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OPERADS AND PHYLOGENETIC TREES

JOHN C. BAEZ AND NINA OTTER

Abstract. We construct an operad Phyl whose operations are the edge-labelled trees
used in phylogenetics. This operad is the coproduct of Com, the operad for commutative
semigroups, and [0,∞), the operad with unary operations corresponding to nonnegative
real numbers, where composition is addition. We show that there is a homeomorphism
between the space of n-ary operations of Phyl and Tn× [0,∞)n+1, where Tn is the space
of metric n-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show
that the Markov models used to reconstruct phylogenetic trees from genome data give
coalgebras of Phyl. These always extend to coalgebras of the larger operad Com+[0,∞],
since Markov processes on finite sets converge to an equilibrium as time approaches
infinity. We show that for any operad O, its coproduct with [0,∞] contains the operad
W (O) constructed by Boardman and Vogt. To prove these results, we explicitly describe
the coproduct of operads in terms of labelled trees.

1. Introduction

Trees are important, not only in mathematics, but also biology. The most important is
the ‘tree of life’ relating all organisms that have ever lived on Earth. Darwin drew this
sketch of it in 1837:
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He wrote about it in On the Origin of Species [Darwin]:

The affinities of all the beings of the same class have sometimes been repre-
sented by a great tree. I believe this simile largely speaks the truth. The
green and budding twigs may represent existing species; and those produced
during former years may represent the long succession of extinct species. At
each period of growth all the growing twigs have tried to branch out on all
sides, and to overtop and kill the surrounding twigs and branches, in the same
manner as species and groups of species have at all times overmastered other
species in the great battle for life.

Now we know that the tree of life is not really a tree in the mathematical sense
[Doolittle]. One reason is ‘endosymbiosis’: the incorporation of one organism together
with its genetic material into another, as probably happened with the mitochondria in
our cells and also the plastids that hold chlorophyll in plants. Another is ‘horizontal gene
transfer’: the passing of genetic material from one organism to another, which happens
frequently with bacteria. So, the tree of life is really a thicket, as shown in this figure
[Smets]:

http://en.wikipedia.org/wiki/Tree_of_life_%28biology%29#Darwin.27s_tree_of_life
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In addition, the concept of ‘species’ is imprecise and hotly debated [Hey]. Nonetheless,
a tree with species as branches is a widely used approximation to the complex reality of
evolution, especially for animals and plants in the last few hundred million years. Thus,
biologists who try to infer phylogenetic trees from present-day genetic data often use
simple models where:

• the genotype of each species follows a random walk, but

• species branch in two at various times.

These are called ‘Markov models’. The simplest Markov model for DNA evolution is
the Jukes–Cantor model [JC]. Consider one or more pieces of DNA having a total of N
base pairs. We can think of this as a string of letters chosen from the set {A,T,C,G}:

· · · ATCGATTGAGCTCTAGCG · · ·

As time passes, the Jukes–Cantor model says the DNA changes randomly, with each base
pair having the same constant rate of randomly flipping to any other. So, we get a Markov
process on the set

X = {A,T,C,G}N

However, a species can also split in two. So, given current-day genetic data from various
species, biologists try to infer the most probable tree where, starting from a common

http://en.wikipedia.org/wiki/Horizontal_gene_transfer
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ancestor, the DNA in question undergoes a random walk most of the time but branches
in two at certain times.

To formalize this, we can define a concept of ‘phylogenetic tree’. Our work is based
on the definition of Billera, Holmes and Vogtmann [BHV], though we use a slightly dif-
ferent definition, for reasons that will soon become clear. For us, a phylogenetic tree is
a rooted tree with leaves labelled by numbers 1, 2, . . . , n and edges labelled by ‘times’ or,
geometrically speaking, ‘lengths’ in [0,∞). We require that:

• the length of every edge is positive, except perhaps for ‘external edges’: that is,
edges incident to the leaves or root;

• there are no 1-ary vertices.

