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TRANSFINITE LIMITS IN TOPOS THEORY

MORITZ KERZ

Abstract. For a coherent site we construct a canonically associated enlarged coherent
site, such that cohomology of bounded below complexes is preserved by the enlargement.
In the topos associated to the enlarged site trans�nite compositions of epimorphisms
are epimorphisms and a weak analog of the concept of the algebraic closure exists. The
construction is a variant of the work of Bhatt and Scholze on the pro-étale topology.

1. Introduction

In [5] B. Bhatt and P. Scholze construct a so called pro-étale enlargement of the usual
étale topos of a scheme, see also [2, Tag 0965] and [16]. A characteristic feature of the
pro-étale topos is that certain limits have better exactness properties than in the usual
étale topos, while the cohomology of classical étale sheaves does not change. This turns
out to be useful when working with unbounded derived categories.

In this paper we propose a variant of the theory of Scholze and Bhatt�Scholze which
works for a coherent site and we give two applications to the calculation of hypercoho-
mology and to the existence of a left adjoint of the pullback of sheaves along a closed
immersion of schemes in the Nisnevich and étale topology.

Consider a coherent topos E, as de�ned in [1, Exp. VI], for example the étale topos
of a quasi-compact and quasi-separated scheme. The key property we are interested in
is whether in the topos a trans�nite composition of epimorphisms is an epimorphisms.
More precisely we say that E is α-trans�nite if the following property holds:

For an ordinal λ ≤ α and for a functor F : λop → E with the property that

• for any ordinal 1 ≤ i+ 1 < λ the morphism Fi+1 → Fi is an epimorphism and

• for any limit ordinal µ < λ the natural morphism

Fµ
∼−→ lim

i<µ
Fi

is an isomorphism

we ask that
lim
i<λ

Fi
∼−→ F0
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is an epimorphism. Here the ordinal λ as an ordered set is identi�ed with the associated
category.

The property ℵ0-trans�nite is studied in [5] under the name replete. The topos of
sets is α-trans�nite for all cardinals α, while the standard topoi that show up in algebraic
geometry, for example the small étale topos, are usually not ℵ0-trans�nite. So it is natural
to try to make them trans�nite in a minimal way.

In our �rst main theorem, Theorem 4.1, we construct for any coherent site C which
is admissible in the sense of De�nition 3.6 and for any in�nite cardinal α a new coherent
site 〈α〉C and a continuous functor preserving �nite limits πC

α : C→ 〈α〉C such that the
topos 〈α〉E = Sh(〈α〉C) is α-trans�nite and the associated morphism of topoi

((πE
α )∗, (π

E
α )∗) : 〈α〉E→ E = Sh(C),

has the property that (πE
α )∗ is fully faithful and preserves cohomology of bounded below

complexes.
In our second main theorem, Theorem 4.2, we show that for large α the topos 〈α〉E

is generated by weakly contractible objects. Here following [5] we call an object C of E
weakly contractible if any epimorphism D → C in E splits. In some sense this means that
the topoi 〈α〉E `stabilize' for α large. Note that in category theory it is more common to
use the word projective instead of weakly contractible.

The main di�erence between our construction and the construction in [5] for the étale
topos is that we work with a topology, which we call trans�nite topology, which sits
between the usual étale topology and the pro-étale topology and in some sense captures
properties of both. The precise relation is explained in Section 9 for the Zariski topos.

Concretely our construction works as follows. We consider the pro-category proα -C of
pro-objects whose index category is bounded by α. We de�ne in Section 5 the trans�nite
topology on proα -C as the weakest topology such that the canonical functor

C→ proα -C

is continuous and such that a trans�nite composition of covering morphisms in proα -C is
a covering morphism. Then the site 〈α〉C is just proα -C with the trans�nite topology.

In order to motivate the construction of this paper we explain in Section 8 why classi-
cal Cartan-Eilenberg hypercohomology of unbounded complexes can be recovered as the
derived cohomology on the enlarged topos 〈α〉E.

Another motivation stems from the fact that, roughly speaking, in the world of trans�-
nite enlarged topoi the pullback functor of sheaves i∗ for a morphism of schemes i : Y → X
tends to have a left adjoint in the setting of Grothendieck's six functor formalism. This
was observed for the pro-étale topology in [5, Rmk. 6.1.6] and the argument in our setting
is very similar. Concretely, we show that for X quasi-compact and separated and for a
closed immersion i : Y → X the pullback functor

i∗ : DΛ(〈α〉Xt)→ DΛ(〈α〉Yt)
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on derived categories of sheaves of Λ-modules has a left adjoint if α is large. Here t stands
for the small Nisnevich or étale topology on the category of a�ne, étale schemes over X
or Y .

Notation. A category is called small if up to isomorphism its objects form a set and not
only a class. When we say topos we mean a Grothendieck topos. For topos theory we
follow the notation of [12].

A coherent site is a small category having �nite limits together with a topology gen-
erated by �nite coverings. For a subcanonical site C we write y : C → Sh(C) for the
Yoneda embedding.

A partially ordered set (S,≤) is considered as a category with a unique morphism
s1 → s2 if s1 ≤ s2 and no morphisms form s1 to s2 otherwise.

By a 2-category we mean a (2, 1)-category, i.e. all 2-morphisms are invertible, 2-
functors between 2-categories are allowed to be lax. So the formalism of ∞-categories
is applicable and we freely use notions from [10].

We use Zermelo�Fraenkel set theory including the axiom of choice. We do not use the
concept of universes as applied in [1].

Acknowledgment. The results of this paper originated from discussions around a sem-
inar on the work of B. Bhatt and P. Scholze on the pro-étale topology [5] at the University
of Regensburg. I would like to thank all participants of this seminar. Clearly, this paper
is very much in�uenced by the work of Bhatt and Scholze. I would like to thank B. Bhatt,
F. Strunk and M. Spitzweck for helpful discussions. I would like to thank the referee for
helpful remarks from the point of view of a category theorist.

The author was supported by the Emmy Noether group Arithmetik über endlich
erzeugten Körpern and the DFG grant SFB 1085. The paper was completed during a
stay at the Institute for Advanced Study.

2. Preliminaries on towers and limits

In this section we summarize some properties of pro-categories and diagrams indexed by
ordinals, which we call towers.

Pro-categories. As a general reference for pro-categories see for example [8]. In this
paper we need to bound the cardinalities of the index categories; however the basic ar-
guments essentially stay the same as in the existing literature, so we do not give any
proofs.

Let C and I be a categories and let α be an in�nite cardinal. We call I an α-category
if the system of all morphisms Mor(I) of I forms a set of cardinality at most α. For a
α-category I and a functor F : I → C we call limi∈I F (i) an α-limit if it exists. There is
a corresponding notion for a functor to preserve α-limits.

