 and p3, such
that both t1 ◦ t3 ◦ p1 and p3 belong to W, and a pair of invertible 2-morphisms ε and κ
in C as follows:

D5

F 1

D1 E5,

ε
⇒

p1 p2

t1 ◦ t3 z1 ◦ z3
F 1

F 2

D2 F 1,

κ
⇒

p3 p3

z2 ◦ z4 ◦ p2 t2 ◦ t4 ◦ p1

such that ϕ ◦ p1 ◦ p3 is equal to the following composition:

F 1 D5

F 2

E5 D1

F 1 D5 D2 A′.

⇓ κ

⇓ ε

⇓ νz2 ◦ z4

p2p3

t2 ◦ t4 w2

p1

z1 ◦ z3

w1

p3

t1 ◦ t3

p1 (70)
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Step 2. Using (70) we get that (w ◦ϕ) ◦ p1 ◦ p3 is equal to the following composition:

F 1 D5

F 2

E5 D1

F 1 D5 D2 A.

⇓ κ

⇓ ε

⇓ w ◦ νz2 ◦ z4

p2p3

t2 ◦ t4 w ◦w2

p1

z1 ◦ z3

w ◦w1

p3

t1 ◦ t3

p1 (71)

Therefore, using Lemma 3.2 and (71), diagram (64) is equivalent to

D1

A F 2 C

D2

⇓ ξ ◦ p1 ◦ p3⇓ w ◦ϕ ◦ p1 ◦ p3

g2◦f2

g1◦f1

w ◦w2

w ◦w1

t1 ◦ t3 ◦ p1 ◦p3

t2 ◦ t4 ◦ p1 ◦p3

(72)

and diagram (69) is equivalent to

D1

A F 2 C,

D2

⇓ ζ⇓ w ◦ϕ ◦ p1 ◦ p3

g2◦f2

g1◦f1

w ◦w2

w ◦w1

t1 ◦ t3 ◦ p1 ◦ p3

t2 ◦ t4 ◦ p1 ◦ p3

(73)

where ζ is the following composition:

D1

E3 B1

E5 B3 C

E4 B2

D2

F 2

F 1

F 1

D5

D5 D3

D4

⇓ κ

⇓ ε
⇓ γ1

⇓ (γ2)−1

⇓ η ⇓ β

p3

p3

p1

p1

p2

t3

t4

t1

t2

u2

z3

z1

z4

f2

l2

g1

u1l1

f1

z2

g2

(74)
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(i.e., the vertical composition of the 2-morphism ω, de�ned in (68), with ε and κ).

Step 3. The claim is now equivalent to proving that (72) and (73) represent the
same 2-cell of C [W−1]. For this, it will be su�cient to prove that ξ ◦ p1 ◦ p3 and ζ are
equal if pre-composed with a suitable morphism of W; then we will conclude by applying
Lemma 3.4(ii).

Step 4. By construction ϕ ◦ p1 ◦ p3 coincides with (70). Therefore the composition

E3
D1

E5 A′

E4 D2

F 2 F 1 D5 D3

⇓ ν

⇓ ε

p3 p1

p2

t3 t1

w2

z3

w1

z2

z4

z1

(75)

is equal to the following one:

D1

E5

A′.

E4 D2

F 2

F 1

F 1 D5 D3

D4⇓ κ−1 ⇓ ϕ

p3

p3
p1

p2

t3

t4

t1

t2

w2

w1

z2z4 (76)

Step 5. Now let us denote by ς the following composition:

F 1 D5 D4 B3

F 2 D2 B2.

F 1 E5 E4 B3

⇓ (σ2)−1

⇓ κ−1

⇓ γ2

t2

u2

p3

p2

p3

z2

p1 h2

u2

f2

l2z4

t4

(77)

Since ∆ is a 2-morphism in C [W−1] with representative (60), v1 ◦ u1 belongs to W.
Using (BF5) on α, we get that v2 ◦ u2 also belongs to W. Moreover, v2 also belongs
to W because the triple g2 = (B2, v2, g2) is a morphism in C [W−1]. Therefore we can
apply Lemma 2.3 to ς, so there are an object F 3, a morphism p4 : F 3 → F 2 in W and a
2-morphism

ς̃ : h2 ◦ t4 ◦ p1 ◦ p3 ◦ p4 =⇒ l2 ◦ z4 ◦ p2 ◦ p3 ◦ p4 (78)
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in C , such that ς ◦ p4 = u2 ◦ ς̃. ς is invertible since each 2-morphism in (77) is invertible
in C ; then using again Lemma 2.3, we get that also ς̃ is invertible. Using the de�nition
of ς in (77) and the fact that ς ◦ p4 = u2 ◦ ς̃, we get that the composition

B3

E5 E4 D2

F 3 F 2

F 1

F 1 D5

D4

B2

⇓ κ−1

⇓ γ2
z2

p4

p3

p3
p1

p2

t4

t2

l2

z4

f2

u2

(79)

is equal to the following one:

B3E4E5

D2 B2.

F 3 F 1

F 1

D5

D4

⇓ ς̃ ⇓ σ2h2

p3 ◦ p4

p3 ◦ p4

p1

p2

t4

t2

l2

u2

f2

z4 (80)

Step 6. Let µ be the following composition:

D1

E3 B1.

E5 B3E4

F 2F 3 F 1

D5 D3

⇓ ε ⇓ γ1

⇓ η

z1p4 p3

p1

p2

t3 t1

z3

z4 l2

u1

l1

f1

(81)

Let us consider the 2-morphism v1 ◦µ: we use (67) and we simplify γ1 (coming from
(81)) with its inverse (coming from (67)), so we get that v1 ◦µ is equal to the following
composition:
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B3

E3

D1 B1

E5 A′ B.

E4 D2 B2

B1

F 2F 3 F 1 D5 D3

⇓ ν

⇓ α−1

⇓ (ρ1)−1

⇓ ρ2

⇓ γ2

⇓ ε

p4 p3 p1

p2

t3 t1

l2

f

u2

w2

u1

v1

v1

z3
w1

f2 v2
z2

z4

z1

f1

In the previous diagram we can replace (75) with (76), so we get that v1 ◦µ coincides
also with the following composition:

B3

D1 B1

E5

A′ B.

E4 D2 B2

B1

F 3 F 2

F 1

F 1 D5 D3

D4⇓ κ−1

⇓ α−1

⇓ (ρ1)−1

⇓ ρ2

⇓ γ2

⇓ ϕp4

p3

p3

p1

p2

t3

t4

t1

t2

l2

f

u2

w2

u1

v1

v1

w1

f2 v2

z2z4

f1

In the previous diagram we can replace (79) with (80). So we conclude that v1 ◦µ
coincides also with the following composition:

B3E4

D1 B1

E5

A′ B.

D2 B2

B1F 3 F 1

F 1

D5

D3

D4

⇓ ς̃
⇓ α−1

⇓ (ρ1)−1

⇓ ρ2

⇓ σ2

⇓ ϕ

h2

p3 ◦p4

p3 ◦p4

p1

p2

t3

t4

t1

t2

z4 l2

f

u2

w2

u1

v1

v1

w1

f2 v2

f1
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If we compare this diagram with (63), we conclude that v1 ◦µ is also equal to the
following composition:

D3

B1 B.

D5

B3D4

D1

F 3

F 1

F 1 E5 E4

⇓ σ1⇓ δ
⇓ ς̃

p3 ◦ p4
p1

p3 ◦ p4

p2 z4

v1

t4

t1

f1

t3

h1

h2

l2

u1

(82)

Since the triple g1 = (B1, v1, g1) is a morphism in C [W−1], v1 belongs to W. Since
v1 ◦µ coincides with (82), by Lemma 2.1 there are an object F 4 and a morphism p5 :
F 4 → F 3 in W, such that µ ◦ p5 is equal to the following composition:

D3

B1.

