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RIGHT DELOCALIZATION OF MODEL CATEGORIES

BRUCE R CORRIGAN-SALTER

Abstract. Model categories have long been a useful tool in homotopy theory, allowing
many generalizations of results in topological spaces to other categories. Giving a
localization of a model category provides an additional model category structure on
the same base category, which alters what objects are being considered equivalent by
increasing the class of weak equivalences. In some situations, a model category where
the class of weak equivalences is restricted from the original one could be more desirable.
In this situation we need the notion of a delocalization. In this paper, right Bousfield
delocalization is defined, we provide examples of right Bousfield delocalization as well as
an existence theorem. In particular, we show that given two model category structures
M1 and M2 we can define an additional model category structure M1 ∩M2 by defining
the class of weak equivalences to be the intersection of the M1 and M2 weak equivalences.
In addition we consider the model category on diagram categories over a base category
(which is endowed with a model category structure) and show that delocalization is often
preserved by the diagram model category structure.

1. Introduction

Since being introduced in [17] by Quillen, model categories have long served as a means to
work on homotopy theory. Given a category, Quillen provides a list of necessary attributes
on the category and three classes of maps, that allows one to give a decent description of
the homotopy category obtained by formally inverting the class of weak equivalences. This
work was paramount in extending results found in topological spaces to other categories.

After their introduction, much has been done in the study of model categories and
their associated homotopy categories. One particular instance of work that has been done
is the localization of model categories found in the work of Bousfield [4],[5], [6], [7] and
[8] and presented in detail by Hirschhorn in [13] (see 2.8). By localizing a model category,
the class of weak equivalences can be extended, allowing one to have a larger variety of
”equivalent” objects.

In this paper we consider the opposite of a localization, mainly a delocalization of a
model category. By delocalizing we instead provide a model category with a smaller class
of weak equivalences giving us the ability to expect extra structure on our class of weak
equivalences. In particular, we define the notion of right Bousfield delocalization and show
that such a delocalization of a pair of model categories M1 and M2 exists when certain
assumptions on M1 and M2 can be made.
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1.1. Original Motivation. In [9] the author defines higher order Hochschild cohomol-
ogy of a k-algebra A, over a simplicial set X• with coefficients in M (denoted H∗X•(A,M)).
The main result in this paper is determining what actions coefficient modules can take.
One question that can be asked about this higher order Hochschild cohomology is whether
the cohomology is determined up to homotopy equivalence. The problem is that in general,
given two simplicial sets, the allowable coefficient modules may not be able to have the
same amounts of actions (for example one simplicial set may only be able to work with
symmetric bi-modules, while the other could work with bi-modules).

One way to try and attack this problem is by considering an altered model category
structure on the category of simplicial sets where weak equivalences are maps which are
both weak equivalences and which preserve the ”allowable modules” between the simplicial
sets. From a localization standpoint, this idea is somewhat backwards. When localizing
a model category, we get a larger class of weak equivalences, but here we are trying to
restrict our class of weak equivalences. By considering a ”delocalization” we may find
what we are looking for.

1.2. Organization. We start in Section 2 by providing formal definitions for model
categories, Bousfield localization and weak factorization systems. We also use this section
to set up the notation used in the paper. In Section 3 we define and give examples
of a Bousfield delocalization as well as an existence theorem. In Section 4 the main
delocalization theorem is proved and in Section 5 we consider diagram categories and their
delocalizations. Lastly, we revisit the original motivation by looking back at the homotopy
invariance question for higher order Hochschild cohomology in Section 6.

2. Model Categories

In this paper we assume some familiarity with model categories and their localizations,
but we use this section to provide a formal definition for both along with the notation
used within this paper. Much of what is provided here will be used throughout the proofs
later on. To define a model category we make use of the following closely related concept
introduced by Joyal and Tierney in [15] and studied by Riehl in [18].

2.1. Definition. [18, 2] A weak factorization system (L,R) on a category M consists
of two classes of maps so that

• Any map f ∈M can be factored as f = r ◦ l with l ∈ L and r ∈ R.