Note that the formation of α-limits can be `decomposed' into equalizers and products
indexed by sets I with card I ≤ α [11, Sec. V.2].
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On can associate with C its pro-category proα -C indexed by co�ltered α-categories.
The objects of proα -C are the functors

F : I → C (1)

where I is co�ltered α-category. For F : I → C and G : J → C objects of proα -C the
set of morphisms from F to G is given by

Morproα -C(F,G) = lim
j∈J

colim
i∈I

MorC(F (i), G(j)). (2)

Each object of proα -C has a level representation F : I → C with I a co�nite directed set
with card I ≤ α. This follows from the proof of [1, Prop. I.8.1.6]. All co�ltered α-limits
exist in proα -C, see [8, Thm. 4.1]. If C has �nite limits proα -C has all α-limits.

Pro-categories can be characterized by the following universal property. Let Catfl be
the 2-category whose objects are small categories having �nite limits, whose 1-morphisms
are functors preserving �nite limits and whose 2-morphisms are all natural equivalences.
Let Catl be the 2-category whose objects are all small categories having α-limits, whose
1-morphisms are functors preserving α-limits and whose 2-morphisms are natural equiv-
alences.

2.1. Proposition. The canonical 2-functor Catf → Catfl is right adjoint to the 2-
functor mapping C 7→ proα -C.

For the notion of adjointness in higher category theory see for example [10, Sec.
5.2]. Proposition 2.1 is equivalent to the statement that there is a natural equivalence of
groupoids

MorCatfl(C,D)
∼−→φ MorCatf (proα -C,D) (3)

for C ∈ Catfl and D ∈ Catl. This equivalence is given as follows. For F ∈ MorCatfl(C,D)
and (Ci)i∈I ∈ proα -C set

φ(F )((Ci)i∈I) = lim
i∈I

F (Ci).

Towers. For an ordinal λ consider a functor F : λop → C. We usually denote such a
functor by F = (Fi)i<λ. For an ordinal µ ≤ λ write

F<µ = lim
i<µ

Fi (4)

if the limit exists. We call F a λ-tower (or just tower) if for any limit ordinal µ < λ the
limit (4) exists and if the natural morphism

Fµ → F<µ

is an isomorphism.
We say that the tower F : λop → C has a certain property P if all the morphisms

Fi+1 → Fi have the property P for 1 ≤ i + 1 < λ. We call F<λ → F0 the trans�nite
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composition of the tower (Fi)i<λ if the limit exists. By a morphism of towers we mean a
natural transformation of functors.

Let α be a cardinal and C, D categories having all α-limits. We say that a functor
u : D→ C preserves α-trans�nite limits if u maps λ-towers to λ-towers for λ ≤ α.

Let F = (Fi)i<λ be a tower and π0 : E0 → Fµ a morphism for some ordinal µ < λ. If
�ber products exist in C we de�ne the pullback tower E = π∗0F by

Ei =

{
E0 if i ≤ µ

E0 ×Fµ Fi if i > µ

There is a natural morphism of towers π : E → F .
Let F = (Fi)i<λ and G = (Gj)j<µ be two towers. If F<λ ∼= G0 we consider the

concatenation of towers ((F ◦G)k)k<λ+µ with

(F ◦G)k =

{
Fk if k < λ

Gj if k = λ+ j

The concatenation of two towers can be generalized to the concatenation of a family of
towers indexed by an ordinal. We leave the details to the reader.

If we are given a symmetric monoidal structure � : C×C→ C which preserves limits
of towers and we are given two towers F = (Fi)i<λ and G = (Gj)j<µ we consider the tower
((F � G)k)k<max(λ,µ). Without loss of generality let λ ≤ µ. Then, assuming F<λ exists,
F �G is de�ned by

(F �G)k =

{
Fk �Gk if k < min(λ, µ)

F<λ �Gk if k ≥ λ

For example we can use the categorical product for � if it exists.

3. Trans�nite sites and topoi

In this section we study sites and topoi in which certain limits indexed by ordinal numbers
behave well. More precisely we call a topos trans�nite if trans�nite compositions of
epimorphisms are epimorphisms, in the sense of towers as in Section 2. The ℵ0-trans�nite
topoi are the same as the replete topoi of Bhatt and Scholze [5, Sec. 3].

Let α be an in�nite cardinal and let E be a topos.

3.1. Definition. We say that E is α-trans�nite if for any ordinal λ ≤ α and for any λ-
tower (Ei)i<λ of epimorphisms, i.e. with Ei+1 → Ei an epimorphism for all 1 ≤ i+1 < λ,
the trans�nite composition

E<λ = lim
i<λ

Ei → E0

is an epimorphism. We say that E is trans�nite if it is α-trans�nite for all cardinals α.
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3.2. Example. The topos of sets Set is trans�nite. For a group G the topos BG of
G-sets is trans�nite.

More generally, any topos with enough weakly contractible objects in the sense of [5,
Def. 3.2.1] is trans�nite.

3.3. Definition. We call an object C of a topos E weakly contractible, if any epimor-
phism D → C splits in E, i.e. if there is a morphism C → D such that the composition
C → D → C is the identity. We say that a topos E has enough weakly contractible objects
if for any object C of E there is an epimorphism D → C with D weakly contractible.

Note that a small coproduct of weakly contractible objects in a topos is weakly con-
tractible.

As any epimorphism splits in Set, the topos of sets has enough weakly contractible
objects. The referee points out that the following proposition is a classical fact about
categories with enough projective objects: in fact in such a category a morphism f : C →
E is an epimorphism if and only if the induced map Mor(P,C)→ Mor(P,E) is surjective
for any projective object P . Therefore Proposition 3.4 is reduced to Example 3.2. As the
latter might not be well-known to a geometer and as we need a variant of the proof in
Corollary 5.6, we give a detailed argument below.

3.4. Proposition. Let E be a topos with enough weakly contractible objects. Then E is
trans�nite.

Proof. Let F = (Fi)i<λ be a tower of epimorphisms in E. Choose a weakly contractible
E0 and an epimorphism π0 : E0 → F0. Let π : E → F be the pullback tower along π0.
As the pullback of an epimorphism is an epimorphism in a topos the tower E consists of
epimorphisms. In the commutative diagram

F<λ

1
��

E<λoo

3
��

F0 E0
2oo

the morphisms 2 and 3 are epimorphisms by Claim 3.5. So as 1 is dominated by an
epimorphism it is itself an epimorphism.

3.5. Claim. The morphism E<λ
3−→ E0 splits. In particular it is an epimorphism.

Proof of claim. We successively construct a compatible family of splittings (E0
si−→

Ei)i<µ for µ ≤ λ. Compatible means that the diagram

E0
si //

sj

66Ei // Ej

commutes for all j < i < µ. Assume the family of splittings has been constructed for
some µ < λ. If µ is a successor ordinal use the weak contractibility of E0 to �nd sµ such
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that the diagram
Eµ

��
E0 sµ−1

//

sµ
<<

Eµ−1

commutes. If µ is a limit ordinal let

sµ = lim
i<µ

si : E0 → Eµ

be the morphism obtained from the system (si)i<µ by the universal property of the inverse
limit and the isomorphism Eµ

∼−→ limi<µEi.
By this successive construction we can assume that there is a system of splittings

(E0
si−→ Ei)i<λ. The morphism limi<λ si is a splitting of 3.