For example, here is a phylogenetic tree with 5 leaves:

•

•`1 `2

`3
`4 `5

`7

`6

3 1 4 5 2

0

where `1, . . . , `6 ≥ 0 but we demand that `7 > 0. We draw the vertices as dots. We do
not count the leaves and the root as vertices, and we label the root with the number 0.
We cannot collapse edges of length zero that end at leaves, since doing so would eliminate
those leaves. Also note that the embedding of the tree in the plane is irrelevant, so this
counts as the same phylogenetic tree:

•

•`2 `1

`3
`4 `5

`7

`6

1 3 4 5 2

0

While the phylogenetic trees that we consider here are rooted, ‘unrooted’ trees, i.e.
trees without a specified root, are also used in phylogenetics [BS, Chap. 3]. Biologists use
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such trees to represent uncertainty about the direction in which the evolution occurred
among the species.

In applications to biology, we are often interested in trees where the total distance
from the root to the leaf is the same for every leaf, since all species have evolved for the
same time from their common ancestor. These are mathematically interesting as well,
because then the distance between any two leaves defines an ultrametric on the set of
leaves [RTV]. However, more general phylogenetic trees are also interesting—and they
become essential when we construct an operad whose operations are phylogenetic trees.

Let Phyln be the set of phylogenetic trees with n leaves. This has a natural topology,
which we explain in Section A. For example, here is a continuous path in Phyl4 where we
only change the length of one internal edge, reducing it until it becomes zero and we can
collapse it:

•
••

0

1 2 3 4

11

0.6 0.6 0.60.6

1.2

 • ••

0

1 2 3 4

0.51

0.6 0.6 0.60.6

1.2

 •
•

0

1 2 3 4

1

0.6 0.6 0.60.6

1.2

Phylogenetic trees reconstructed by biologists are typically binary. When a phyloge-
netic tree appears to have higher arity, sometimes we merely lack sufficient data to resolve
a higher-arity branching into a number of binary ones [PG]. With the topology we are
using on Phyln, binary trees form an open dense set of Phyln, except for Phyl1. However,
trees of higher arity are still important, because paths, paths of paths, etc. in Phyln are
often forced to pass through trees of higher arity.

Billera, Holmes and Vogtmann [BHV] focused their attention on the set Tn of phyloge-
netic trees where lengths of the external edges—edges incident to the root and leaves—are
fixed to a constant value. They endow Tn with a metric, which induces a topology on
Tn, and we show that for n 6= 1 there is a homeomorphism

Phyln
∼= Tn × [0,∞)n+1,

where the data in [0,∞)n+1 describe the lengths of the external edges in a general phylo-
genetic tree.

In algebraic topology, trees are often used to describe the composition of n-ary oper-
ations. This is formalized in the theory of operads [May1]. An ‘operad’ is an algebraic
structure where for each natural number n = 0, 1, 2, . . . we have a set On whose elements
are considered as abstract n-ary operations, not necessarily operating on anything yet.
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An element f ∈ On can be depicted as a planar tree with one vertex and n labelled leaves:

2 1 3

• f

0

We can compose these operations in a tree-like way to get new operations:

3 4 1 6 2 5

0

3 4 1 6 2 5

0

• g1 •g2 • g3

• f •f ◦ (g1, g2, g3)=

and an associative law holds, making this sort of composite unambiguous:

•h1 •h2 •h3 •h4 •h5 •h6

• g1 • g2 • g3

• f

4 1 3 9 8 2 6 5 7

0

There are various kinds of operads, but in this paper our operads will always be ‘unital’,
having an operation 1 ∈ O1 that acts as an identity for composition. They will also
be ‘symmetric’, meaning there is an action of the symmetric group Sn on each set On,
compatible with composition. Further, they will be ‘topological’, meaning that each set
On is a topological space, with composition and permutations acting as continuous maps.

In Section 2 we prove that there is an operad Phyl, the ‘phylogenetic operad’, whose
space of n-ary operations is Phyln. This raises a number of questions:

• What is the mathematical nature of this operad?

• How is it related to ‘Markov processes with branching’?
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• How is it related to known operads in topology?

