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A COTRIPLE CONSTRUCTION OF A SIMPLICIAL ALGEBRA
USED IN THE DEFINITION OF HIGHER CHOW GROUPS

JASON K.C. POLAK

Abstract. We present a brief and simple cotriple description of the simplicial algebra
used in Bloch’s construction of the higher Chow groups.

1. A Simplicial Algebra

Let ∆ be the category of finite ordered sets and nondecreasing functions. For each natural
number n, we let [n] denote the object {0 < · · · < n} of ∆. Let R be a commutative ring
and let

D[n] = R[t0, . . . , tn]/
(∑

ti − 1
)
.

For each ρ : [m]→ [n], we define D[n]→ D[m] as the R-algebra homomorphism

D(ρ) :
R[t0, . . . , tn]∑

ti − 1
−→ R[t1, . . . , tm]∑

ti − 1

ti 7−→
∑
ρ(j)=i

tj.

The cosimplicial scheme [n] 7→ Spec(D[n]) arises in Bloch’s definition of higher Chow
groups [Blo86]. Given this definition, one needs to go through a straightforward but
somewhat tedious checking that such a simplicial R-algebra is actually simplicial, which
involves verifying a few identities.

In this paper an alternative way to construct the simplicial R-algebra as above in
terms of a cotriple that additionally obviates the need to check simplicial identities. In
§2 we review the basic notions involving simplicial objects and cotriples, and in §3 we
present our construction.
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2. Simplicial Objects and Cotriples

The material in this section is standard and we merely review it to fix notation. The reader
should consult [Wei94] or [BW00] for more details. A simplicial object A with values in
a category C is a contravariant functor A : ∆→ C . We define the map εi : [n− 1]→ [n]
to be the unique map whose image does not contain i ∈ [n] and ηi : [n + 1] → [n] to
be the unique map such that two elements of [n + 1] map to i. The face maps of a
simplicial object A are defined to be ∂i := A(εi) and the degeneracy maps are defined
to be σi := A(ηi). We recall that a simplicial object is determined by the ∂i and σi maps.

Given a simplicial object A, the dual A∨ to A is the simplicial object that is the same
as A except that ∂∨i = ∂n−i and σ∨i = σn−i.

2.1. Definition. A cotriple (⊥, ε, δ) on a category C is a functor ⊥ : C → C together
with two natural transformations ε : ⊥ → 1C and δ : ⊥ → ⊥⊥ such that for every object
X in C , the diagrams

⊥X ⊥(⊥X)

⊥(⊥X) ⊥⊥⊥X

δX

δX δ⊥X

⊥δX

⊥X

⊥X ⊥(⊥X) ⊥X

δX
= =

⊥εX ε⊥X

commute.

One may construct simplicial objects out of a cotriple using the following:

2.2. Proposition. If (⊥, ε, δ) is a cotriple in C , then one can construct a simplicial
object [n] 7→ ⊥nX for each object X ∈ C by setting ⊥nX := ⊥n+1X and

∂i := ⊥iε⊥n−i : ⊥nX → ⊥n−1X,
σi := ⊥iδ⊥n−i : ⊥nX → ⊥n+1X.

3. The Construction

Let R be a commutative ring. We write R-Alg∗ for the category of pointed R-algebras.
The objects of R-Alg∗ are pairs (A, a) where A is an R-algebra and a ∈ A. A morphism
f : (A, a) → (B, b) in R-Alg∗ is an R-algebra homomorphism f : A → B such that
f(a) = b.
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3.1. Definition. We define the functor ⊥ : R-Alg∗ → R-Alg∗ on objects by ⊥(A, a) =
(A[t], t+ a), and on morphisms f : (A, a)→ (B, b) by

⊥(f)(a0 + · · ·+ ant
n) = f(a0) + · · ·+ f(an)tn.

We introduce two natural transformations ε : ⊥ → 1 and δ : ⊥ → ⊥⊥ given for each
pointed R-algebra (A, a) by

εA : (A[t], t+ a) −→ (A, a)

t 7−→ 0

and

δA : (A[t], t+ a) −→ (A[t, s], s+ t+ a)

t 7−→ s+ t.

We note we have abused notation by writing εA and δA when the notation ε(A,a) and δ(A,a)
would be more accurate and more horrible as well.

3.2. Theorem. The tuple (⊥, ε, δ) is a cotriple.

Proof. We need to verify the commutativity of two diagrams. Let (A, a) be an arbitrary
object of R-Alg∗. The first diagram is

(A[t], t+ a) (A[t, s], s+ t+ a)

(A[t, s], s+ t+ a) (A[u, t, s], s+ t+ u+ a)

δA

δA δ⊥A

⊥δA

The clockwise direction corresponds to t 7→ s+t 7→ (s+u)+t, whereas the counterclockwise
direction corresponds to t 7→ s + t 7→ s + (t + u). The second diagram is similar: it
corresponds to s+ t 7→ 0 + t 7→ 0 + 0 in one direction, and s+ t 7→ s+ 0 7→ 0 + 0 in the
other.

Since (⊥, ε, δ) is a cotriple, for each (A, a) there is a corresponding simplicial object
⊥n(A, a). To recover Bloch’s simplicial algebra, apply the cotriple to the object (R,−1).
Then ⊥n(R,−1) = (R[t0, . . . , tn],

∑
ti − 1). The face operator ∂n−i is then

∂n−i(tj) =


tj if j < i
0 if j = i
tj−1 if j > i.

and the degeneracy operator σn−i is the map

σn−i(tj) =


tj if j < i

tj + tj+1 if j = i
tj+1 if j > i
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3.3. Theorem. Let Q : R-Alg∗ → R-Alg be the functor to R-algebras defined by
Q(A, a) = A/(a). Then Bloch’s simplicial algebra D is isomorphic to Q(⊥∗(R,−1))∨.

Proof. The ith face map of D comes from applying the functor D to the map εi:

D(εi)(tj) =
∑

εi(j)=k

tk

which one sees gives the same formula as the formula for ∂n−i. Similarly, the ith degen-
eracy map of D comes from applying D to the map ηi and we see that D(ηi) is given by
the same formula as the σn−i map as above.

Although the construction is straightforward, it is arguably a more natural and cate-
gorical approach to our simplicial algebra. We remark that there is no obvious adjunction
lying around that gives the cotriple we have constructed, even though many standard or
obvious cotriples do come from adjunctions.
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