Another way, beside �nding enough weakly contractible objects, to show that a topos
is trans�nite, is to �nd a site de�ning the topos in which trans�nite compositions of
coverings are coverings. We will make this precise in the following.

3.6. Definition. A coherent site C is called admissible if its topology is subcanonical
and for a �nite family of objects (Ci)i∈I the coproduct C =

∐
i∈I Ci exists and {Ci →

C | i ∈ I} is a covering. We furthermore assume that in C there is a strict initial object
and coproducts are disjoint and stable under pullback, see [12, App.] and De�nition 7.3.

3.7. Lemma. The following are equivalent for a coherent subcanonical site C:

(i) C is admissible.

(ii) C has a strict instal object ∅ and the essential image of the Yoneda functor

y : C→ y(∅)/ Sh(C)

is closed under �nite coproducts in the comma category y(∅)/ Sh(C).

Working with admissible sites instead of coherent sites is no real restriction as the
following lemma shows. For a site C we denote by ay : C → Sh(C) the composition of
the Yoneda embedding and the shea��cation.

3.8. Lemma. For any coherent site C let C be the smallest strictly full subcategory of
Sh(C) which contains the essential image of ay and which is closed under �nite coproducts
and �nite limits. Then C with the epimorphic coverings is admissible and the continuous
functor ay : C→ C induces an equivalence of topoi.

Recall that a morphism E → D in C is called a covering morphism if the sieve
generated by E → D is a covering sieve.
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3.9. Definition. An admissible site C is called α-trans�nite if α-limits exist in C and
if trans�nite compositions of λ-towers of covering morphisms (λ ≤ α) are covering mor-
phisms, i.e. we assume that for a λ-tower (Fi)i<λ in C with Fi+1 → Fi a covering mor-
phism for all i+ 1 < λ that F<λ → F0 is a covering morphism.

3.10. Proposition. The topos Sh(C) associated with an α-trans�nite site C is α-trans-
�nite.

Proof. Let (Fi)i<λ be a tower of epimorphisms in Sh(C) (λ ≤ α). Choose a family
(Cr)r∈R of objects in C and an epimorphism π1 :

∐
r∈R y(Cr) → F0. Recall that y :

C → Sh(C) denotes the Yoneda embedding. For simplicity of notation we assume that
R = {0} consists of only one element. Choose a family (C

(1)
r )r∈R1 of elements of C and

an epimorphism ∐
r∈R1

y(C(1)
r )→ y(C0)×F0 F1. (5)

As y(C0) is quasi-compact there is a �nite subset R̃1 ⊂ R1 such that the composite
morphism ∐

r∈R̃1

y(C(1)
r )→ y(C0)×F0 F1 → y(C0) (6)

is an epimorphism. As the Yoneda functor is fully faithful, this morphism is induced by a
covering morphism C1 =

∐
r∈R̃1

C
(1)
r → C0, see [12, III.7 Cor. 7]. We get a commutative

diagram
y(C1) //

��

F1

��
y(C0) // F0

which we are going to extend successively to the morphism of towers (8).
For doing so we assume now that for µ < λ we have constructed a tower (Ci)i<µ of

covering morphisms in C and a morphism of towers πµ : (y(Ci))i<µ → F |µ. If µ is a
successor ordinal we proceed as above to �nd a covering morphism Cµ → Cµ−1 and an
extension of πµ to a morphism of towers

πµ+1 : (y(Ci))i≤µ → F |µ+1. (7)

If µ is a limit ordinal we let Cµ = limi<µCi and we let the morphism y(Cµ) = limi<µ y(Ci)
→ Fµ be the inverse limit of the morphism of towers πµ. This de�nes the required
extension as in (7) in the case of a limit ordinal µ.

In the end this successive construction produces a tower of covering morphisms (Ci)i<λ
and a morphism of towers

π : (y(Ci))i<λ → F. (8)

The morphism C<λ = limi<λCi → C0 is the composition of a tower of covering mor-
phisms, so is a covering morphism itself, because C is α-trans�nite. In the commutative
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diagram
y(C<λ) //

1
��

F<λ

3

��
y(C0) 2 // F0

the morphism 1 is the Yoneda image of a covering morphism and therefore an epimor-
phism. As also 2 is an epimorphism, we see that 3 is dominated by an epimorphism and
so is an epimorphism itself.

3.11. Example. For an in�nite cardinal α let Affα be the category of a�ne schemes
SpecR with card(R) ≤ α. We endow Affα with the fpqc-topology. Recall that the fpqc-
topology on Affα is generated by coverings {Ui → U | i ∈ I} with I �nite, Ui → U �at
and such that ∐

i∈I

Ui → U

is surjective. Clearly, the site Aff fpqc
α is α-trans�nite, so by Proposition 3.10 the fpqc-topos

Sh(Aff fpqc
α ) is α-trans�nite.

4. Main theorems

Let α be an in�nite cardinal. Let Si be the 2-category in the sense of [11, XII.3] whose
objects are admissible sites C (De�nition 3.6), whose 1-morphisms are continuous functors
C → D preserving �nite limits and whose 2-morphisms are the natural equivalences.
Similarly, we consider the 2-subcategory Siα of Si whose objects are the α-trans�nite
sites (De�nition 3.9) whose 1-morphisms are the continuous functors preserving α-limits
and whose 2-morphisms are all natural equivalences as above.

4.1. Theorem. For an in�nite cardinal α the canonical functor of 2-categories Siα → Si
admits a left adjoint

〈α〉 : Si→ Siα.

For C admissible let E = Sh(C) and 〈α〉E = Sh(〈α〉C) be the associated topoi. The
induced morphism of topoi πα : 〈α〉E → E has the property that π∗α is fully faithful and
preserves cohomology of bounded below complexes of abelian sheaves.

For the precise meaning of adjointness between 2-categories in our sense see [10, Sec.
5.2]. The proof of Theorem 4.1 is given in the following two sections. In Section 5 we
de�ne the site 〈α〉C as the category of pro-objects proα -C with the so called trans�nite
topology. In Proposition 6.3 we show that this site is admissible. The adjointness property
is then obvious from the de�nition. The fact that 〈α〉 is fully faithful is immediate from
Lemma 6.5. The preservation of cohomology is shown in Proposition 6.6.

Unfortunately, we do not know whether the topos 〈α〉E depends on the site C or only
on the topos E. Roughly speaking Theorem 4.1 means that for any admissible site C we
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get a tower of topoi

· · · → 〈ℵλ〉E −→ · · · → 〈ℵ1〉E −→ 〈ℵ0〉E −→ E (9)

indexed by all ordinals λ, such that the higher up we get the topoi become `more trans-
�nite'. In fact our second main theorem tells us, see Corollary 4.3, that from some point
on the topoi in the tower (9) in fact are trans�nite.

4.2. Theorem. For any admissible site C there is a cardinal β such that for all cardinals
α ≥ β the topos 〈α〉(E) = Sh(〈α〉(C)) has enough weakly contractible objects. More
precisely, in 〈α〉(E) there exists a generating set of coherent, weakly contractible objects.