• Any lifting problem, i.e., any commutative diagram of the form

· ·

· ·

l ∈ L r ∈ R
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has a solution, i.e., a diagonal arrow making both triangles commute.

• The classes L and R are closed under retracts.

It can be seen that by the retract argument L and R actually determine each other; L
is the class of maps with the left lifting property with respect to R and R is the class of
maps with the right lifting property with respect to L. For this reason, we will commonly
denote classes of maps that lift in this manner as R = L�� and L =��R.

With this, we give the definition of a model category.

2.2. Definition. A model category structure on a category M consists of three classes
of maps F,C and W called fibrations, cofibrations and weak equivalences respectively so that
W satisfies the 2 out of 3 property, and (C ∩W,F) and (C,F ∩W) are weak factorization
systems.

2.3. Cofibrantly Generated Model Categories. Many times a model category
structure can be completely determined by a set of cofibrations and set of acyclic cofibra-
tions (where the class of acyclic cofibrations is C ∩W). When this happens we say that
the model category is cofibrantly generated.

2.4. Definition. [14, 2.1.17] Suppose M is a model category. We say that M is cofi-
brantly generated if there are sets I and J of maps such that:

i) the domains of the maps in I are small relative to I-cell (transfinite compositions of
pushouts of elements in I)

ii) the domains of the maps in J are small relative to J-cell (transfinite compositions
of pushouts of elements in J)

iii) the class of fibrations is J��

iv) the class of acyclic fibrations is I��

The sets of maps I and J are referred to as the sets of generating cofibrations and
generating acyclic cofibrations respectively.

2.5. Remark. In general, cofibrantly generated model categories only need the domains
of I and J to be small relative to I-cell and J-cell respectively, however for this paper we
typically assume a stronger notion of small, by expecting that the domains of I and J are
small relative to the category M (see [11, 7.14]).

Detecting whether a model category is cofibrantly generated can be done via the
following theorem due to D.M. Kan.
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2.6. Theorem. [14, 2.1.19] Suppose M is a category with all small colimits and limits.
Suppose W is a class of maps of M, and I and J are sets of maps of M. Then there
is a cofibrantly generated model category structure on M with I as the set of generating
cofibrations, J as the set of generating acyclic cofibrations, and W as the class of weak
equivalences if and only if the following conditions are satisfied.

i) W has the 2 out of 3 property and is closed under retracts

ii) the domains of I are small relative to I-cell

iii) the domains of J are small relative to J-cell

iv) J-cell⊆W ∩��(I��)

v) I�� ⊆W ∩ J��

vi) either W ∩��(I��) ⊆��
(J��) or W ∩ J�� ⊆ I��.

2.7. Bousfield Localization. In this paper we use the notion of Bousfield localization
extensively, so the definition will be provided here.

2.8. Definition. [13, 3.3.1] Let M be a model category and S be a class of maps in M.

(1) The left Bousfield localization of M with respect to S (if it exists) is a model
category structure LSM on the underlying category M such that

a) the class of weak equivalences of LSM equals the class of S-local equivalences
of M

b) the class of cofibrations of LSM equals the class of cofibrations of M and

c) the class of fibrations of LSM is the class of maps with the right lifting property
with respect to maps which are both S-local equivalences and cofibrations.

(2) The right Bousfield localization of M with respect to S (if it exists) is a model
category structure RSM on the underlying category M such that

a) the class of weak equivalences of RSM equals the class of S-colocal equivalences
of M

b) the class of fibrations of RSM equals the class of fibrations of M and

c) the class of cofibrations of RSM is the class of maps with the left lifting property
with respect to maps which are both S-colocal equivalences and fibrations.

2.9. Remark. An alternate definition for Bousfield localizations is given in Section 3 so
we refer the reader to [13] for more information on the definition provided above.
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3. Right Bousfield Delocalization

In this section we define right Bousfield delocalization, provide an existence theorem,
as well as an example. First we start with an alternative definition of right Bousfield
localization.