D5

B3D4

D1

F 3

F 1

F 1

F 4

E5 E4

⇓ σ1⇓ δ
⇓ ς̃

p3 ◦ p4
p1

p3 ◦ p4

p2 z4

t4

t1

f1

t3

p5
h1

h2

l2

u1

(83)

Using the de�nition of µ in (81), we conclude that (83) is equal to the following
composition:

D1

E3 B1.

E5 B3

E4

F 4 F 3 F 2 F 1

D5 D3

⇓ ε ⇓ γ1

⇓ η

p5 p4 p3

p1

p2

t3 t1

z3

z1

z4

u1l1

f1

l2

(84)

Step 7. Let us consider the 2-morphism ζ ◦ p4 ◦ p5, where ζ is de�ned in (74). If we
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replace (84) with (83), we conclude that ζ ◦ p4 ◦ p5 is equal to the following composition:

D1

B1

E5 B3 C.

E4 B2

D2

F 2

F 3F 4

F 1

F 1

F 1F 2

D5

D5

D3

D4

D4

⇓ κ

⇓ δ

⇓ σ1

⇓ (γ2)−1

⇓ ς̃

⇓ β

p5

p4

h1

h2

t4

p3

p4

p3

p3

p1

p1

p2

t3

t4

t1

t2

u2z4

f2

l2

g1

u1

f1

z2

g2

(85)
In the diagram above we replace u2 ◦ ς̃ with ς ◦ p4 (see (78)), then we replace ς with

diagram (77). Lastly, we simplify γ2 and κ−1 (coming from (77)) with their inverses
(coming from (85)). So we conclude that ζ ◦ p4 ◦ p5 coincides also with the following
composition:

D3 D1

D2

B1

D5F 4 F 2 B3 C.

D4 B2

⇓ σ1

⇓ (σ2)−1

⇓ β⇓ δ
p4 ◦ p5 p1 ◦ p3

t4

t1 f1

u2

t3 g1

h1

h2

t2 f2

g2

u1

If we compare this with the de�nition of ξ in (65), we conclude that:

ζ ◦ (p4 ◦ p5) = (ξ ◦ p1 ◦ p3) ◦ (p4 ◦ p5).

Step 8. Since both p4 and p5 belong to W, so does their composition by (BF2). So
the previous identity together with Lemma 3.4(ii) proves that (72) and (73) are equivalent
diagrams, so we have proved the claim (see Step 3).

Proof of Proposition 6.1. Following [P1996, pp. 259�261], in order to compute ∆◦ f
one can choose freely any representative for ∆ as in (60) (and the result does not depend
on this choice). Then after a very long construction, one gets a set of data satisfying
conditions (F5) � (F7) and some additional properties, that we don't need to recall here.
Such data are uniquely determined by the choices of type C(W) and D(W). Then the
construction of ∆ ◦ f in [P1996] is simply a special case of the construction described in
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Proposition 6.1, with a special set of data (F5) � (F7), Using Lemma 6.3, any set of data
(F5) � (F7) gives the same 2-cell of C [W−1], so we conclude.

7. Horizontal composition with 1-morphisms on the right

7.1. Proposition. (horizontal composition with 1-morphisms on the right) Let
us �x any morphism g = (B′, u, g) : B → C, any pair of morphisms fm := (Am,wm, fm) :

A → B for m = 1, 2 and any 2-morphism Γ : f 1 ⇒ f 2 in C [W−1]. Let us �x any
representative for Γ as in (4) and let us suppose that the set of choices C(W) gives data
as in the upper part of the following diagrams, with u1 and u2 in W, and ρ1 and ρ2

invertible

A1

D1

B B′,

ρ1
⇒

u1 h1

f1 u A2

D2

B B′

ρ2
⇒

u2 h2

f2 u
(86)

(so that by [P1996, � 2.2] we have g ◦ fm = (Dm,wm ◦ um, g ◦ hm) for m = 1, 2). Then
let us �x any set of data in C as follows:

(F8): we choose data as in the upper part of the following diagrams, with u3 and u5 in
W, and η1 and η2 invertible:

D1,

D3

A1A3

η1
⇒

u4u3

u1v1
D2;

D4

A2A3

η2
⇒

u6u5

u2v2

(F9): we choose data as in the upper part of the following diagram, with u7 in W and η3

invertible:

D3

D5

A3 D4;

η3
⇒

u7 u8

u3 u5
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(F10): we choose any 2-morphism λ : h1 ◦ u4 ◦ u7 ⇒ h2 ◦ u6 ◦ u8, such that u ◦λ is equal
to the following composition:

D1 B′

D3 A1

D5 A3 B.

D4 A2

D2 B′

⇓ (η1)−1

⇓ η2

⇓ β⇓ η3

⇓ ρ2

⇓ (ρ1)−1

v2

u7

u4

u5

h2

uu1

v1

u3

u

f1

u2

u8

u6

h1

f2

(87)

Then g ◦ Γ is represented by the following diagram:

D1

A D5 C,

D2

⇓ µ ⇓ g ◦ λ

g◦h2

g◦h1

w2 ◦ u2

w1 ◦ u1
u4 ◦ u7

u6 ◦ u8

(88)

where µ is the following composition:

D3 D1

D2

A1

D5 A3 A.

D4 A2

⇓ η2

⇓ (η1)−1

⇓ η3 ⇓ α
u3 v1

v2

u7 w1

u8

u5

u6 u2

w2

u4 u1

(89)

Given any other representative (4) for Γ, and any other set of data as in (F8) � (F10),
the diagram (88) induced by the new data is equivalent to diagram (88).

So the horizontal composition of the form g ◦ Γ does not depend on the set of choices
D(W).

7.2. Remark. By hypothesis u1 and u2 belong to W, hence a set of data as in (F8)
exists by (BF3); analogously also a set of data as in (F9) exists. Since g = (B′, u, g) is a
morphism in C [W−1], u belongs to W; hence a set of data as in (F10) exists by (BF4),
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up to replacing η3 with the composition of η3 with a suitable morphism in W with target
in D5 (analogously to the construction explained in Remark 4.3).

The proof of Proposition 7.1 relies on the following:

7.3. Lemma. Let us assume the same notations as Proposition 7.1. Moreover, let us �x
any set of data in C as follows:

(F8)′: we choose data as in the upper part of the following diagrams, with t3 and t5 in
W, and ξ1 and ξ2 invertible:

D1,

E3

A1A3

ξ1
⇒

t4t3

u1v1
D2;

E4

A2A3

ξ2
⇒

t6t5

u2v2

(F9)′: we choose data as in the upper part of the following diagram, with t7 in W and ξ3

invertible:

E3

E5

A3 E4;

ξ3
⇒

t7 t8

t3 t5

(F10)′: we choose any 2-morphism ϕ : h1 ◦ t4 ◦ t7 ⇒ h2 ◦ t6 ◦ t8, such that u ◦ϕ is equal
to the following composition:

D1 B′

E3 A1

E5 A3 B.

E4 A2

D2 B′

⇓ (ξ1)−1

⇓ ξ2

⇓ β⇓ ξ3

⇓ ρ2

⇓ (ρ1)−1

v2

t7

t4

t5

h2

uu1

v1

t3

u

f1

u2

t8

t6

h1

f2
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Let δ be the following composition:

E3 D1

D2

A1

E5 A3 A.