Briefly, the answer is that Phyl is the coproduct of Com, the operad for commutative
topological semigroups, and [0,∞), the operad having only unary operations, one for
each t ∈ [0,∞). The first describes branching, the second describes Markov processes.
Moreover, Phyl is closely related to the Boardmann–Vogt W construction applied to Com.
This is a construction that Boardmann and Vogt applied to another operad in order to
obtain an operad whose algebras are loop spaces [BV].

To understand all this in more detail, first recall that the raison d’être of operads is
to have ‘algebras’. The most traditional sort of algebra of an operad O is a topological
space X on which each operation f ∈ On acts as a continuous map

α(f) : Xn //X

obeying some conditions: composition, the identity, and the permutation group actions are
preserved, and α(f) depends continuously on f . The idea is that the abstract operations
in O are realized as actual operations on the space X.

In this paper we instead need algebras of a linear sort. Such an algebra of O is a finite-
dimensional real vector space V on which each operation f ∈ On acts as a multilinear
map

α(f) : V n // V

obeying the same list of conditions. We can also think of α(f) as a linear map

α(f) : V ⊗n // V

where V ⊗n is the nth tensor power of V .
We also need ‘coalgebras’ of operads. The point is that while ordinarily one thinks

of an operation f ∈ On as having n inputs and one output, a phylogenetic tree is better
thought of as having one input and n outputs. A coalgebra of O is a finite-dimensional
real vector space V on which every operation f ∈ On gives a linear map

α(f) : V // V ⊗n

obeying the same conditions as an algebra, but ‘turned around’. More precisely, one can
define algebras of an operad O in any category C enriched over topological spaces, and a
coalgebra of O in C is simply an algebra of O in Cop.

The main point of this paper is that the phylogenetic operad has interesting coalge-
bras, which correspond to how phylogenetic trees are actually used to describe branching
Markov processes in biology. But to understand this, we need to start by looking at
coalgebras of two operads from which the phylogenetic operad is built.

By abuse of notation, we will use [0,∞) as the name for the operad having only unary
operations, one for each t ∈ [0,∞), with composition of operations given by addition.
A coalgebra of [0,∞) is a finite-dimensional real vector space V together with for each
t ∈ [0,∞) a linear map

α(t) : V // V

such that:
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• α(s+ t) = α(s)α(t) for all s, t ∈ [0,∞),

• α(0) = 1V ,

• α(t) depends continuously on t, where the space of linear operators from V to itself
is given its usual topology as a finite-dimensional real vector space.

Analysts call such a thing a ‘continuous one-parameter semigroup’ of operators on V ,
though category theorists might prefer to call it a continuous one-parameter monoid.

Given a finite set X, a ‘Markov process’ or ‘continuous-time Markov chain’ on X
is a continuous one-parameter semigroup of operators on RX such that if f ∈ RX is a
probability distribution on X, so is α(t)f for all t ∈ [0,∞). Equivalently, if we think of
α(t) as an X × X matrix of real numbers, we demand that its entries be nonnegative
and each column sum to 1. Such a matrix is called ‘stochastic’. If X is a set of possible
sequences of base pairs, a Markov process on X describes the random changes of DNA
with the passage of time. Any Markov process on X makes RX into a coalgebra of [0,∞).

This handles the Markov process aspect of DNA evolution; what about the branching?
For this we use Com, the unique operad with one n-ary operation for each n > 0. Algebras
of Com are not-necessarily-unital commutative algebras: there is only one way to multiply
n elements for n > 0.

For us what matters most is that coalgebras of Com are finite-dimensional cocommu-
tative coalgebras, not necessarily with counit. The real-valued functions on a finite set
form a commutative algebra with pointwise operations, so the dual of this vector space
is a cocommutative coalgebra. Since the set gives a basis for this vector space, we can
identify this vector space with its dual. Thus, if X is a finite set, there is a cocommutative
coalgebra whose underlying vector space is RX . The unique n-ary operation of Com acts
as the linear map

∆n : RX // RX ⊗ · · · ⊗ RX︸ ︷︷ ︸
n times

∼= RXn

where

∆n(f)(x1, . . . , xn) =


f(x) if x1 = · · · = xn = x

0 otherwise

This map describes the ‘n-fold duplication’ of a probability distribution f on the set X
of possible genes, pictured as follows:

•
1 2 3

0

Next, we wish to describe how to combine the operads [0,∞) and Com to obtain
the phylogenetic operad. Any pair of operads O and O′ has a coproduct O + O′. The
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definition of coproduct gives an easy way to understand the algebras of O +O′. Such an
algebra is simply an object that is both an algebra of O and an algebra of O′, with no
compatibility conditions imposed. One can also give an explicit construction of O + O′.
When O′ has only unary operations, the n-ary operations of O+O′ are certain equivalence
classes of trees with leaves labelled {1, . . . , n}, vertices labelled by operations in O, and
edges labelled by operations in O′.

Given this, it should come as no surprise that the operad Phyl is the coproduct Com+
[0,∞). In fact, we shall take this as a definition. Starting from this definition, we work
backwards to show that the operations of Phyl correspond to phylogenetic trees. We prove
this in Theorem 2.9. The definition of coproduct determines a topology on the spaces
Phyln, and it is a nontrivial fact that with this topology we have Phyln

∼= Tn× [0,∞)n+1

for n > 1, where Tn has the topology defined by Billera, Holmes and Vogtmann. We
prove this in Theorem 2.11.

Using the definition of the phylogenetic operad as a coproduct, it is clear that given
any Markov process on a finite set X, the vector space RX naturally becomes a coalgebra
of this operad. The reason is that, as we have seen, RX is automatically a coalgebra of
Com, and the Markov process makes it into a coalgebra of [0,∞). Thus, by the universal
property of a coproduct, it becomes a coalgebra of Phyl ∼= Com + [0,∞). We prove this
in Theorem 3.1.

Proving these theorems requires a detailed understanding of the operations in a co-
product of operads. To reach this understanding, we study the relation between an operad
O and its underlying collection U(O), where a ‘collection’ is simply a sequence of topo-
logical spaces, one for each natural number. We explicitly describe the free operad F (C)
on a collection C in Theorem 4.9, and describe the counit εO : F (U(O)) //O in Theorem
4.17. Using these results, we describe the operations in a coproduct of operads O+O′ in
Theorem 5.2. In Theorem 6.5 we show how this description simplifies when O′ has only
unary operations.

Since operads arose in algebraic topology, it is interesting to consider how the phylo-
genetic operad connects to ideas from that subject. Boardmann and Vogt [BV] defined
a construction on operads, the ‘W construction’, which when applied to the operad for
spaces with an associative multiplication gives an operad for loop spaces. The operad
Phyl has an interesting relation to W (Com). To see this, define addition on [0,∞] in the
obvious way, where

∞+ t = t+∞ =∞

Then [0,∞] becomes a commutative topological monoid, so we obtain an operad with
only unary operations, one for each t ∈ [0,∞], where composition is addition. By abuse
of notation, let us call this operad [0,∞].

Boardmann and Vogt’s W construction involves trees with edges having lengths in
[0, 1], but we can equivalently use [0,∞]. Leinster [Leinster] observed that for any non-
symmetric topological operad O, Boardmann and Vogt’s operad W (O) is closely related
to O + [0,∞]. Here we make this observation precise in the symmetric case. Operations
in Com + [0,∞] are just like phylogenetic trees except that edges may have length ∞.



1406 JOHN C. BAEZ AND NINA OTTER

Moreover, for any operad O, the operad W (O) is a non-unital suboperad of O + [0,∞].
An operation of O + [0,∞] lies in W (O) if and only if all the external edges of the
corresponding tree have length ∞. We prove this in Theorem 7.2.

Berger and Moerdijk [BM2] showed that if Sn acts freely on On and O1 is well-pointed,
W (O) is a cofibrant replacement for O. This is true for O = Assoc, the operad whose
algebras are topological semigroups. This cofibrancy is why Boardmann and Vogt could
use W (Assoc) as an operad for loop spaces. But Sn does not act freely on Comn, and
W (Com) is not a cofibrant replacement for Com. So, it is not an operad for infinite loop
spaces.