3.1. Definition. Given a category M with a model category structure which we denote
M1 a right Bousfield localization of M is an additional model category structure on M

(denoted M2) with the following properties:

• if f is a weak equivalence in the M1 model category structure, then f is a weak
equivalence in the M2 model category structure

• M1 and M2 have the same class of fibrations.

3.2. Remark. This definition agrees with 2.8 where M2 is the right Bousfield localization
of M1 with respect to the class of M2 weak equivalences.

With this, the definition of a right Bousfield delocalization is quite natural.

3.3. Definition. Given a category M with a model category structure, which we denote
M2, a right Bousfield delocalization of M2 is an additional model category structure on
M (denoted M1) with the property that M2 is a right Bousfield localization of M1.

Given these definitions, recognizing a localization/delocalization relationship between
two model category structures on the same category M is fairly straightforward, but
providing the existence is more difficult. When starting with a model category structure
M1 and considering the definition for Bousfield localization provided in Section 2 (see 2.8)
we could pick a class of maps with which we could try to localize M1 with. In fact, under
certain assumptions on M and the associated class of maps, the localization is shown to
exist.

3.4. Theorem. [13, 5.1.1] Let M1 be a right proper cellular model category, K be a set
of objects in M, and S the K-local equivalences, then the right Bousfield localization of
M1 with respect to S exists.

3.5. Remark. In this paper we work primarily with right Bousfield delocalizations, but
it is worth mentioning that there is also a well known analogous theorem on the existence
of left Bousfield localizations [13, 4.1.1] We would like a similar existence theorem for right
Bousfield delocalizations and in order to provide one we must first consider the following
definition.

3.6. Definition. Let M be a category with two model category structures M1 and M2

with cofibrations, fibrations and weak equivalences given by C1,C2,F1,F2,W1, and W2

respectively with the property that F1 = F2. We define the right intersected model
category of M1 and M2 (denoted M1 ∩M2) to be the model category structure on M (if it
exists) with the following classes of maps:
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• fibrations := F1 = F2

• weak equivalences := W1 ∩W2

• cofibrations :=��(F1 ∩W1 ∩W2)

3.7. Remark. It should be noticed that if M1 ∩M2 exists, then it is a right Bousfield
delocalization of both M1 and M2.

With this, we can now provide an existence theorem for M1 ∩M2.

3.8. Theorem. Let M be a category with two cofibrantly generated model category struc-
tures M1 and M2 with generating cofibrations I1 and I2 and generating acyclic cofibrations
J1 and J2 respectively (whose domains are small relative to M). Assume also that fibra-
tions F1 and F2 of M1 and M2 agree, then the model category structure of M, given by
definition 3.6 exists.

3.9. A-cellular model categories. Before providing the proof (which is given in
Section 4) we consider an interesting example. As a homotopy theorist, when studying
topological spaces, concern is placed on CW complexes up to homotopy equivalence.
One way to make such considerations is by using the Quillen model category structure
on the category of topological spaces. While CW complexes are very useful, one could
also consider the spaces obtained by building with something besides the zero sphere
(and the associated homotopy colimits). This generalization to other “A-cellular” spaces
was studied by Dror Farjoun and Nofech in [12] and [16] respectively, where “A-cellular”
spaces are the cofibrant objects in the model category structure on pointed topological
spaces associated to a pointed cofibrant object A (see definition 3.10) much like pointed
CW complexes are the cofibrant objects in the standard model category structure on
pointed topological spaces. It turns out that this model category structure associated to
A is actually a right Bousfield localization of the standard model category structure on
pointed topological spaces. Nofech defines this localized model category structure in more
generality and starts with any pointed closed simplicial model category (not necessarily
pointed topological spaces).

3.10. Definition. [16, 1.0] Let C be a pointed closed simplicial model category and A
be a cofibrant object of C. We call CA a closed model category structure associated with
the localization of C with respect to A if the cofibrations, fibrations and weak equivalences
in CA are defined as follows:

• WCA := {ϕ : B → C|ϕf∗ : Hom(A, B̃)→ Hom(A,C) is a weak equivalence of simpli-
cial sets }

• FibCA := FibC

• CofCA :=��(WCA ∩ FibCA)
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where ϕf∗ is the fibrant approximation of ϕ.