E4 A2

⇓ ξ2

⇓ (ξ1)−1

⇓ ξ3 ⇓ α
t3 v1

v2

t7 w1

t8

t5

t6 u2

w2

t4 u1

(90)

Then the following diagram:

D1

A E5 C

D2

⇓ δ ⇓ g ◦ ϕ

g◦h2

g◦h1

w2 ◦ u2

w1 ◦ u1
t4 ◦ t7

t6 ◦ t8

(91)

represents the same 2-cell of C [W−1] as (88).

Proof. Step 1. We want to apply Lemma 3.1 for the following pair of diagrams:

D1

D5A1A

A3

⇓ (v1 ◦ η3)◦
◦((η1)−1 ◦ u7)

w1

u4 ◦u7

u5 ◦u8
v1

u1

D1

E5.A A1

A3

⇓ (v1 ◦ ξ3)◦
◦((ξ1)−1 ◦ t7)

w1

t4 ◦ t7

t5 ◦ t8
v1

u1

(92)

In order to do this, let us prove that all the relevant morphisms belong to W:

• w1 belongs to W since (4) represents the 2-cell Γ of C [W−1];

• u1 belongs to W by hypothesis, so by (BF2) w1 ◦ u1 also belongs to W;

• since (4) represents a 2-cell of C [W−1], also w1 ◦ v1 belongs to W; moreover u3

belongs to W by (F8); by (BF2) this implies that w1 ◦ v1 ◦ u3 belongs to W. Us-
ing (BF5) on the invertible 2-morphism w1 ◦ η1, we conclude that also w1 ◦ u1 ◦ u4

belongs to W. By (F9) u7 belongs to W, so by (BF2) w1 ◦ u1 ◦ u4 ◦ u7 belongs to
W;
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• analogously, using (F8)′ and (F9)′ we get that w1 ◦ u1 ◦ t4 ◦ t7 also belongs to W.

So we can apply Lemma 3.1 on (92). Then there are a pair of objects F 1, F 2, a triple
of morphisms r1, r2 and r3, such that both u4 ◦ u7 ◦ r1 and r3 belong to W, and a pair of
invertible 2-morphisms ω and τ in C as follows:

D5

F 1

D1 E5,

ω
⇒

r1 r2

u4 ◦u7 t4 ◦ t7
F 1

F 2

A3 F 1,

τ
⇒

r3 r3

t5 ◦ t8 ◦ r2 u5 ◦u8 ◦ r1

such that the composition

F 2 F 1 D5 D3 D1

D4 A3 A1

⇓ η3 ⇓ (η1)−1

v1

r3 r1

u3

u5

u4

u1

u7

u8

(93)

coincides with the following one:

F 2

F 1

F 1

E5

E3 D1

E4

D4

A3 A1.

D3

D5

D5

⇓ ω

⇓ τ

⇓ ξ3 ⇓ (ξ1)−1

u8

u5

r1

u7 u4

v1

r3

r3 r2

r1 t3

t5

t4

u1t7

t8

(94)

Step 2. Let us apply Lemma 3.1 for the following pair of diagrams:

F 2

F 2A2A

D2

⇓ η2 ◦ u8 ◦ r1 ◦ r3
w2

id

u6 ◦u8 ◦ r1 ◦ r3
u2

v2 ◦ u5 ◦u8 ◦ r1 ◦ r3

F 2

F 2.A2A2

D2

⇓ (ξ2 ◦ t8 ◦ r2 ◦ r3)◦
◦(v2 ◦τ−1)

w2

id

t6 ◦ t8 ◦ r2 ◦ r3
u2

v2 ◦u5 ◦ u8 ◦ r1 ◦ r3

(95)
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Both w2 and u2 belong to W by hypothesis, hence also w2 ◦ u2 belongs to W. So in or-
der to apply the lemma, we need only to verify that w2 ◦ v2 ◦ u5 ◦ u8 ◦ r1 ◦ r3 belongs to W.

The various hypotheses and the construction of Step 1 imply that w1, u1, u4 ◦ u7 ◦ r1

and r3 all belong to W; hence also their composition belongs to W by (BF2). Now we
consider the invertible 2-morphism de�ned as the following composition:

F 2 F 1 D5 D4 A3 A2

D3 D1 A1 A.

⇓ (η3)−1 ⇓ η1 ⇓ α−1

u1

w2v1

r3 r1

u7

w1

v2u5

u3

u8

u4

The target of this 2-morphism belongs to W, so by (BF5) also the source belongs to
W. So we can apply Lemma 3.1 on (95). Therefore there are a pair of objects R1, R2, a
triple of morphisms q1, q2 and q3, such that both q1 and q3 belong to W, and a pair of
invertible 2-morphisms χ and ζ as follows

F 2

R1

F 2 F 2,

χ
⇒

q1 q2

id id
R1

R2

D2 R1,

ζ
⇒

q3 q3

t6 ◦ t8 ◦ r2 ◦ r3 ◦ q2 u6 ◦ u8 ◦ r1 ◦ r3 ◦ q1

such that the composition

A3

R2 R1 F 2 F 1 D5 D4 A2

D2

⇓ η2
u8

u2

q3 q1

u6

v2

r3
u5

r1

(96)

coincides with the following one:

F 1 D5 D4 A3

R1 F 2 F 1 E5 E4 A2.

R2 R1 F 2 F 1 D5 D4 D2

⇓ τ−1

⇓ ζ

⇓ χ ⇓ ξ2
t5

t6

r3

t8

u5

q3

r3

r1

u2

q1 u6

q2

q1

r1q3

v2

r3

u8

r2

u8

(97)

Step 3. Let us consider the 2-cell of C

u ◦λ ◦ r1 ◦ r3 ◦ q1 ◦ q3 . (98)
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We replace u ◦λ with (87), then we replace (93) with (94) and (96) with (97); lastly
we simplify τ with τ−1. So we get that (98) is equal to the composition

D1 B′

E3 A1

E5 A3 B.

E4 A2

D2 B′

F 1

D5 D3

F 2R1

R2

R1 F 2 F 1 D5 D4

⇓ (ξ1)−1

⇓ ξ2

⇓ β⇓ ξ3

⇓ ρ2

⇓ (ρ1)−1⇓ ω
⇓ χ

⇓ ζ

t6

t4

v2

t7

t5

h2

uu1

v1

t3

u

f1

u2

t8

h1

f2

r2

r1

u7 u4

r3

q2

q1

q3

q3

q1 r3 r1 u8 u6

Comparing with (F10)′, we get that (98) is also equal to the following composition:

D1

E3

E5 B.

E4

D2

B′

F 1

D5 D3

F 2R1

R2

R1 F 2 F 1 D5 D4

⇓ ϕ

⇓ ω
⇓ χ

⇓ ζ

t7
t4

h2

u

t8

t6

h1

r2

r1
u7 u4

r3

q2

q1

q3

q3

q1 r3 r1 u8 u6

(99)
Since the triple g = (B′, u, g) is a morphism in C [W−1], u belongs to W. So the

equality of (98) with (99) and Lemma 2.1 imply that there are an object R3 and a
morphism q4 : R3 → R2 in W, such that

g ◦ λ ◦ r1 ◦ r3 ◦ q1 ◦ q3 ◦ q4 (100)

is equal to the following composition:

D1

E3

E5

E4

D2

C.

F 1

D5 D3

F 2R1

R2R3

R1 F 2 F 1 D5 D4

⇓ g ◦ ϕ

⇓ ω
⇓ χ

⇓ ζ

t7
t4

g◦h2

q4

t8

t6

g◦h1

r2

r1
u7 u4

r3

q2

q1

q3

q3

q1 r3 r1 u8 u6

(101)
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Step 4. Now let us consider the 2-morphism of C

µ ◦ r1 ◦ r3 ◦ q1 ◦ q3 ◦ q4, (102)

where µ de�ned in (89). Replacing (93) with (94), (96) with (97), and simplifying τ with
τ−1, we get that (102) is equal to the following composition:

D1

E3

E5 A.