Nonetheless, the larger operad Com + [0,∞], a compactification of Phyl = Com +
[0,∞), is somewhat interesting. The reason is that any Markov process α : [0,∞) //

End(RX) approaches a limit as t //∞. Indeed, α extends uniquely to a homomorphism
from the topological monoid [0,∞] to End(RX). Thus, given a Markov process on a finite
set X, the vector space RX naturally becomes a coalgebra of Com+[0,∞]. We prove this
in Theorem 3.3.

2. Trees and the phylogenetic operad

For a graph theorist, a rooted planar tree is something like this:

•
•

• ••

with a vertex called the ‘root’ at the bottom and vertices called ‘leaves’ at top. Sometimes
these trees are drawn upside-down. But more importantly, ever since the pioneering work
of Boardmann and Vogt [BV], operad theorists have used trees of a different sort:

•
•

These have ‘input edges’ coming in from above and an ‘output edge’ leaving the root
from below. These ‘external edges’ are incident to a vertex at only one end; the other
end trails off into nothingness. So, a tree of this type is not a graph of the various kinds
most commonly used in graph theory; rather, it is of the kind discussed in Appendix C.4
of Loday and Vallette’s book [LV].

We want a notion of tree that is suitable for operad theory yet tailored to working
with phylogenetic trees. After painstaking thought, our choice is this:

2.1. Definition. For any natural number n = 0, 1, 2, . . . , an n-tree is a quadruple
T = (V,E, s, t) where:

• V is a finite set;
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• E is a finite non-empty set whose elements are called edges;

• s : E //V t{1, . . . , n} and t : E //V t{0} are maps sending any edge to its source
and target, respectively.

Given u, v ∈ V t {0, 1, . . . , n}, we write u
e−→ v if e ∈ E has s(e) = u and t(e) = v.

This data is required to satisfy the following conditions:

• s : E // V t {1, . . . , n} is a bijection;

• there exists exactly one e ∈ E such that t(e) = 0;

• for any v ∈ V t {1, . . . , n} there exists a directed edge path from v to 0: that is,
a sequence of edges e0, . . . , en and vertices v1, . . . , vn such that

v
e0−→ v1, v1

e1−→ v2, . . . , vn
en−→ 0.

We draw n-trees following a convention where the source of any edge is at its top end,
while its target is at the bottom. Here are two 3-trees:

•
•

1 2 3

0

•

2 3 1

0

We draw the elements of V as dots, but not the elements 0, 1, . . . n. A graph theorist
would call all the elements of V t{0}t{1, . . . , n} vertices. We, however, reserve the term
vertex for an element of V . We call 0 the root, and call 1, . . . , n the leaves.

We define the arity of a vertex v ∈ V to be the cardinality of the preimage t−1(v).
We call elements of this preimage the children of v. Note that for us children are edges,
not vertices.

We define a terminus to be a vertex of arity zero. Here is a 3-tree with two termini:

•
••
•

1 3 2

0

Termini are important for studying operads with 0-ary operations—or in biology, extinc-
tions, where a species dies out.

We can also have n-trees with vertices of arity 1:
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•

0

1

•
•

2 1

0

•
•••

3 1 2

0

Vertices with arity 1 are important for describing operads with 1-ary operations. In
biology it is not very interesting to think about a species that splits into just one species.
However, we will use an operad with one 1-ary operation for each number t ∈ [0,∞) to
equip phylogenetic trees with lengths for edges. So, we will need to think about n-trees
with 1-ary vertices.

Finally, we warn the reader that there exist 0-trees—that is, trees with no leaves:

•

0

•
•

0

· · ·

since we interpret the set {1, . . . , n} to be the empty set when n = 0. There is also a tree
with no vertices, which is a 1-tree:

1

0

Moerdijk and Weiss [MW] have described a category Ω whose objects are essentially
the same as n-trees (for arbitrary n), and this has been further developed by Weber
[Weber]. For this the authors need to define morphisms between n-trees. We shall only
need isomorphisms, which are easier to define:

2.2. Definition. An isomorphism of n-trees f : (V,E, s, t) // (V ′, E ′, s′, t′) consists
of:

• a bijection f0 : V t {0, 1, . . . , n} // V ′ t {0, 1, . . . , n},

• a bijection f1 : E // E ′

such that

• f0 is the identity on {0, 1, . . . , n},

• f0s = s′f1,

• f0t = t′f1.