One question that can be asked in this right delocalization context is “What model
category structure is obtained from the right intersection of two of these A-cellular model
categories?” For this we will consider the case when C is the category of pointed topological
spaces Top∗. We have the following proposition.

3.11. Proposition. Given two cofibrant pointed topological spaces A and A′, T opA∗ ∩
TopA

′
∗ = TopA∨A

′
∗ .

Proof. For this proof we simply need to show that the model category TopA∨A
′

∗ can be
described via the model category TopA∗ ∩ TopA

′
∗ , but this amounts to showing that the

weak equivalences agree.
Given a map ϕ : B → C we would like to show that both ϕAf∗ : Hom(A, B̃)→ Hom(A,C)

and ϕA
′

f∗
: Hom(A′, B̃)→ Hom(A′, C) are weak equivalences if and only if ϕA∨A

′

f∗
: Hom(A∨

A′, B̃) → Hom(A ∨ A′, C) is a weak equivalence. We see that since Hom(A ∨ A′,−) ∼=
Hom(A,−) × Hom(A′,−), ϕAf∗ and ϕA

′

f∗
are weak equivalences, then ϕA∨A

′

f∗
must also be

a weak equivalence. Secondly, we have that A and A′ are both retracts of A ∨ A′ giving
us that ϕAf∗ and ϕA

′

f∗
are both retracts of ϕA∨A

′

f∗
. This implies that if ϕA∨A

′

f∗
is a weak

equivalence, then ϕAf∗ and ϕA
′

f∗
must also be weak equivalences.

3.12. Bousfield Quivers. In [19] Salch describes the bi-colored quiver (directed graph
where loops and multiple arrows between two nodes are allowed) obtained by considering
the existing model category structures on a category M by letting the nodes be distinct
model categories and the directed edges be left and right Bousfield localizations (colored
based on whether the localization is right or left). An interesting fact that Salch finds is
that these Bousfield quivers are not connected in general. A question that can be asked
in this setting is “Given two cofibrantly generated model categories M1 and M2 whose
fibrations agree, must M1 and M2 be contained in the same component?” The answer is
what might be expected.

3.13. Corollary. Given two cofibrantly generated model category structures on a cat-
egory M denoted M1 and M2 (where generating cofibrations and generating acyclic cofi-
brations have small domains relative to M); if fibrations agree, then M1 and M2 are in
the same component of the Bousfield quiver discussed in [19] via the directed edges from
M1 ∩M2.

We omit the proof as this corollary is a direct consequence of Theorem 3.8.

4. Proof of Theorem 3.8

In the proof of Theorem 3.8 we not only show that the given cofibrantly generated model
categories M1 and M2, that M1∩M2 is a model category structure on M, but that M1∩M2

is cofibrantly generated as well.
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Proof of Theorem 3.8. Let M be a category with two cofibrantly generated model
category structures M1 and M2 which agree on fibrations. Let the generating cofibrations
be I1 and I2 respectively and generating acyclic cofibrations be J1 and J2 respectively
(all with small domains relative to M) and weak equivalences be given by W1 and W2

respectively. We aim to prove that M1 ∩M2 is a cofibrantly generated model category
by showing that the assumptions of Theorem 2.6 are satisfied where I = I1 ∪ I2,W =
W1 ∩W2, J = J1. For part i) notice W1 and W2 both have the 2 out of 3 property and
are closed under retracts, so certainly W = W1 ∩W2 is as well. For parts ii) and iii) we
assume that I1, I2, J1 all have small domains relative to M. For part iv) notice that

W ∩�
�
(I��)

= (W1 ∩W2) ∩
��

((I1 ∪ I2)�
�) ⊇ (W1 ∩W2) ∩ (

��
(I��1 ) ∪�

�
(I��2 ))