E4

D2

A1

A2

F 1

D5 D3

F 2R1

R2R3

R1 F 2 F 1 D5 D4

A3 ⇓ α⇓ ξ3

⇓ (ξ1)−1

⇓ ξ2

⇓ ω
⇓ χ

⇓ ζ

t4

t6

v1

v2

t3

t5q4

t7

u2

w1

w2

t8

u1

r2

r1

u7 u4

r3

q2

q1

q3

q3

q1 r3 r1 u8 u6

Comparing with the de�nition of δ in (90), we conclude that (102) is also equal to the
following composition:

D1

E3

E5 A.

E4

D2

A1

A2

F 1

D5 D3

F 2R1

R2R3

R1 F 2 F 1 D5 D4

⇓ δ

⇓ ω⇓ χ

⇓ ζ
q4

t7

t4

u2

w1

w2

t8

t6

u1

r2

r1
u7 u4

r3

q2

q1

q3

q3

q1 r3 r1 u8 u6

(103)
Step 5. Now let ε be the composition

D1

E3

E5

F 1

D5 D3

F 2R1

R2R3

⇓ ω

q4
t7

t4

r2

r1
u7 u4

r3
q1

q3

and let κ be the composition
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E5

E4

D2.

F 1F 2R1

R2R3

R1 F 2 F 1 D5 D4

⇓ ζ

⇓ χ

q4 t8

t6

r2

q2

q1

r3

q3

q3

q1 r3 r1 u8 u6

Then let us apply Lemma 3.2 on the pair of 2-cells of C [W−1] given by (the classes
of) (88) and (91), with the choice of ε and κ as above. Then the equalities (100)=(101)
and (102)=(103) prove that the classes of (88) and (91) admit representatives that are
equal, hence (88) and (91) are equivalent, as we wanted to prove.

Proof of Proposition 7.1. The construction of g ◦ Γ in [P1996, p. 259] begins by
choosing any representative (4) for Γ; then it is simply a particular case of the construction
described in the statement of Proposition 7.1. To be more precise, the construction
in [P1996] is done by selecting a speci�c set of data (F8) � (F10), uniquely determined
by the choices of type C(W) and D(W). Using Lemma 7.3, any set of data (F8) � (F10)
gives the same 2-cell in C [W−1], so we conclude. Note that the construction described
in Proposition 7.1 does not depend on the representative (4) chosen for Γ because the
construction of [P1996] does not depend on this choice.

8. Some useful applications

As we stated in the Introduction, Theorem 1.2 and Corollary 1.3 follow immediately
from Propositions 4.1, 5.1, 6.1 and 7.1. As we remarked in the Introduction, these four
propositions are also interesting in their own, since they allow us to easily calculate various
compositions of 2-cells in a bicategory of fractions, only knowing the set of �xed choices
C(W) (that completely determines the bicategory because of Theorem 1.2), and choosing
freely any representatives of the 2-morphisms that we are composing (plus the additional
data as in (F1) � (F10)). For example, having shown a simple procedure for computing
vertical compositions (i.e., Proposition 5.1), we can prove the already mentioned Propo-
sition 1.4 about invertibility of 2-morphisms in C [W−1]:

Proof of Proposition 1.4. Let us assume (iv); by hypothesis f 1 is a morphism of
C [W−1], hence w1 belongs to W. Since v1 ◦ u belongs to W, so does w1 ◦ v1 ◦ u. Since
(4) represents Γ, then w1 ◦ v1 also belongs to W. So by Lemma 2.4 there are an object
A′4 and a morphism u′ : A′4 → A4 such that u ◦ u′ belongs to W. Since β ◦u is invertible,
so is β ◦ (u ◦ u′), hence (iii) holds.

Let us assume (iii), so let us choose any representative (4) for Γ and let us assume that
there are an object A4 and a morphism u : A4 → A3 in W, such that β ◦ u is invertible
in C . By the description of 2-morphisms in C [W−1], we have that Γ is also represented
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by the quintuple (A4, v1 ◦ u, v2 ◦ u, α ◦ u, β ◦ u). Since β ◦ u is invertible in C , (ii) holds
with this new representative for Γ.

Now let us assume (ii), so let us assume that the data in (4) are such that β is in-
vertible in C . Since α is invertible in C by de�nition of 2-morphism in a bicategory
of fractions, it makes sense to consider the 2-morphism [A3, v2, v1, α−1, β−1] : f 2 ⇒ f 1.
Using Proposition 5.1, it is easy to see that this is a (vertical) inverse for Γ, so (i) holds.

Now let us prove that (i) implies (iv), so let us assume that Γ is invertible and let us
�x any representative (4) for it; by de�nition of 2-morphism in C [W−1] we have that α is
invertible, so we can apply Corollary 3.3 with f 1 interchanged with f 2 and (E, p, q, ς,Φ)
replaced by (A3, v2, v1, α−1,Γ−1). So there are an object E, a morphism r : E → A3 such
that v2 ◦ r belongs to W, and a 2-morphism ϕ : f 2 ◦ v2 ◦ r⇒ f 1 ◦ v1 ◦ r, such that Γ−1 is
represented by the following diagram:

A2

EA B.

A1

⇓ ϕ⇓ α−1 ◦ r

f1

f2

v2 ◦ r

v1 ◦ r
w1

w2

Then we have

[
E, v2 ◦ r, v2 ◦ r, iw2 ◦ v2 ◦ r, if2◦v2 ◦ r

]
= i(A2,w2,f2) =

= Γ ◦ Γ−1
(∗)
=
[
E, v2 ◦ r, v2 ◦ r, iw2 ◦ v2 ◦ r,

(
β ◦ r

)
◦ ϕ
]
,

where (∗) is obtained by applying Proposition 5.1. So by Lemma 3.4(ii) there are an
object F and a morphism s : F → E in W, such that:

if2◦v2 ◦ r ◦ s =
(
β ◦ r ◦ s

)
◦
(
ϕ ◦ s

)
. (104)

Analogously, we have:

[
F, v1 ◦ r ◦ s, v1 ◦ r ◦ s, iw1 ◦ v1 ◦ r ◦ s, if1◦v1 ◦ r ◦ s

]
= i(A1,w1,f1) =

= Γ−1 ◦ Γ
(∗)
=
[
F, v1 ◦ r ◦ s, v1 ◦ r ◦ s, iw1 ◦ v1 ◦ r ◦ s,

(
ϕ ◦ s

)
◦
(
β ◦ r ◦ s

)]
,

where (∗) is obtained using again Proposition 5.1. So by Lemma 3.4(iii) there are an
object A4 and a morphism t : A4 → F , such that v1 ◦ r ◦ s ◦ t belongs to W and such that

if1◦v1 ◦ r ◦ s ◦ t =
(
ϕ ◦ s ◦ t

)
◦
(
β ◦ r ◦ s ◦ t

)
. (105)
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Then (104) and (105) prove that β ◦ r ◦ s ◦ t has an inverse in C , given by ϕ ◦ s ◦ t. In
order to conclude that (iv) holds, it su�ces to de�ne u := r ◦ s ◦ t : A4 → A3.