In simple terms, two n-trees are isomorphic if one is obtained from the other by renaming
the vertices and edges.
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2.3. Definition. We call an n-tree with just one vertex a corolla.

For each n ≥ 0 there is, up to isomorphism, a unique n-tree that is a corolla:

•

0

•
1

0

•
1 2

0

•
1 2 3

0

· · ·

2.4. Definition. A planar n-tree is an n-tree in which each vertex is equipped with
a linear order on the set of its children. A planar tree is a planar n-tree for any
n = 0, 1, 2, . . . .

2.5. Definition. An isomorphism of planar n-trees is an isomorphism of n-trees
f : (V,E, s, t) // (V ′, E ′, s′, t′) that preserves this linear ordering on the children of each
vertex.

We can draw any planar n-tree on the plane in such a way that the children of a vertex
are listed in increasing order from left to right. With this convention, the following two
planar 3-trees are not isomorphic, even though they are isomorphic as 3-trees:

•
•

1 2 3

0

•
•

1 3 2

0

We are now ready to define a phylogenetic tree:

2.6. Definition. An n-tree together with a map ` : E // [0,∞) is called an n-tree with
lengths. For any e ∈ E we call `(e) the length of e.

2.7. Definition. A phylogenetic n-tree is an isomorphism class of n-trees with lengths
obeying these rules:

1. the length of every edge is positive, except perhaps for edges incident to a leaf or the
root;

2. there are no 0-ary or 1-ary vertices.

A phylogenetic tree is a phylogenetic n-tree for some n ≥ 1.

In this definition we require that there are no 0-ary vertices, or in other words, there are
no extinctions. This restriction may seem odd, but it reflects common practice: biolo-
gists often use phylogenetic trees to describe evolutionary relationships between currently
existing species, ignoring extinct species [Baum]. Furthermore, the space of phylogenetic
n-trees is finite-dimensional with this restriction, but infinite-dimensional without it, since
without it an n-tree could have arbitrarily many edges labelled by lengths.



1410 JOHN C. BAEZ AND NINA OTTER

Taking isomorphism classes of n-trees (see Definition 2.2) means that the names of
the vertices and edges are irrelevant. So, for example, this is a phylogenetic tree:

•
•

2

0

1

0.2

3

2.7
1.4

1.3

0

This tree with lengths is not a phylogenetic tree, because it violates rule 1:

•
•

2

0

1

0.2

3

2.7
0

1.3

0

In terms of biology, the idea is that if a species splits and then immediately splits again,
we would describe this using a single ternary vertex instead of two binary ones.

The following tree with lengths is not a phylogenetic tree, because it has a 0-ary vertex:

•
•

2

0

1

0.2 •
2.71.4

1.3

0

In terms of biology, the terminus here describes an extinction. We might allow trees with
termini if we were building phylogenetric trees using DNA from extinct species. Doing
this would simply require that we replace Com with Com+, the operad with a single n-ary
operation for each n ≥ 0. The 0-ary operation in Com+ would describe an extinction.

Finally, this tree with lengths is not a phylogenetic tree since it has a 1-ary vertex:

•
•

2

0.3

1

2.7
1.4

1.3

0
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In terms of biology, we do not want to discuss the process of a species splitting into just
one species. In particular, this is not a phylogenetic tree:

•

1

0

0

0

but this is:
1

0

0

and we shall need it, to serve as the identity operation in the phylogenetic operad.
We next build the phylogenetic operad as the coproduct of two operads already dis-

cussed in Section 1. The first is Com. This is the unique operad with one n-ary operation
fn for each n > 0 and no 0-ary operations. The second is [0,∞). This is the unique operad
with only unary operations whose space of unary operations is the set of nonnegative real
numbers, topologized in the standard way, with composition defined to be addition.

2.8. Definition. The phylogenetic operad Phyl is the coproduct Com + [0,∞).

Our first main result, Theorem 2.9, gives an explicit description of the operations of
Phyl:

2.9. Theorem. The n-ary operations in the phylogenetic operad are in one-to-one cor-
respondence with phylogenetic n-trees.