= W1 ∩ (
��

(I��1 ) ∪�
�
(I��2 )) ∩W2 ∩ (

��
(I��1 ) ∪�

�
(I��2 ))

but J1− cell ⊆W1 ∩
��

(I��1 ) and since M2 could have been cofibrantly generated by I2 and
J1 as cofibrations and acyclic cofibrations respectively (since fibrations between M1 and

M2 agree) we also see that J1−cell ⊆W2∩
��

(I��2 ) which gives us that J−cell ⊆W∩��(I��).
For part v) we see that J�� = J��1 = J��2 since fibrations agree so W ∩ J�� = (W1 ∩ J��1 ) ∩

(W2 ∩ J��2 ). We also have that I��1 ⊆W1 ∩ J��1 and I��2 ⊆W2 ∩ J��2 , but since I�� = I��1 ∩ I��2 this
implies that I�� ⊆W∩ J��. Lastly, for part vi) notice that W∩ J�� = (W1 ∩ J��)∩ (W2 ∩ J��)
and I�� = I��1 ∩ I��2 , but(W1 ∩ J��) ⊆ I��1 and (W2 ∩ J��) ⊆ I��2 since J�� = J��1 = J��2 so
W ∩ J�� ⊆ I�� and therefore M1 ∩M2 is cofibrantly generated by I1 ∪ I2 and J.

5. Delocalization of diagram categories

A good reason for localizing a model category M is to change the cofibrant-fibrant objects
while maintaining much of the data from the original model category structure on M.
The purpose of doing so is so that the homotopy category associated to the localization
(determined by its cofibrant-fibrant objects) can be modified accordingly. One example
of this is the creation of a homotopy category which describes homotopy algebras over
algebraic theories, semi-theories, multi-sorted algebraic theories and finite product sketches
studied by Badzioch in [1] and [2], Bergner in [3] and the author in [10].

5.1. Proposition. [10, 4.5] Let (C, κ) be a finite product sketch i.e. C is a small
category and κ is a set of cones in C. The full subcategory of SpacesC spanned by the
homotopy (C, κ)-algebras with objectwise weak equivalences inverted is equivalent to the
homotopy category of LSpacesC , where LSpacesC is a suitable left Bousfield localization
of SpacesC .

Before going much further we will take a look at the category SpacesC , or more
generally MC and the associated model category structure (implied to exist in Proposition
5.1).
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5.2. Definition. Let M be a category and C be a small category. By MC we mean the
category of diagrams in M with the shape of C. Objects in MC are functors from C to M

and morphisms are natural transformations.

If M is a cofibrantly generated model category, then we have an induced model category
structure on MC .

5.3. Theorem. [13, 11.6.1] If C is a small category and M is a cofibrantly generated
model category with generating cofibrations I and generating acyclic cofibrations J, then
MC is a cofibrantly generated model category with the following classes of maps:

• weak equivalences are objectwise weak equivalences

• fibrations are objectwise fibrations

• cofibrations are maps with the left lifting property with respect to objectwise acyclic
fibrations.

The model category structure in Theorem 5.3 is commonly referred to as the projective
model category structure on MC . This theorem gives the existence of the projective
model category structure if the model category M is cofibrantly generated, but in general,
if these classes of maps in MC satisfy the axioms for a model category, then we will refer
the resulting model category as the projective model category as well.

With this, we have a proposition relating to the intersection delocalization.

5.4. Proposition. Let M be a category with two cofibrantly generated model category
structures M1 and M2 where fibrations agree and M1 ∩M2 gives a cofibrantly generated
model category structure for M, then the model category structures (M1 ∩ M2)

C and
MC

1 ∩MC
2 agree.