Recall that an object C of E is quasi-compact if any covering family has a �nite
subfamily which is covering. The object C is called coherent if it is quasi-compact and for
any quasi-compact objects S, T of E and any two morphisms S → C, T → C the object
S ×C T is quasi-compact [1, Exp. VI.1].

The proof of Theorem 4.2 is given in the �rst part of Section 7. Using Proposition 3.4
we deduce:

4.3. Corollary. For any admissible site C there is a cardinal β such that for all cardi-
nals α ≥ β the topos 〈α〉E is trans�nite.

4.4. Remark. The cardinal β in Theorem 4.2 and Corollary 4.3 can be chosen to be
card(Mor(C)). More precisely β can be chosen in such a way that the admissible site C
is β-small. For the notion of smallness see De�nition 5.2.

5. The pro-site of a coherent site

Let C be a coherent site and let α be an in�nite cardinal. We are going to construct two
topologies on the pro-category proα -C de�ned in Section 2, such that the embedding of
categories C → proα -C is continuous, i.e. maps coverings to coverings. Recall that this
embedding also preserves �nite limits.

Weak topology. The weak topology on proα -C is de�ned as the weakest topology
such that the functor C→ proα -C is continuous.

Clearly, for any covering morphism V → W in C and for a morphism U → W in
proα -C the base change V ×W U → U is a covering morphism in the weak topology. We
call such weak covering morphisms distinguished. Similarly, if {Wi → W | i ∈ I} is a
�nite covering in C the family {Wi ×W U → U | i ∈ I} is a weak covering in proα -C,
which we call distinguished.

One can give an explicit level representation of the distinguished weak coverings. Let
F : I → C be an object of proα -C. We assume that I has a �nal element i◦ and that
there is given a covering {Cw → F (i◦) | w ∈ W} in the site C. Let Fw : I → C be the
functor given by Fw(i) = F (i)×F (i◦) Cw. Then

{Fw → F | w ∈ W} (10)
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is a distinguished covering in proα -C and all distinguished coverings are of this form up
to isomorphism.

5.1. Proposition. For a coherent site C the weak topology on proα -C is coherent and
has as a basis the coverings which have level representations of the form (10), i.e. the
distinguished weak coverings.

Proof.We have to show that the system of distinguished weak coverings de�nes a basis
B for a topology on proα -C. Clearly, an isomorphism is a covering in B and the pullback
of a covering in B exists and is itself a covering in B by de�nition.

The property we have to check is that the composition of coverings from B is a covering
in B. More precisely, let {Fw → F | w ∈ W} be a covering in B of the form (10), i.e. with
a level representation indexed by the co�ltered α-category I with �nal element i◦. Given
coverings {Gw,v → Fw | v ∈ Ww} in B for w ∈ W we have to show that the composite
morphisms

{Gw,v → F | w ∈ W, v ∈ Ww} (11)

form a covering in B. Changing the level representation (here we use that W is �nite) we
can assume that the Gw,v are also indexed by I and that Gw,v(i) = Fw(i)×Fw(i◦) Dw,v for
all i ∈ I. Here {Dw,v → Fw(i◦) | v ∈ Ww} are coverings in C. So (11) is level equivalent
to the pullback of the covering {Dw,v → F (i◦) | w ∈ W, v ∈ Ww} along F → F (i◦) and
therefore is a covering in B.

5.2. Definition. Let α be an in�nite cardinal. We say that a site C is α-small if for any
object C in C there is a set of covering morphisms K(C) of C with cardK(C) ≤ α such
that for any covering morphism E → C in C there is D → C in K(C) and a factorization
D → E → C.

Clearly, any coherent site whose underlying category is an α-category is α-small.

5.3. Proposition. If the coherent site C is α-small the pro-site proα -C with the weak
topology is also α-small.

Proof. Consider F : I → C in proα -C with I a directed set with card I ≤ α. For
every i ∈ I let Ki be a set of covering morphisms of F (i) in C as in De�nition 5.2. By
Proposition 5.1 the set of cardinality at most α of covering morphisms

{D ×F (i) F → F | i ∈ I, (D → F (i)) ∈ Ki}

satis�es the condition of De�nition 5.2 for the weak topology.

In the next lemma we collect for later reference a few fact about coproducts in
proα -(C).
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5.4. Lemma. Assume C is an admissible site, see De�nition 3.6.

(i) A strict initial object in C de�nes a strict initial object in proα -(C).

(ii) proα -(C) has �nite coproducts which are disjoint and stable under pullback. Fur-
thermore, �nite coproducts of towers are towers.

(iii) For a �nite coproduct U =
∐

i∈I Ui in proα -(C) the family {Ui → U | i ∈ I} is a
distinguished weak covering.

(iv) For a distinguished weak covering {Ui → U | i ∈ I} in proα -(C) the morphism∐
i∈I Ui → U is a distinguished weak covering morphism.

(v) For a �nite family of distinguished weak covering morphisms Vi → Ui in proα -(C)
(i ∈ I) the morphism

∐
Vi →

∐
Ui is a distinguished weak covering morphism.

Proof.
(ii): Use that �nite coproducts commute with co�ltered α-limits in proα -(C) by [8,
Thm. 6.1].
(iii): Choose common level representations (Ui(j))j∈J of the Ui (i ∈ I) such that J has
the �nal element j◦. We know that (

∐
i Ui(j))j∈J is a level representation for U , which

we �x. As Ui(j)
∼−→ Ui(j◦)×U(j◦) U(j) is an isomorphism (use the strict initial object), we

see that {Ui → U | i ∈ I} is the pullback of the covering {Ui(j◦)→ U(j◦) | i ∈ I} in C.

Transfinite topology. The trans�nite topology on proα -C is the weakest topology
such that the functor C→ proα -C is continuous and such that λ-trans�nite compositions
of covering morphisms are covering morphisms (λ ≤ α). The latter means that if (Fi)i<λ
is a tower in proα -C with λ ≤ α such that Fi+1 → Fi is a covering morphism for all
i+ 1 < λ the morphism

F<λ = lim
i<λ

Fi → F0

is a covering morphism.
The category proα -C with the trans�nite topology is denoted 〈α〉C. In Proposition 6.3

we show that 〈α〉C is admissible if C is admissible. This will complete the proof of the
adjointness part of Theorem 4.1 in view of Proposition 2.1.

A key step is to give an explicit presentation of the trans�nite topology for an ad-
missible site C, see De�nition 3.6. For this consider trans�nite coverings in proα -C of
the following form. We call a morphism Ũ → U in proα -C a distinguished trans�nite
covering morphism if it is an λ-trans�nite composition (λ ≤ α) of distinguished weak
covering morphisms. The families of the form

{Uw → Ũ → U | w ∈ W} (12)

with Ũ → U a distinguished trans�nite covering morphism and {Uw → Ũ | w ∈ W}
a distinguished weak covering (W �nite) are trans�nite coverings, called distinguished
trans�nite coverings.
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5.5. Proposition. If C is an admissible site the trans�nite topology on proα -C is co-
herent and has as a basis the distinguished trans�nite coverings, i.e. the coverings of the
form (12).