The statement here is somewhat inadequate, since we really have a specific bijection
in mind. The task of making this theorem precise and proving it occupies Sections 4–6. In
Section 4 we give a description of the operations in a free operad. In Section 5 we use this
to describe operations in a coproduct of operads. Finally, in Section 6 we give a simpler
description of the operations in a coproduct of operads O + O′ when O′ has only unary
operations. We show that the n-ary operations of O + O′ are certain equivalence classes
of planar rooted trees having n leaves, with edges labelled by the unary operations of O′

and k-ary vertices labelled by k-ary operations in O. We state this fact more precisely
and prove it in Lemma 6.5.

Applying this lemma to the coproduct Com + [0,∞), we see that the n-ary operations
in this operad are equivalence classes of planar rooted trees having n leaves, with edges
labelled by numbers in [0,∞) but with unlabelled vertices, since there is a unique k-ary
operation in Com for each k ≥ 1. This gives Theorem 2.9, which we prove at the very
end of Section 6.
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Henceforth we shall use the bijection given in the proof of Theorem 2.9 to identify
n-ary operations of Phyl = Com + [0,∞) with phylogenetic n-trees. Since Com + [0,∞)
is a topological operad, this bijection puts a topology on the set of phylogenetic n-trees.
From now on, we freely use Phyln to mean either the set of phylogenetic n-trees with this
topology or the space of n-ary operations of Com + [0,∞).

In their work on phylogenetic trees, Billera, Holmes and Vogtmann [BHV] studied a
space closely related to Phyln, which they call the space of ‘metric n-trees’. They give a
definition equivalent to this one:

2.10. Definition. A metric n-tree is an isomorphism class of n-trees with lengths
obeying these rules:

1. the length of every internal edge is positive;

2. the length of every external edge is zero;

3. there are no 0-ary or 1-ary vertices.

We denote the set of metric n-trees by Tn.

We note that by the last item in the definition of a metric n-tree there are no 0-trees,
and there is exactly one 1-tree, namely the trivial tree with its unique edge labelled by
zero.

Billera, Holmes and Vogtmann do not label the external edges with lengths. But this
is equivalent to labelling them all with length zero. More importantly, these authors give
the space Tn a metric. To do this, they show that Tn may be constructed by gluing
standard Euclidean orthants together. They then define the distance between two points
in the same orthant as the Euclidean distance, and the distance between two points in two
different orthants as the minimum of the lengths of all paths between them that consist
of finitely many straight line segments in orthants. This metric makes Tn into a space
with well-behaved geodesics, called a CAT(0)-space [BH, Sec. II.1].

The space Tn is contractible; we get a contracting homotopy by rescaling the lengths
of all internal edges in a way that sends them to zero. Nonetheless, its topology is very
interesting. For example, Billera, Holmes and Vogtmann note that T4 is the cone on the
Petersen graph:
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The 15 edges of the Petersen graph correspond to the 15 binary trees with four labelled
leaves. The cone on any edge of the Petersen graph is a quadrant, where the two coordi-
nates are the lengths of the two internal edges of the given binary tree:

•

•

•

•(0, 1) (1, 1)

(1, 0)(0, 0)

•
••

0

1 2 3 4

11

•
•

0

1 2 3 4

1

•
•

0

4321

1

•

0

4321

At the boundary of such a quadrant we have phylogenetic trees where the length of one
internal edge equals zero; such trees are no longer binary. In the Petersen graph, three
edges meet at each vertex. Thus, the cone on any vertex of the Petersen graph is a ray at
which three quadrants of the above form meet along their boundaries. Similarly, the cone
on any pentagon in the Petersen graph consists of five quadrants glued together along their
boundaries. The corresponding binary trees are those appearing in the famous Stasheff
pentagon [Stasheff]. Billera, Holmes and Vogtmann explain how to generalize this to any
n, obtaining a relation between the spaces Tn and associahedra.

Our second main result relates Phyln to Tn.