A second application of the results of the previous sections is the following corollary,
that will be useful in the next paper [T2014(a)]. In that paper, we will have to compare
the compositions of 3 morphisms of the form (27) and the compositions of 3 morphisms
of the following form

f ′ :=
(
A A′ B

)
,

u ◦ idA′ f◦idA′

g′ :=
(
B B′ C

)
,

v ◦ idB′ g◦idB′

h′ :=
(
C C ′ D

)
.

w ◦ idC′ h◦idC′

(106)

In the special case when C is a 2-category we have that f = f ′ and so on, hence
h ◦ (g ◦ f) = h′ ◦ (g′ ◦ f ′) and (h ◦ g) ◦ f = (h′ ◦ g′) ◦ f ′. However, when C is simply a
bicategory, in general the �xed choice (A1, u1, f 1, δ) in the set C(W) for the pair (f, v) (see
the �rst diagram in (28)) is di�erent from the �xed choice for the pair (f ◦ idA′ , v ◦ idB′),
and analogously for all the remaining choices needed to compose the morphisms in (106).
Therefore, we need a tool for comparing h′ ◦ (g′ ◦ f ′) with h ◦ (g ◦ f) and analogously for
the other pair of compositions. In order to do that, �rst of all we compare separately f ′

with f . For that, we recall that we are denoting by πa : a ◦ idA ⇒ a the right unitor of C
for any morphism a : A→ B. Then we de�ne an invertible 2-morphism χ(f) : f ′ ⇒ f as
the class of the following diagram

A′

A A′ B,

A′

⇓ πf◦idA′⇓ πu ◦ idA′

f◦idA′

fu
idA′

idA′
u ◦ idA′

and analogously for χ(g) and χ(h). Then we have the following result:

8.1. Corollary. Let us �x any pair (C ,W) satisfying conditions (BF) and any set of
6 morphisms as in (27) and (106). Then the associator ΘC ,W

h,g,f : h ◦ (g ◦ f) ⇒ (h ◦ g) ◦ f
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is equal to the following composition:

C

A D.

B

⇓ χ(h)−1

⇓ χ(f) ⇓ χ(h) ◦ χ(g)

⇓ ΘC ,W
h′,g′,f ′

⇓ χ(g)−1 ◦ χ(f)−1

g′◦f ′ h′

f ′ h′◦g′

g◦f h

f h◦g

(107)

8.2. Remark.As we mentioned above, in the case when C is a 2-category there is nothing
to prove (since χ(f), χ(g) and χ(h) are all trivial). In the case of a bicategory, things are
a bit more complicated. One could be tempted to do the following:

(a) prove that χ(f) is a right or left unitor for f in the bicategory C [W−1], and analo-
gously for χ(g) and χ(h);

(b) appeal to coherence results in order to conclude that necessarily the composition in
(107) coincides with the associator ΘC ,W

h,g,f .

However, since the identities for A and B in C [W−1] are the triples (A, idA, idA) and
(B, idB, idB) respectively, we have:

f ◦ idA =
(
A A′ B

)
,

idA ◦ u f◦idA′
idB ◦f =

(
A A′ B

)
.

u ◦ idA′ idB ◦f

Since we are working in a bicategory, in general idA ◦ u 6= u ◦ idA′ and idB ◦f 6= f ◦ idA′ ,
therefore in general f ′ is di�erent from f ◦ idA and from idB ◦f . Therefore in general
χ(f) : f ′ ⇒ f cannot be a left or right unitor for f in C [W−1]. So in general we cannot
use (a) (then (b)) in order to conclude. Instead, we need to rely on Propositions 4.1, 5.1
and 7.1, as we will show below.

Proof of Corollary 8.1. The main problem in the proof comes from the presence of
unitors for C (with trivial unitors, the statement is trivial). The presence of associators
of C complicates only the exposition of the proof, but it does not introduce additional
problems. So for simplicity of exposition we suppose that C has trivial associators.

Step 1. Let us denote as in (28) the �xed choices in the set C(W), needed for
composition of f , g and h, so that we have identities (29) and (30). Moreover, let us
suppose that the set of �xed choices C(W) gives data as in the upper part of the following
diagrams (starting from the ones on the left), with u1, u2, v1 and u3 in W, and δ, σ, ξ
and η invertible:
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A
1

A′ B B′,
⇒δ

f
1

f◦idA′

u1

v ◦ idB′

A
2

A
1 C C ′,

⇒
σ l

g◦idB′ ◦f1

u2

w ◦ idC′

B
2

C ′,CB′
⇒
ξv1

w ◦ idC′

g1

g◦idB′

A
3

B
2
,BA′

⇒
ηu3

v ◦ idB′ ◦v1

f
2

f◦idA′
(108)

so that by [P1996, � 2.2] one has

h′ ◦
(
g′ ◦ f ′

)
=
(
A A

2 D
)
,

u ◦ idA′ ◦u1◦u2 h◦idC′ ◦l

(
h′ ◦ g′

)
◦ f ′ =

(
A A

3 D
)
.

u ◦ idA′ ◦u3 h◦idC′ ◦g1◦f2

Step 2. In this long step we are going to construct a set of data in C ; such data will
be used in order to provide representatives for the various 2-morphisms appearing in the
claim of Corollary 8.1, in such a way that it will be simple to compute their composition
in (107), and to prove that it coincides with ΘC ,W

h,g,f .

Step 2a. Using (BF2) we get that u1 ◦ u2 belongs to W, so by (BF3) there is a set
of data as in the upper part of the following diagram, with r1 in W and ζ1 invertible:

E1

A2 A′ A
2
.

ζ1
⇒

r1

u1◦u2u1 ◦ u2

r2

(109)

Using (BF4a) and (BF4b), there are an object E2, a morphism r3 : E2 → E1 in W

and an invertible 2-morphism ε1 : f 1 ◦ u2 ◦ r1 ◦ r3 ⇒ f
1 ◦ u2 ◦ r2 ◦ r3 in C , such that v ◦ ε1

is equal to the following composition:
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A1 B′

E2 E1

A2

A
2

A′ B.

A
1 B′

⇓ δ−1

⇓ ζ1

⇓ δ ⇓ πv

⇓ π−1f

f

f◦idA′
v ◦ idB′

v

v

u1

u1

r1

u2 f1

r2

u2

r3

f
1

This implies that δ−1 ◦ u2 ◦ r1 ◦ r3 is equal to the following composition:

A2 B′E2

E1 A
2

E1

A
1 B.

A2 A1

A1

A′

⇓ π−1v⇓ ε1

⇓ δ
−1

⇓ (ζ1)−1 ⇓ πf

v

f

v ◦ idB′

f◦idA′

f
1

u1

r3 r1

r3 r2 u2

r1

u2 u1

u2 f1

(110)

Step 2b. Now we use again (BF4a) and (BF4b) in order to get an object E3, a
morphism r4 : E3 → E2 in W and an invertible 2-morphism ε2 : l ◦ r1 ◦ r3 ◦ r4 ⇒ l ◦
r2 ◦ r3 ◦ r4, such that w ◦ ε2 is equal to the following composition:

A2

A1

A
1

C ′

E1

B′E2

E1

C.

C ′A
2

E3 ⇓ π−1g

⇓ σ−1

⇓ ε1

⇓ σ ⇓ πw
w

w

w ◦ idC′

g

g◦idB′

r4

l

u2
f1

l

r3

r2

r3

r1

u2
f
1

Therefore, σ−1 ◦ r1 ◦ r3 ◦ r4 is equal to the following composition:

E1 A2 C ′E3 E2

E2 E1 A
2

A
1

C.