The proof of Proposition 5.4 follows directly from definition so we leave it to the reader.
When working with diagram categories and their model category structures, one

question that can be asked is “Given a model category M, and small category C where
the projective model category MC exists; for a right (left) Bousfield localization of MC , is
there a model category structure M2 on M so that the projective model category structure
MC

2 agrees with the Bousfield localization of MC?” An answer in the affirmative would
certainly make dealing with localized diagram model category structures nicer, however in
general the answer for Bousfield localizations is no. We do show though, that for the right
intersected delocalization model categories, the analogous questions is easier to satisfy.
We do so by providing a detection theorem for an induced model category structure on
M from a model category structure on MC .

Before providing the detection theorem and subsequent delocalization theorem, we will
define a few needed notions.
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5.5. Definition. Let M be a category and C be a small category. We have a functor:

P : M→MC

where P (A) : C → M evaluates as A on every object of C. We refer to this functor as
the diagonal functor, objects P (A) ∈ MC as constant diagrams and maps P (f) as
constant transformations.

5.6. Definition. For a map f ∈ MC , we will refer to the maps f(α) : X(α) → Y (α)
where α ∈ C as component maps (specifically the component map of f at α).

With this we have the following theorem.

5.7. Theorem. Let C be a small category, M be a category closed under finite limits and
colimits. If MC has a model category structure so that the following is true:

i) Given a map f : X → Y in MC , if for all α ∈ C the component map of f at α
f(α) : X(α) → Y (α) ∈ M is a component map for some fibration g : X ′ → Y ′ of
MC , then f is a fibration

ii) Given a map f : X → Y in MC , if for all α ∈ C the component map of f at α
f(α) : X(α)→ Y (α) ∈M is a component map for some weak equivalence g : X ′ →
Y ′ of MC , then f is a weak equivalence

iii) If f : X∗ → Y∗ is a constant transformation in MC , which has the left lifting property
with respect to all constant fibrations, then f is a weak equivalence.

iv) If a constant transformation f lifts with respect to all constant acyclic fibrations and
f is a weak equivalence, then f lifts with respect to all constant fibrations

then M has a model category structure with the following classes of maps:

• fibrations := the class of all possible component maps of fibrations in MC

• weak equivalences := the class of all possible component maps of weak equivalences
in MC

• cofibrations := maps with the left lifting property with respect to maps which are both
fibrations and weak equivalences.

Furthermore, the projective model category structure on MC using the fibrations and weak
equivalences just defined agrees with the original model category structure on MC (assumed
to exist in the assumptions of this theorem).

Before getting to the proof we will consider the following lemma.
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5.8. Lemma. Let (L,R) be a weak factorization system for MC with the property that for
any map f ∈ MC , if for all α ∈ C the component maps of f at α are each component
maps for some map g ∈ R then f ∈ R. Then for h ∈ L

h(α) : X(α)→ Y (α)

belongs to ��R∗ where R∗ is the class of maps in M which show up as component maps for
some map in R

Proof. We start with an adjoint pair of functors for α ∈ C:

F : MC � M : G

where F (X) = X(α) for X ∈ MC and G(y)(β) =
∏
β→α

y for y ∈ M and β ∈ C. Suppose

now that f ∈ L and there is a commutative diagram:

X(α) w

Y (α) z

f(α) g

then by the adjoint pair (F,G) we get a diagram;

X G(w)

Y G(z)

f G(g)

Now if we suppose g ∈ R∗ then G(g) ∈ R since R is closed under arbitrary products, so
in particular, there exists a map θ : Y → G(w) that gives a lift in the second diagram above
and therefore we have a map (using the adjoint pair of functors) εw ◦ F (θ) : Y (α)→ w so
that a lift exists in the first diagram and f(α) ∈��R∗.

We can now prove Theorem 5.7.