Proof. First we show that the coverings (12) form a basis B for a topology. The only
nontrivial part is to check that the composition of coverings in B is in B.

Let
{Uw → Ũ → U | w ∈ W}

be in B and for all w ∈ W let

{Uw,v → Ũw → Uw | v ∈ Ww}

be in B.
The morphism

∐
w∈W Uw → Ũ is a distinguished weak covering morphism by Lem-

ma 5.4(iv). In proα -(C) �nite coproducts of towers are towers and �nite coproducts of
distinguished weak covering morphisms are distinguished weak covering morphisms by
Lemma 5.4(ii) and (v). So by concatenation of towers we get that the composition∐

w∈W

Ũw →
∐
w∈W

Uw → Ũ → U

is a distinguished trans�nite covering morphism. As

{Uw,v →
∐
w′∈W

Ũw′ | w ∈ W, v ∈ Ww}

is a distinguished weak covering we have shown that

{Uw,v → U | w ∈ W, v ∈ Ww}

is in B.
In order to �nish the proof of Proposition 5.5 we have to show that λ-trans�nite

compositions of covering morphisms with respect to the topology de�ned by B are covering
morphisms in the same topology (λ ≤ α). By an argument very similar to the proof
of Proposition 3.10 one is reduced to showing that for a tower (Ui)i<λ of distinguished
trans�nite covering morphisms the composition U<λ → U0 is a distinguished trans�nite
covering morphism. By assumption for any i + 1 < λ we can �nd a tower (Ui,j)j<λi of
distinguished weak covering morphisms such that Ui,0 = Ui and limj<λi Ui,j = Ui+1. By
trans�nite concatenation of the towers (Ui,j)j∈λi we get a tower (U ′k)k<λ′ of distinguished
weak covering morphisms indexed by the ordinal λ′ =

∑
i<λ λi with U

′
0 = U0 and U ′<λ′ =

U<λ. So U<λ → U0 is a distinguished trans�nite covering morphism.
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We say that an object U of a site is weakly contractible if any covering morphism
V → U of the site splits. Clearly, if the site is subcanonical this is equivalent to saying that
the sheaf y(U) is weakly contractible in the associated topos in the sense of De�nition 3.3.

5.6. Corollary. Let C be an admissible site and let U ∈ proα -C be weakly contractible
for the weak topology. Then U is also weakly contractible for the trans�nite topology.

The proof of Corollary 5.6 is very similar to the proof of Proposition 3.4, so we omit
the details. It is su�cient to show that a distinguished trans�nite covering morphism
limi<λ Ui → U splits. Here Ui+1 → Ui are distinguished weak covering morphisms for all
i. Such a splitting can be constructed successively over i as splittings U → Ui.

6. Pro-covering morphisms

Let C be an admissible site and α an in�nite cardinal. In this section we collect a few
results which are related to the concept of pro-covering morphism.

6.1. Definition. A morphism f : V → U in proα -C is a pro-covering morphism if f
has a level representation by covering morphisms in C.

6.2. Lemma. A distinguished covering morphism in the weak and in the trans�nite topol-
ogy is a pro-covering morphism.

Proof. The case of the weak topology is trivial by the description (10) of distinguished
weak covering morphisms.

Let (Ui)i<λ (λ ≤ α) be a tower of distinguished weak covering morphisms. We want
to show that U<λ → U0 is a pro-covering morphism. Without loss of generality λ is
not a limit ordinal. We argue by contradiction. If the composition is not a pro-covering
morphism there exists a smallest ordinal µ < λ such that Uµ → U0 is not a pro-covering
morphism.

If µ is a successor ordinal Uµ → Uµ−1 → U0 is a composition of a distinguished
weak covering morphism and a pro-covering morphism, so it is a pro-covering morphism,
contradiction.

If µ is a limit ordinal
Uµ

∼−→ lim
i<µ

Ui → U0

is a co�ltered limit of pro-covering morphisms, so is a pro-covering morphism by [8, Cor.
5.2], contradiction.

6.3. Proposition. For C admissible the site proα -C with the weak and the trans�nite
topology is admissible.

By what is shown in Section 5 the site proα -C with both topologies is coherent. The
site proα -C is subcanonical by Lemmas 6.2 and 6.4. It has �nite coproducts with the
requested properties by Lemma 5.4.
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6.4. Lemma. For a pro-covering morphism f : V → U and for an object W in proα -C

Mor(U,W )→ Mor(V,W ) ⇒ Mor(V ×U V,W )

is an equalizer.

Proof. Without loss of generality we can assume W ∈ C. Let (Vi
fi−→ Ui)i∈I be a level

representation of f with fi a covering morphism in C. For each i ∈ I we get an equalizer

Mor(Ui,W )→ Mor(Vi,W ) ⇒ Mor(Vi ×Ui Vi,W ). (13)

Taking the colimit over i ∈ I in (13) and using the fact that in the category of sets �ltered
colimits commute with �nite limits [11, IX.2] we �nish the proof of Lemma 6.4.

Let π : C→ proα -(C) be the canonical functor.

6.5. Lemma. For a sheaf K on C the sheaf π∗K on proα -C with the weak or trans�nite
topology is given on U = (Ui)i∈I by

π∗K(U) = colim
i∈I

K(Ui).

Proof. For any sheaf L on C consider the presheaf

L] : U = (Ui)i∈I 7→ colim
i∈I

L(Ui)

on proα -C. For a pro-covering morphism W → U

L](U)→ L](W )→ L](W ×U W )

is an equalizer, because in Set �nite limits commute with �ltered colimits. So by Lem-
ma 6.2 it follows that L] is a sheaf.

By [1, Prop. I.5.1] the presheaf pullback of K to a presheaf on proα -C is given by

U 7→ colim
(V,fV )∈U/π

K(V ) (14)

where U/π is the comma category whose objects consist of V ∈ C and a morphism
U → π(V ) in proα -C. As the objects (Ui, U → Ui) are co�nal in this comma category
we see that the presheaf (14) coincides with the sheaf K], which �nishes the proof by [1,
Prop. III.1.3].

We conclude this section with an application of the notion of pro-covering morphism
to derived categories. For a commutative unital ring Λ let D+

Λ (C) be the derived category
of bounded below complexes of Λ-modules. The following proposition is a variant of [5,
Cor. 5.1.6].
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6.6. Proposition. For both the weak and the trans�nite topology and for K ∈ D+
Λ (C)

the natural transformation
K → Rπ∗π

∗K

is an equivalence.

Proof. One easily reduces to the case of an injective sheaf K in ShΛ(C). As K ∼−→ π∗π
∗K

is an isomorphism by Lemma 6.5, we have to show that

Hj(Uproα -C, π
∗K) = 0 for all j > 0 and U in proα -C

in the weak and in the trans�nite topology, because this implies that π∗π∗K → Rπ∗π
∗K

is a quasi-isomorphism by [1, Prop. V.5.1]. By [1, Prop. V.4.3] it su�ces to show that
�ech cohomology

Ȟj(Uproα -C, K) = colim
f∈Covproα -C(U)

Ȟj(f,K)

vanishes for j > 0. Here Covproα -C(U) is the category of distinguished covering mor-
phisms of U in the weak resp. trans�nite topology. For simplicity of notation we do
not distinguish between K and π∗K. As the distinguished covering morphisms are pro-
covering morphisms by Lemma 6.2, f ∈ Covproα -C(U) has a level representation of the

form (Vi
fi−→ Ui)i∈I with covering morphisms fi in C. Again by [1, Prop. V.4.3] and using

injectivity of K as a sheaf on C we obtain the vanishing of

Ȟj(f,K) = colim
i∈I

Ȟj(fi, K) = 0 for j > 0.