E1 A2 A1 B′

⇓ (ε1)−1

⇓ ε2
⇓ π−1w

⇓ σ−1

⇓ πg

w

g

r3 r2
w ◦ idC′

r1 lr4 r3

r4

u2

f
1

g◦idB′

r3

r1 u2 f1

l

(111)



318 MATTEO TOMMASINI

Step 2c. We use (BF3) in order to get data as in the upper part of the following
diagram, with r5 in W and ζ2 invertible:

E4

A3 A′ A
3
.

ζ2
⇒

r5

u3u3

r6

Using (BF4a) and (BF4b), there are an object E5, a morphism r7 : E5 → E4 in W

and an invertible 2-morphism ε3 : v1 ◦f 2 ◦ r5 ◦ r7 ⇒ v1 ◦ f 2 ◦ r6 ◦ r7 in C , such that v ◦ ε3
is equal to the following composition:

A3 B′

E4 A′ B.

A
3

B
2

B2

B′

E5 ⇓ π−1f

⇓ η−1

⇓ ζ2

⇓ πv
⇓ η

v

v

f

f◦idA′
v ◦ idB′

r7

r6

r5

f
2 v1

u3

u3

f2
v1

Therefore, η ◦ r5 ◦ r7 is equal to the following composition:

A3E5

E4

E4

A
3

A′

B.

B′A3 B2

B
2

⇓ ζ2 ⇓ π−1f

⇓ (ε3)−1 ⇓ η

⇓ πv

f

v

r5r7

r6

f2 v1

f
2

v1

u3

v ◦ idB′

u3r7

r5

f◦idA′

(112)
Step 2d. Using (BF2) we get that u3 ◦ r5 ◦ r7 belongs to W; so by (BF3) there are

data as in the upper part of the following diagram, with r8 in W and ζ3 invertible:

E6

E3 A′ E5.

ζ3
⇒

r8

u3 ◦ r5 ◦ r7u1 ◦u2 ◦ r1 ◦ r3 ◦ r4

r9

Then we use (BF4a) and (BF4b) in order to get an object E7, a morphism r10 :

E7 → E6 in W and an invertible 2-morphism ε4 : f
1 ◦ u2 ◦ r2 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ⇒ v1 ◦ f 2 ◦
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r6 ◦ r7 ◦ r9 ◦ r10 in C , such that v ◦ ε4 is equal to the following composition:

E2 E1

A
2

A
1 B′

E7 E6

E3

A′ B.

E5 E4

A3

A2

A1

A
3

B
2 B′

⇓ δ
−1 ⇓ π−1v

⇓ ζ3

⇓ (ζ1)−1

⇓ ζ2
⇓ πv

⇓ η

v

v

f◦idA′

u3
u1

r5

r1

u2

f
1

f
2 v1

v ◦ idB′

r7

u1r8

r4

v ◦ idB′

r6

u3

r3

r9

r10

r2

u2

(113)
Step 2e. Now we use (BF4a) and (BF4b) in order to get an object E8, a morphism

r11 : E8 → E7 in W and an invertible 2-morphism ε5 : g1 ◦ f 2 ◦ r5 ◦ r7 ◦ r9 ◦ r10 ◦ r11 ⇒
g1 ◦ f 2 ◦ r6 ◦ r7 ◦ r9 ◦ r10 ◦ r11, such that w ◦ ε5 is equal to the following composition:

B2 C ′

E6E7E8 E5

E4 A3

E4 A
3

B′ C.

B
2 C ′

⇓ ξ−1

⇓ ε3

⇓ ξ ⇓ πw

⇓ π−1g

w

w

g

g◦idB′
w ◦ idC′

r7

r5 f2

r11 r10 r9

g1

v1

r7

r6 f
2

v1

g1

Therefore ξ ◦ f 2 ◦ r5 ◦ r7 ◦ r9 ◦ r10 ◦ r11 is equal to the following composition:

B2

E8

E5 B′

C.

E5 E4 A3

E4 A3

E4 A
3

B
2

B2 C ′

⇓ π−1g⇓ ε3

⇓ ξ

⇓ πw

⇓ (ε5)−1

g

w

r9 ◦ r10 ◦ r11

r7 r5 f2

r9 ◦ r10 ◦ r11 r7

r6 f
2 w ◦ idC′

v1

g1

v1

g1r7 r5 f2

g◦idB′

(114)

Step 2f. We use again (BF4a) and (BF4b) in order to get an object A4, a morphism
r12 : A4 → E8 in W and an invertible 2-morphism ρ : l ◦ r1 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12 ⇒
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g1 ◦ f 2 ◦ r5 ◦ r7 ◦ r9 ◦ r10 ◦ r11 ◦ r12, such that w ◦ ρ is equal to the following composition:

E3 A2

A
2

C ′

E8

E7 C.B
2 B′

E5 A3 B2 C ′A4

⇓ (ε5)−1

⇓ ε4

⇓ ε2

⇓ σ−1

⇓ ξ

⇓ πw

⇓ π−1w

w

w

r12
g1

f
1◦u2

w ◦ idC′

l

w ◦ idC′r11
f
2◦ r6 ◦ r7 ◦ r9 ◦ r10

r9 ◦ r10 ◦ r11

v1

r1 ◦ r3 ◦ r4 l

r5 ◦ r7 f2 g1

g◦idB′

r2 ◦ r3 ◦ r4r8 ◦ r10

(115)
Step 3. Now we de�ne the following set of morphisms and 2-morphisms:

u4 := r1 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12 : A4 −→ A2,

u5 := r5 ◦ r7 ◦ r9 ◦ r10 ◦ r11 ◦ r12 : A4 −→ A3,

γ := ζ3 ◦ r10 ◦ r11 ◦ r12 : u1 ◦ u2 ◦ u4 =⇒ u3 ◦ u5 . (116)

Moreover, we de�ne ω : f 1 ◦ u2 ◦ u4 ⇒ v1 ◦f 2 ◦ u5 as the following composition:

E2 A1A2

A4 E7 B′.

E5 B2A3

⇓ ε1

⇓ ε4

⇓ (ε3)−1

r4 ◦ r8 ◦ r10

v1

r11 ◦ r12
f1

u2

r5 ◦ r7 f2

v1◦f2◦r6 ◦ r7

r9 ◦ r10

f
1◦u2◦r2 ◦ r3

r1 ◦ r3

(117)

By construction of u4 and u5, we have that ρ is de�ned from l ◦ u4 to g1 ◦ f 2 ◦ u5. We
claim that the set of data

A4, u4, u5, γ, ω, ρ

satis�es conditions (F1) � (F3) for the computation of the associator ΘC ,W
h,g,f . u4 belongs

to W by construction and (BF2), and γ is invertible because ζ3 is so, hence condition
(F1) holds. In order to prove (F2), we replace in (31) the de�nition of u4, u5 and γ (see
(116)), the expression for δ−1 ◦ u2 ◦ r1 ◦ r3 (obtained in diagram (110)) and the expression
for η ◦ r5 ◦ r7 (obtained in diagram (112)). After simplifying the term πf (coming from
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(110)) with its inverse (coming from (112)), we get that the composition in (31) is equal
to the following one:

E2 E1

E1

A
2

A
1 B′

A4 E6

E3

A′ B.