Proof of Theorem 5.7. Let C,F and W be the cofibrations, fibrations and weak
equivalences described in Theorem 5.7. We start by proving that M has a model category
structure by showing that the pairs (C,F ∩W) and (C ∩W,F) are weak factorization
systems and that W satisfies the 2 out of 3 property. For the 2 out of 3 property, consider
the composition of two maps f, g ∈M. We have the diagonal functor P : M→MC . Note
that F (f), F (g) and F (fg) are weak equivalences if and only if f, g and fg are as well.
From this, it is clear that W satisfies the 2 out of 3 property.
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For the weak factorization systems, first notice that C,C ∩W,F,F ∩W are all closed
under retracts. For F and F ∩W this claim can be checked by seeing that if a map g is a
retract of a map f in M then the associated constant transformation P (g) is a retract of
P (f). For C, all retracts of maps in C lift with respect to all maps in F ∩W which means
they must be in C and following a similar argument retracts of maps in C ∩W must be
in C and by part iii) they must be in W as well. It can now be seen that (C,F ∩W) is
a weak factorization system since C is defined to be the class of maps that have the left
lifting property with respect to F ∩W and any map f ∈ M has an associated constant
transformation P (f) ∈MC which can be factored as p ◦ i where i is a cofibration and p
is an acyclic fibration, but by lemma 5.8, any component map of i lifts with respect to
component maps of constant fibrations i.e. component maps of i are in C and by definition
any component map of p belongs to F ∩W. Now, for (C ∩W,F) any diagram of the form

A B

C D

ψ ϕ

(where ψ ∈ C ∩W and ϕ ∈ F) has a lift since by part iv) any constant transformation
f of MC which lifts with respect to all constant acyclic fibrations which are also weak
equivalences, lifts with respect to all constant fibrations, but when considering the diagram
above as a diagram of constant transformations in MC we see that a lift does exist which
gives a lift in M as well. Also, any map f ∈ M has a factorization since the associated
constant transformation in MC has a factorization P (f) = p ◦ i where i is an acyclic
cofibration and p is a fibration. i is a cofibration which gives that component maps
are in C by Lemma 5.8 and i is a weak equivalence so component maps are also weak
equivalences and in W. We also see that component maps of p are in F, but this gives
that any composition of component maps from p and i form a factorization for f.

To finish the proof we need to show that this model category structure on M gives the
same model category structure on MC when considering the projective model category
structure. This is a straightforward check of the defined weak equivalences and fibrations,
so we leave the remainder of the proof to the reader.

This brings us to the intersection delocalization theorem discussed in the beginning of
the section.

5.9. Theorem. Let M be a cocomplete and complete category and C be a small category.
Given two model category structures on MC denoted MC

1 and MC
2 which both induce a

model category structure on M (see Theorem 5.7) where the right Bousfield delocalization
model category MC

1 ∩MC
2 exists and with the assumption that MC

1 ∩MC
2 satisfies part iv)

of Theorem 5.7 then there exists a model category structure M3 on M whose associated
projective model category structure on MC agrees with MC

1 ∩MC
2 and furthermore M3 and

M1 ∩M2 agree.
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The proof of this theorem is a straightforward check that MC
1 ∩ MC

2 satisfies the
assumptions of Theorem 5.7. Once this is done, it is clear that M3 and M1 ∩M2 agree by
the defined classes of maps.

6. Homotopy invariance for Hochschild cohomology

Although it was the original motivation for this work, in this section we show that a
right intersected delocalization does not seem to fit when trying to determine whether
higher order Hochschild cohomology is homotopy invariant. Recall that we would like to
consider the category of pointed simplicial sets where weak equivalences are maps which
are traditional weak equivalences of pointed simplicial sets, but which also preserve the
types of modules which can be used for each simplicial set.

By using a right Bousfield delocalization of the traditional model category structure
on pointed simplicial sets, we see that the fibrations would remain the same, but this also
implies that the acyclic cofibrations would remain the same. This is problematic because
one could easily come up with maps which would still be considered weak equivalences
although the modules between the two simplicial sets differ. For an example, consider the
smallest simplicial set for S1 (with one non-degenerate 0-simplex and one non-degenerate
1-simplex) as the first simplicial set. For the second simplicial set consider the same
simplicial decomposition of S1, but in addition we will add a 1-simplex whose 0th face is
identified with the original 0-simplex. There is a natural inclusion of pointed simplicial sets,
which is both a weak equivalence of simplicial sets and a cofibration, but the coefficient
modules do not agree.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
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