7. Weakly contractible objects

Proof of existence. In this subsection we prove Theorem 4.2. Consider the topos
E = Sh(C), where C is an admissible site. Let β be an in�nite cardinal such that C
is β-small, see De�nition 5.2. The site proα -C with the weak topology is α-small for
α ≥ β by Proposition 5.3. We are going to show that under this condition for any object
U in proα -C there is a trans�nite covering morphism P∞(U) → U such that P∞(U) is
weakly contractible in the weak topology. Then by Corollary 5.6 P∞(U) is also weakly
contractible in the trans�nite topology and this clearly implies that 〈α〉E = Sh(〈α〉C) has
a generating set of coherent weakly contractible objects.

So consider α ≥ β. Choose for each U in proα -C a set of cardinality at most α
of generating covering morphisms K(U) as in De�nition 5.2. Let P(U) be the product∏

(V→U)∈K(U)(V → U) in the comma category proα -C/U .

7.1. Claim. For each U in proα -C the morphism P(U) → U is a trans�nite covering
morphism in proα -C.
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Proof. Let λ ≤ α be an ordinal such that there is a bijection

ι : {i < λ | i is successor ordinal } ∼−→ K(U).

We successively construct a tower of weak covering morphisms (Vi)i<λ with V0 = U and
V<λ = P(U). Assume Vj has already been de�ned for all j < i. If i < λ is a successor
ordinal set

Vi = Vi−1 ×U ι(i).
If i < λ is a limit ordinal set

Vi = lim
j<i

Vj.

For a positive integer i let P i(U) be the i-fold application of P , i.e.

P i(U) = P(P i−1(U)) for i > 1,

and let P∞(U) be limi∈NP i(U). By concatenation of towers we see that P∞(U) → U is
a λ-trans�nite composition of weak covering morphisms (λ ≤ α).

7.2. Claim. The object P∞(U) of proα -C is weakly contractible in the weak topology.

Proof. Let V ′ → P∞(U) be a distinguished weak covering morphism. There exists a
positive integer i and a distinguished weak covering morphism V → P i(U) such that

V ′ ∼= V ×Pi(U) P∞(U).

By the de�nition of P there is a factorization

P i+1(U)→ V → P i(U)

of the canonical morphism P i+1(U)→ P i(U), which induces a splitting of V ′ → P∞(U).

Disjoint covering topology.

7.3. Definition.We call a small category D a dc-category if �nite coproducts exist in D
and furthermore �nite coproducts are disjoint and stable under pullback, see [12, App.].
The �nite coverings of the form {Vi → V | i ∈ I} with V =

∐
i∈I Vi de�ne a basis for a

topology on D, which we call the dc-topology.

7.4. Lemma. Let C be an admissible site.

(i) The full subcategory of weakly contractible objects C̃ in C forms a dc-category and
the functor C̃→ C is continuous, see [1, Def. III.1.1].

(ii) If there are enough weakly contractible objects in C, i.e. if for any object U in C
there is a covering morphism V → U with V ∈ C weakly contractible the restriction
of sheaves induces an equivalence of categories between Sh(C) and Sh(C̃). Here C̃
has the dc-topology.

To show Lemma 7.4(ii) one uses the comparison lemma [12, App., Cor. 4.3].
For a ring Λ and a topos E let ModΛ(E) be the category of Λ-modules in E.
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7.5. Lemma. Let E be a topos and let U be a weakly contractible object in E. The additive
functor from ModΛ(E) to Λ-modules

F 7→ Γ(U, F ) = MorE(U, F )

is exact.

8. Example: Cartan�Eilenberg hypercohomology

Let C and D be admissible sites. Let f : D → C be a continuous functor preserving
�nite limits. For a commutative unital ring Λ let ModΛ(C) be the category of sheaves of
Λ-modules on C and let DΛ(C) be its derived category.

In geometry one is often interested in studying the right derived functor Rf∗ : DΛ(C)→
DΛ(D). It was shown by Joyal and Spaltenstein [17] that this right derived functor al-
ways exists abstractly, see for example [6] for a modern account. However, it has good
`geometric' properties only for complexes bounded below or under some condition of �-
nite cohomological dimension. These problematic aspects of the right derived functor are
discussed in the framework of homotopy theory in [10, Sec. 6.5.4].

As an alternative to the derived functor one can use the older concept of Cartan�
Eilenberg hypercohomology pushforward

Hf∗ : DΛ(C)→ DΛ(D)

de�ned for a complexK∗ asHf∗(K∗) = f∗(TotI∗∗), whereK∗ → I∗∗ is a Cartan�Eilenberg
injective resolution [7, Sec. XVII.1] and where (TotI∗∗)n =

∏
i+j=n I

i,j. In this form
Cartan�Eilenberg hypercohomology is studied in [18, App.]. In fact, in [7] the direct
sum instead of the direct product is used, but this does not seem to be appropriate
for cohomology. Cartan�Eilenberg hypercohomology is equivalent to hypercohomology
calculated using the Godement resolution, see [19, App.].

For admissible sites we can give a universal characterization of Cartan�Eilenberg hy-
percohomology in terms of derived functors. Let

πC
α : C→ 〈α〉C

be the canonical functor. We denote the induced functor 〈α〉D→ 〈α〉C by fα.

8.1. Proposition. For coherent sites C and D and an in�nite cardinal α the diagram

DΛ(〈α〉C)
Rfα∗ // DΛ(〈α〉D)

R(πD
α )∗

��
DΛ(C)

(πC
α )∗

OO

Hf∗
// DΛ(D)

commutes up to canonical equivalence.
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Proof. It is su�cient to show that for a complex K of sheaves of Λ-modules on C there
is a quasi-isomorphism

R(πC
α )∗(π

C
α )∗K ' TotI∗∗,

where K∗ → I∗∗ is a Cartan�Eilenberg injective resolution as above.

8.2. Claim. The functor (πC
α )∗ maps a Cartan�Eilenberg injective resolution of (πC

α )∗K
on 〈α〉C to a Cartan�Eilenberg injective resolutions of K.

Proof of claim. Note that (πC
α )∗ preserves injective sheaves and products because it is

a right adjoint of the exact functor (πC
α )∗. One easily reduces the proof of the claim to the

case in which K is in ModΛ(C). Let (πC
α )∗K → I∗ be an injective resolution of K. Then

by Proposition 6.6 the pushforward (πC
α )∗I is an injective resolution of K ' (πC

α )∗(π
C
α )∗K,

so the claim follows.