E5 E4

E4

A3

B2

A2

A1

A3

A2

A1

A
3

B
2 B′

⇓ δ
−1 ⇓ π−1v

⇓ ζ3

⇓ (ζ1)−1

⇓ ζ2
⇓ πv

⇓ η

⇓ (ε3)−1

⇓ ε1

v

v

f◦idA′

u3
u1

r1

u2

f1

r5

f2

v1

r5

r1

u2

f
1

f
2

v1

v ◦ idB′

r7

r7

u1r8

r4

v ◦ idB′

r6

u3

r3

r3

r9

r10 ◦ r11 ◦ r12

r2

u2

(118)
Using (113) and (117), we get that (118) (hence (31)) coincides with v ◦ω. This

implies that (F2) holds. In order to prove (F3), in (32) we replace ω with its de�ni-
tion in (117), u4 and u5 with their de�nition in (116), σ−1 ◦ r1 ◦ r3 ◦ r4 with (111), and
ξ ◦ f 2 ◦ r5 ◦ r7 ◦ r9 ◦ r10 ◦ r11 with (114). After simplifying the terms πg, ε

1 and ε3 with
their inverses, we get that the composition in (32) coincides with (115), hence with w ◦ ρ.
Therefore also condition (F3) holds. So using Proposition 4.1 we conclude that the asso-
ciator ΘC ,W

h,g,f is represented by the following diagram:

A2

A4 D.A

A3

⇓ h ◦ ρ⇓ u ◦ γ

r1 ◦ r3 ◦ r4 ◦ r8 ◦
◦ r10 ◦ r11 ◦ r12

r5 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

h◦g1◦f2

h◦l

u ◦u3

u ◦ u1 ◦u2

(119)

Step 4. Now we want to compute also the associator ΘC ,W
h′,g′,f ′ . For that, we de�ne the

following set of data:

u4 := r2 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12 : A4 −→ A
2
,

u5 := r6 ◦ r7 ◦ r9 ◦ r10 ◦ r11 ◦ r12 : A4 −→ A
3
,

ω := ε4 ◦ r11 ◦ r12 : f
1 ◦ u2 ◦ u4 =⇒ v1 ◦ f 2 ◦ u5. (120)



322 MATTEO TOMMASINI

Moreover, we de�ne γ : u1 ◦ u2 ◦ u4 ⇒ u3 ◦ u5 as the following composition

E1 A
2

A
1

A4 E6

E3

E2

E5

A′
A1

A2

E4

A3

A
3

⇓ (ζ1)−1

⇓ ζ3

⇓ ζ2
r8

r4

r3

u3

r10 ◦ r11 ◦ r12

u1

r6

r5

u3

r9 r7

r1

u2 u1

r2 u2

(121)

and ρ : l ◦ u4 ⇒ g1 ◦ f 2 ◦ u5 as the following composition:

E3

E2 E1 A2

E2 E1 A
2

A4

E8

E7

E6

E7 E6 E5 E4

C ′.

E8

E7

E6

A
3

B
2

E5 E4 A3 B2

⇓ (ε2)−1

⇓ ρ

⇓ ε5

r4

r3 r1
l

r9 r7 r5 f2
g1

r11

r10

r12

r12

r11

r10
r8

r4
r3 r2

l

f
2

g1

r11 r10 r9 r7 r6 (122)

We claim that the set of data

A4, u4, u5, γ, ω, ρ (123)

satis�es conditions (F1) � (F3) for the computation of the associator ΘC ,W
h′,g′,f ′ , i.e., the

same conditions stated in Proposition 4.1, but with (27) replaced by (106), and with the
four diagrams appearing in (28) replaced by the four diagrams of (108). By construction
u1, u2 and r1 belong to W. So using (109) together with (BF2) and (BF5), we get that
u1 ◦ u2 ◦ r2 also belongs to W. Moreover, by construction r3, r4, r8, r10, r11 and r12 belong
to W. So by (BF2) also the morphism u1 ◦ u2 ◦ u4 = u1 ◦ u2 ◦ r2 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12

belongs to W; moreover γ is invertible because all the 2-morphisms in (121) are invertible
by construction, so (F1) holds. Using the de�nition of ω in (120), we get that v ◦ idB′ ◦ω
is equal to the following composition:

E6 E3 E2 E1 A
2

A
1

A4 E7 B′

E6 E5 E4 A
3

B
2

B′

B′

B.⇓ ε4

⇓ π−1v

⇓ πvv

idB′

idB′

v

v

r9

u2

r10

r4r8

r11 ◦ r12
f
1

f
2

r3 r2

v1r10

r6r7
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In the diagram above we replace v ◦ ε4 with diagram (113), then we simplify all the
terms of the form πv and π

−1
v . Using (121), we get that v ◦ idB′ ◦ω is equal to the following

composition:

B′A
1

B.A4 A′

A
3

B
2 B′

A
2

⇓ δ
−1

⇓ γ

⇓ η

u2

u4

f
1

f◦idA′

f
2 v1

u5

u3

u1

v ◦ idB′

v ◦ idB′

This proves that condition (F2) holds for the set of data in (123). Now we want to
prove also (F3). If we use the de�nition of ρ in (122), then w ◦ idC′ ◦ ρ is equal to the
following composition:

E3

E2 E1 A2

E2 E1 A
2

A4

E8

E7

E6

E7 E6 E5 E4

C ′

C ′

C ′

C.

E8

E7

E6

A
3

B
2

E5 E4 A3 B2

⇓ (ε2)−1

⇓ ρ

⇓ ε5

⇓ π−1w

⇓ πw
w

idC′

idC′

w

w
r4

r3 r1
l

r9 r7 r5 f2
g1

r11

r10

r12

r12

r11

r10
r8

r4
r3 r2

l

f
2

g1

r11 r10 r9 r7 r6

In the diagram above we replace the term w ◦ ρ with diagram (115), and we simplify
ε2, ε5 and all the terms of the form πw with their inverses. Then we get that w ◦ idC′ ◦ ρ
coincides also with the following composition

C ′A
2

A
1

A4 B′ C,

B
2 C ′

A
3

⇓ ω = ε4 ◦ r11 ◦ r12

⇓ σ−1

⇓ ξu5

f
2

g◦idB′

l

g1

u4
u2

f
1

v1

w ◦ idC′

w ◦ idC′

so (F3) holds. Therefore, using Proposition 4.1 with the data of (106), (108) and (123),
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we get that the associator ΘC ,W
h′,g′,f ′ is represented by the following diagram:

A
2

A4 D.A

A
3

⇓ h ◦ idC′ ◦ ρ⇓ u ◦ idA′ ◦ γ

r2 ◦ r3 ◦ r4 ◦ r8
◦ r10 ◦ r11 ◦ r12

r6 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

h◦idC′ ◦g1◦f2

h◦idC′ ◦ l

u ◦ idA′ ◦u3

u ◦ idA′ ◦u1◦u2

(124)

Step 5. Until now we have computed the two associators appearing in the claim
of Corollary 8.1. Using Propositions 5.1 and 7.1 it is not di�cult to prove that the
2-morphism

χ(h)−1 ◦
(
χ(g)−1 ◦ χ(f)−1

)
: h ◦

(
g ◦ f

)
=⇒ h′ ◦

(
g′ ◦ f ′

)
appearing in the upper part of (107) is represented by the diagram

A2

A A4 D,

A
2

⇓ β1⇓ α1

r1 ◦ r3 ◦ r4 ◦ r8 ◦
◦ r10 ◦ r11 ◦ r12

r2 ◦ r3 ◦ r4 ◦ r8
◦ r10 ◦ r11 ◦ r12

h◦idC′ ◦lu ◦ idA′ ◦u1◦u2

u ◦u1 ◦ u2 h◦l

(125)

where α1 and β1 are the following compositions:

A4 E1

A2 A1

A
2

A
1

A′ A,⇓ ζ1 ⇓ π−1u

r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12
u

u ◦ idA′

r1
u2

u1

r2

u2
u1

A4 E3

E2 E1 A2

E2 E1 A
2

C ′ D.⇓ π−1h⇓ ε2
r8 ◦ r10 ◦ r11 ◦ r12

h

h◦idC′

r4
r3 r1

l

r4

r3 r2
l

(126)