Using the claim Proposition 8.1 follows immediately from [18, Thm. A.3]. Here we use
that countable products are exact in ModΛ(〈α〉C), see [5, Prop. 3.1.9], which is su�cient
in the proof of [18, Thm. A.3].

9. Example: trans�nite Zariski topos

In this section we explain how the construction of Section 5 applied to the Zariski topos
of an a�ne scheme X = Spec (R) relates to the method of Bhatt�Scholze [5, Sec. 2]. The
comparison in the étale case is very similar. We �x an in�nite cardinal α with α ≥ card(R)

The category AffX . Let AffX be the category of a�ne schemes Spec (A) over X with
card(A) ≤ α. The Zariski topology on AffX has a basis given by coverings

{Spec (A[
1

fi
])→ Spec (A) | i = 1, . . . , n}

where f1, . . . , fn ∈ A generate the unit ideal in A.

The site AffZar
X . Let AffZar

X be the full subcategory of AffX whose objects are of the
form Spec

∏n
i=1R[1/fi] with f1, . . . , fn ∈ R and whose morphisms are scheme morphisms

over X. We endow AffZar
X with the Zariski topology. In [5, Sec. 2.2] the objects of AffZar

X

are called Zariski localizations of R.
Clearly, the associated topos Sh(AffZar

X ) is equivalent to the usual Zariski topos of X.
Moreover, AffZar

X is admissible, see De�nition 3.6.

The category Affpro
X . The functor

lim : proα -AffZar
X → AffX (15)

which maps a pro-system to its inverse limit is fully faithful. For any a�ne scheme SpecA
in the image of the functor (15) Bhatt�Scholze say that A is an ind-Zariski localizations
of SpecR. We write the image of the functor (15) as Affpro

X .
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Topologies on Affpro
X . The topology on Affpro

X induced by the Zariski topology on
AffX is isomorphic to the weak topology on proα -AffZar

X via the equivalence induced by
(15).

In [5] and [2, Tag 0965] the pro-étale topology is studied. There is an obvious analog
in the Zariski word, the pro-Zariski topology, de�ned as follows:

{Ui
πi−→ U | i ∈ I}

is a pro-Zariski covering if I is �nite,
∐

i∈I Ui → U is surjective and πi induces an isomor-
phism OU,πi(x) → OUi,x for all x ∈ Ui.

We get the following relations between topologies on Affpro
X

(Zariski topology) ⊂ (trans�nite topology) ⊂ (pro-Zariski topology).

9.1. Question. Does there exist an analog of the pro-Zariski topology on proα -C for
a general admissible site C. This pro-topology should be stronger than the trans�nite
topology. For example one might try to de�ne the requested pro-topology as generated by
coverings {Uw → U | w ∈ W} with W �nite and with

∐
w∈W Uw → U a pro-covering

morphism which induces a surjection on topos points.

The category Affoil
X . One problem of the pro-category Affpro

X is that its de�nition is
not local on X. This is the reason why in [5] and [2, Tag 0965] the weakly étale morphisms
and in the Zariski case the isomorphisms of local rings morphisms are used. A similar
technique, which is related to the pro-étale topology of rigid spaces as de�ned in [16], can
be used in our case in order to replace Affpro

X by a more local de�nition.
Consider the full subcategory of AffX consisting of universally open morphisms f :

Y → X which identify local rings, i.e. for any point y ∈ Y the map f ∗ : OX,f(y)
∼−→ OY,y

is an isomorphism.

9.2. Lemma. For a functor F : I → Affoil
X such that I is a co�ltered α-category and such

that all transition maps F (i) → F (j) are surjective the limit Y = limi∈I F (i) taken in
AffX is an object of Affoil

X .

Proof.We show that Y → X is open. Any a�ne open subscheme U ⊂ Y is the preimage
of some a�ne open Ui ⊂ F (i) for some i ∈ I. Note that Y → F (i) is surjective, because
the �bres of the transition maps in the system F are �nite and nonempty and a co�ltered
limits of �nite nonempty sets is nonempty. So the image of U in X is the same as the
image of Ui and therefore is open.

If not mentioned otherwise we endow Affoil
X with the trans�nite topology, i.e. the weak-

est topology containing the Zariski coverings and such that a λ-trans�nite composition
of covering morphisms is a covering morphism (λ ≤ α). This topology has an explicit
description similar to Proposition 5.5.

For U in Affoil
X the weakly contractible object P∞(U) as de�ned in Section 7 exists in

Affoil
X . So the site Affoil

X has similar properties as Affpro
X with the trans�nite topology. In

fact both are closely related as we show now.



TRANSFINITE LIMITS IN TOPOS THEORY 195

9.3. Proposition. For any Y → X in Affoil
X there is a λ-trans�nite composition (λ ≤ α)

of surjective Zariski localizations Ỹ → Y such that Ỹ → X is in Affpro
X .

In particular there is an equivalence of topoi

Sh(Affoil
X ) ∼= Sh(Affoil

X ∩Affpro
X ),

where both sites have the trans�nite topology.

Proof (Sketch). Composing Y → X with the trans�nite composition of surjective
Zariski localizations P∞(Y ) → Y we can assume without loss of generality that Y is
weakly contractible.

Consider the following data: Y =
∐

i∈I Vi is a �nite decomposition into open and
closed a�ne subschemes and Ui ⊂ X is an open a�ne subscheme such that f(Vi) ⊂ Ui.
The set of such data forms a directed set J under the ordering by re�nement. Then

Y
∼−→ lim

J

∐
i∈I

Ui

is an isomorphism.

10. Example: a left adjoint to i∗

Let i : Y → X be a closed immersion of separated, quasi-compact schemes. Consider
the category of schemes U together with an étale, a�ne morphism U → X. We write Xt

for this category endowed either with the Nisnevich (t = Nis) or étale (t = ét) topology,
similarly for Y . Clearly, Xt and Yt are admissible.

Let Λ be a commutative ring. Consider the pullback functor

i∗ : DΛ(Yt)→ DΛ(Xt) (16)

on unbounded derived categories of complexes of Λ-modules.
Our aim in this section is to show that the analogous pullback functor in the trans�nite

Nisnevich and trans�nite étale topology has a left adjoint. A similar result for the pro-
étale topology has been observed in [5, Rmk. 6.1.6]. Before discussing the trans�nite case
we discuss why in the classical case the functor (16) has no left adjoint in general.

Recall that the derived categories in (16) have small products. For (Ki)i∈I a family of
complexes Λ-modules inXt the in�nite product of these complexes inDΛ(Xt) is calculated
by �rst replacing the Ki by K-injective complexes as in [17], see e.g. [6], and then taking
degreewise products of sheaves. The following example shows that in general the functor
(16) does not preserve in�nite products, in particular it cannot have a left adjoint.

10.1. Example. For a prime p write the henselization of Z(p) as an �ltered direct limit
of étale Z(p)-algebras

Zh(p) = colim
j∈J

Aj.
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We consider the closed immersion

i : Spec (Fp)→ Spec (Z(p)).