Step 6. Using again Propositions 5.1 and 7.1, the composition(
χ(h) ◦ χ(g)

)
◦ χ(f) :

(
h′ ◦ g′

)
◦ f ′ =⇒

(
h ◦ g

)
◦ f
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appearing in the lower part of (107) is represented by the diagram

A
3

A A4 D,

A3

⇓ α2 ⇓ β2

r6 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

r5 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

h◦g1◦f2u ◦u3

u ◦ idA′ ◦u3 h◦idC′ ◦g1◦f2

(127)

where α2 and β2 are the following compositions:

A4 E4
A

3

A3

A′ A,⇓ (ζ2)−1 ⇓ πu
r7 ◦ r9 ◦ r10 ◦ r11 ◦ r12

r6 u3

r5 u3

u ◦ idA′

u

A4 E8

E7 E6 E5 E4 A3 B2

E7 E6 E5 E4 A
3

B
2

C ′ D.⇓ (ε5)−1 ⇓ πh
r12

h◦idC′

hr11

r10 r9 r7 r5 f2
g1

r11
r10 r9 r7 r6 f

2

g1

(128)

Step 7. Now we have to compute (107), i.e., the vertical composition of:

(a) χ(h)−1 ◦ (χ(g)−1 ◦ χ(f)−1), represented by (125);

(b) ΘC ,W
h′,g′,f ′ , represented by (124);

(c) (χ(h) ◦ χ(g)) ◦ χ(f), represented by (127).

We compose (a) and (b) using Proposition 5.1: since the map A4 → A
2
in (125)

coincides with the map A4 → A
2
in (124), we can choose(

A4, idA4 , idA4 , ir2 ◦ r3 ◦ r4 ◦ r8 ◦ r10 ◦ r11 ◦ r12
)

as the data (C, t1, t2, ρ) needed in (F4). So the composition of (a) and (b) is represented
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by the following diagram:

A2

A A4 D.

A
3

⇓ (h ◦ idC′ ◦ ρ) ◦ β1⇓ (u ◦ idA′ ◦ γ) ◦ α1

r1 ◦ r3 ◦ r4 ◦ r8 ◦
◦ r10 ◦ r11 ◦ r12

r6 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

h◦idC′ ◦g1◦f2u ◦ idA′ ◦u3

u ◦ u1 ◦ u2 h◦l

(129)

Using the same ideas on the pair of diagrams (129) and (127), the composition of (a),
(b) and (c) is represented by the following diagram:

A2

A A4 D.

A
3

⇓ β2 ◦ (h ◦ idC′ ◦ ρ) ◦ β1⇓ α2 ◦ (u ◦ idA′ ◦ γ) ◦ α1

r1 ◦ r3 ◦ r4 ◦ r8 ◦
◦ r10 ◦ r11 ◦ r12

r5 ◦ r7 ◦ r9 ◦
◦ r10 ◦ r11 ◦ r12

h◦g1◦f2u ◦ u3

u ◦u1 ◦ u2 h◦l

(130)

Above we replace γ with (121) and ρ with (122). In addition, we replace α1, β1,
α2 and β2 with their de�nitions in (126) and (128). Then we simplify the terms of the
form πu, πh, ζ

1, ζ2, ε2 and ε5 with their inverses. So on the left hand side of (130) we get
u ◦ ζ3 ◦ r10 ◦ r11 ◦ r12 = u ◦ γ, and on the right hand side we get h ◦ ρ. In other terms,
(130) coincides with (119). By construction (130) represents the composition of (107),
and (119) represents ΘC ,W

h,g,f , so we conclude.

9. Appendix - An alternative description of 2-morphisms in a bicategory of

fractions

Proposition 1.1 suggests an alternative construction of 2-morphisms in C [W−1]. This
new construction is equivalent to the original one of [P1996], but much simpler. Let us
suppose that we want to de�ne a 2-morphism from the morphism f 1 := (A1,w1, f 1) to

the morphism f 2 := (A2,w2, f 2) (both de�ned from A to B). Since the composition
of 1-morphisms in C [W−1] depends on the set of choices C(W), such choices must be
�xed before constructing the bicategory of fractions (and such a bicategory depends on
these choices). Since they are �xed, there is no harm in using them in order to get data
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(E, p, q, ς) in C as below, with p in W and ς invertible:

E

A1 A2.A

ς
⇒

w2

q

w1

p

(131)

Then we give the following de�nition:

9.1. Definition. Let us �x any pair (C ,W) satisfying conditions (BF), and any set of
choices C(W); let C [W−1] be the bicategory of fractions induced by such choices (see
Theorem 1.2). Then an almost canonical representative of a 2-morphism in C [W−1]
from f 1 to f 2 is any triple (A3, t, ϕ) where t : A3 → E is a morphism in W, and ϕ is a
2-morphism in C from f 1 ◦ p ◦ t to f 2 ◦ q ◦ t. Given another triple (A′3, t′ : A′3 → E,ϕ′ :
f 1 ◦ p ◦ t′ ⇒ f 2 ◦ q ◦ t′), we say that it is equivalent to the previous one, and we write
(A3, t, ϕ) ∼ (A′3, t′, ϕ′) if and only if there are data (A4, u, u′, σ) in C as follows

E

A′3 A3,A4

σ
⇒

u

t

u′

t′

such that:

• u belongs to W;

• σ is invertible;

• the compositions of the following two diagrams are equal:

A′3 E A1

A4 A3 B,

A′3 E A2

⇓ σ
⇓ ϕ

⇓ σ−1

p

q

u′

t′

t

u

f1
u′

t′

f2

t

E

A4 A′3

E A1

B.

A2

⇓ ϕ′

t′

u′

t′

p

f1

q

f2

(132)
A 2-morphism in C [W−1] is any class of equivalence of data as above, denoted by[

A3, t, ϕ
]

:
(
A1,w1, f 1

)
=⇒

(
A2,w2, f 2

)
.

As you can see, this de�nition is much shorter than the original one (that we recalled
in the Introduction). It is not too hard to prove that:
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(a) ∼ is a actually an equivalence relation (so De�nition 9.1 is well-posed);

(b) there is a natural bijection between 2-morphisms according to De�nition 9.1 and 2-
morphisms according to the original de�nition of [P1996], induced by associating to
any triple (A3, t, ϕ) the equivalence class of the following diagram:

A1

A3A B.

A2

⇓ ϕ⇓ ς ◦ t

f2

f1

p ◦ t

q ◦ t
w2

w1

(133)

The result above can be rephrased by saying that each 2-morphism in C [W−1] (de-
�ned according to [P1996]) has a representative given by a diagram of type (133) for a
triple (A3, t, ϕ) that is �almost canonical� (having �xed the set of choices C(W) that com-
pletely determine the structure of C [W−1], see Theorem 1.2). �Almost canonical� here
refers to the fact that the triple (A3, t, ϕ) inducing a given 2-morphism is almost unique
and varies in a much smaller set if compared to the set of diagrams as (4). We cannot
say �canonical� since sometimes there is more than one such triple inducing the same
2-morphism (this is why we need to use the equivalence relation given in De�nition 9.1).

The description of 2-cells of C [W−1] in terms of �almost canonical� triples is simpler
than the original one in [P1996], but does not interact well with vertical and horizontal
composition. Therefore we are just mentioning it here in the Appendix, and we leave the
proof of (a) and (b) as an useful exercise for the interested reader (hint: use the axioms
(BF) together with the lemmas stated in � 2 and � 3, and the de�nition of 2-cells of
C [W−1] that we recalled in the Introduction).
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