By Z[Aj] we denote the étale sheaf of free abelian groups on Xét = Spec (Z(p))ét repre-
sented by Spec (Aj). Then the homotopy limit in the sense of [13, Sec. 1.6] taken in the
triangulated category DZ(Xét)

K = holimj∈J Z[Aj]

has vanishing étale cohomology sheaf in degree zero. However i∗Z[Aj] is the constant
sheaf Z, so

holimj∈J i
∗Z[Aj] = Z

is not quasi-isomorphic to i∗K.

10.2. Theorem. Let X be quasi-compact and separated. There exists an in�nite cardinal
β such that for α ≥ β the functors

i∗ : Sh(〈α〉Xt)→ Sh(〈α〉Yt) (17)
i∗ : DΛ(〈α〉Xt)→ DΛ(〈α〉Yt) (18)

have left adjoints.

Proof. Choose β such that for any open a�ne subscheme Spec (A) → X we have β ≥
card(A). Then according to Theorem 4.2 and Remark 4.4 there exists a generating set of
coherent, weakly contractible objects in the topoi Sh(〈α〉Xt) and Sh(〈α〉Yt).

10.3. Lemma. Any coherent topos E as a small cogenerating set.

Proof. By Deligne's theorem [1, Sec. IX.11] any coherent topos E has a set of points

(pj,∗, p
∗
j) : Set→ E (j ∈ J)

such that all pj together induce a faithful functor

(p∗j)j∈J : E→
∏
j∈J

Set.

The set of objects pj,∗({1, 2}) (j ∈ J) is cogenerating.

10.4. Lemma. The triangulated categories DΛ(〈α〉Xt) and DΛ(〈α〉Yt) are compactly gen-
erated.

Proof. For simplicity of notation we restrict to DΛ(〈α〉Xt). For U a coherent, weakly
contractible object in Sh(〈α〉Xt) the sheaf of free Λ-modules Λ[U ] represented by U is a
compact object of the triangulated category DΛ(〈α〉Xt). In fact the global section functor
Γ(U,−) preserves exact complexes by Lemma 7.5. Furthermore, taking sections over a
coherent object preserves direct sums of Λ-modules [1, Thm. VI.1.23].

Let W be a set of such coherent, weakly contractible objects U which generate the
topos Sh(〈α〉Xt). Then the set of compact objects {Λ[U ] | U ∈ W} generates the trian-
gulated category DΛ(〈α〉Xt).
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By the special adjoint functor theorem [11, Sec. V.8] the existence of a left adjoint to
(17) follows once we show that the functor (17) preserves small products. Indeed, coherent
topoi satisfy the conditions of the special adjoint functor theorem by Lemma 10.3 and
general properties of topoi.

By [9, Prop. 5.3.1] and by Lemma 10.4 the existence of the left adjoint to (18) follows
if we show that (18) preserves small products.

In order to prove that our two functors i∗ preserve small products we can assume
without loss of generality that X is a�ne. In this case the fact that (17) preserves
products is immediate from Lemma 10.5. The argument for the functor (18) is given after
the proof of Lemma 10.5.

10.5. Lemma. For α as above and for X a�ne the functor

i∗ : Sh(〈α〉Xt)→ Sh(〈α〉Yt)

has a left adjoint, denoted i[, which satis�es

(i) i∗ ◦ i[ ' id,

(ii) i[ maps weakly contractible objects to weakly contractible objects.

Proof of Lemma 10.5. For V → Y a�ne étale there exists an a�ne étale scheme
U ′ → X such that U ′ ×X Y ∼= V , see [2, Tag 04D1]. Let U be the henselization of U ′

along V , see [15, Ch. XI]. The resulting a�ne scheme U together with the isomorphism
U ×X Y ∼= V is unique up to unique isomorphism and depends functorially on V .

Taking inverse limits de�nes a fully faithful functor from 〈α〉Xt to the category of
a�ne schemes over X. And the scheme U constructed above lies in the essential image
of this functor. Without loss of generality we will identify U with an object of 〈α〉Xt.

So the map V 7→ U extends to a functor ipre
[ : Yt → 〈α〉Xt which we can extend by

continuity to a functor
ipre
[ : 〈α〉Yt → 〈α〉Xt. (19)

which is left adjoint to the pullback functor U 7→ U ×X Y .
By [1, Prop. I.5.1] the pullback along i in the sense of presheaves maps a presheaf F

on 〈α〉Xt to the presheaf
V 7→ colim

(U,fU )
F (U), (20)

on 〈α〉Yt, where (U, fU) runs through the comma category of all pairs in which U is in
〈α〉Xt and fU is a map V → U ×X Y in 〈α〉Yt. But clearly for given V the object ipre

[ V in
〈α〉Xt together with the isomorphism ipre

[ V ×X Y ∼= V is an initial element in the comma
category of these pairs. So the presheaf pullback of F is given by

V 7→ F (ipre
[ V ). (21)

Let Ỹt be the full subcategory of 〈α〉Yt given by the weakly contractible objects.
Note that according to the �rst part of Section 7, the objects of Ỹt generate 〈α〉Yt. The
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restriction of the functor (19) to Ỹt with the dc-topology, see De�nition 7.3, is continuous
in the sense of [1, Def. III.1.1]. To see this, note that decompositions into disjoint unions
of V ∈ Ỹt can be lifted to ipre

[ V by [15, Prop. XI.2.1]. Now [1, Prop. III.1.2 ] tells that we
get an adjoint pair of functors

ires
[ : Sh(Ỹt) 
 Sh(〈α〉Xt) : i∗res.

By Lemma 7.4 and by what is explained above equation (21), the right adjoint i∗res is just
the composition of the sheaf pullback

i∗ : Sh(〈α〉Xt)→ Sh(〈α〉Yt) (22)

composed with the restriction to Ỹt. However the latter restriction

Sh(〈α〉Yt)
∼−→ Sh(Ỹt)

is an equivalence of categories according to Lemma 7.4, so we obtain a left adjoint i[ to
(22) as stated in Lemma 10.5.

Property (i) of the Lemma is immediate from the construction of i[ and (ii) follows
abstractly from the adjointness property.

Consider a family of complexes of sheaves of Λ-modules (Kj)j∈J on 〈α〉Xt. Note that,
because there are enough weakly contractible objects in Sh(〈α〉Xt), small products of
complexes of sheaves of Λ-modules on 〈α〉Xt preserve quasi-isomorphisms by Lemma 7.5.
So we have to show that

i∗(
∏
j∈J

Kj)→
∏
j∈J

i∗Kj

is a quasi-isomorphism, where the product is just the degreewise product of sheaves. Using
compact generators Λ[U ] of DΛ(〈α〉Yt), see Lemma 10.4, it su�ces to show that

Γ(U, i∗(
∏
j∈J

Kj))→
∏
j∈J

Γ(U, i∗Kj) (23)

is a quasi-isomorphism of complexes of Λ-modules. By the adjunction of Lemma 10.5 this
is equivalent to showing that

Γ(i[U,
∏
j∈J

Kj)→
∏
j∈J

Γ(i[U,Kj)

is a quasi-isomorphism, which is obvious.
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