2.11. Theorem. For every n 6= 1 there is a homeomorphism

Phyln
∼= Tn × [0,∞)n+1,

and Phyl1
∼= T1 × [0,∞).

If we compare the definition of a phylogenetic n-tree to the definition of a metric n-
tree, we see that the theorem holds vacuously for n = 0, since there are no metric 0-trees
and no phylogenetic 0-trees. A phylogenetic 1-tree has just one edge, which is labelled
by a non-negative real number, while there is only one metric 0-tree, namely the tree
with one edge labelled by zero. Thus there is a bijection between Phyl1 and T1 × [0,∞).
More interestingly, for n > 1 a phylogenetic tree gives a metric n-tree together with an
(n + 1)-tuple of numbers in [0,∞), namely the lengths labelling the external edges of
the phylogenetic tree. On the other hand, a metric n-tree together with an (n+ 1)-tuple
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of numbers in [0,∞) gives a phylogenetic tree with these numbers labelling its external
edges. We thus have a bijection between Phyln and Tn × [0,∞)n+1.

Checking that this bijection is a homeomorphism requires further work. The operad
Phyl is defined as a coproduct of operads, so the topology on Phyln is determined rather
implicitly by the universal property of the coproduct. We describe an explicit basis for
the topology on Phyln in Appendix A, and use this to prove Theorem 2.11.

3. Branching Markov processes

In Section 1 we sketched how a Markov process on a finite set gives a coalgebra of the
phylogenetic operad. Here we give the details. We also prove that any coalgebra of
Phyl = Com + [0,∞) arising this way extends uniquely to a coalgebra of a larger operad
Com+[0,∞]. This expresses the fact that Markov processes on finite sets always converge
as time approaches infinity.

We begin with a general definition of algebras and coalgebras for an operad O. Let
Top be a convenient category of topological spaces, such as compactly generated Hausdorff
spaces, and suppose C is a symmetric monoidal category enriched over Top. Then for
any object V ∈ C there is an operad End(V ), the endomorphism operad of V , with

End(V )n = homC(V ⊗n, V ).

An algebra of O in C is an operad morphism α : O //End(V ). In other words, α sends
operations f ∈ On to maps

α(f) : V ⊗n // V

in a continuous manner, preserving composition, the identity, and the permutation group
actions.

A coalgebra of O in C is an algebra of O in the opposite category, Cop. Equivalently,
it is an operad morphism from O to the coendomorphism operad Coend(V ), where

Coend(V )n = homC(V, V ⊗n)

Given a coalgebra of O, any operation f ∈ On is mapped to a morphism

α(f) : V // V ⊗n.

We say α(f) coacts on V .
In this section we only need coalgebras in FinVect, the category of finite-dimensional

real vector spaces and linear maps, made into a symmetric monoidal category with its
usual tensor product, and enriched over Top in the usual way. So, by ‘coalgebra’, we shall
mean one in FinVect.

Recall from Section 1 that a coalgebra of the operad [0,∞) is known to analysts as
a continuous 1-parameter semigroup. Concretely, such a coalgebra consists of a
finite-dimensional real vector space V together with linear maps

α(t) : V // V
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for each t ∈ [0,∞), such that:

• α(s+ t) = α(s)α(t) for all s, t ∈ [0,∞),

• α(0) = 1V ,

• α(t) depends continuously on t.

When V = RX for a finite set we have the following result:

3.1. Theorem. Given a finite set X and a continuous 1-parameter semigroup α : [0,∞)
//End(RX), there is a unique way of making RX into a coalgebra of Phyl = Com+[0,∞)

such that:

1. Each unary operation t ∈ [0,∞) coacts on RX as α(t) : RX // RX .

2. The unique binary operation in Com coacts on RX as the linear map

∆: RX // RX ⊗ RX

where

∆(f)(x1, x2) =


f(x) if x1 = x2 = x

0 otherwise.

Proof. Because all n-ary operations in Com for n > 1 are composites of the unique
binary operation, item (2) forces the unique n-ary operation to coact as the linear map

∆n : RX // RX ⊗ · · · ⊗ RX ∼= RXn

where

∆n(f)(x1, . . . , xn) =


f(x) if x1 = · · · = xn = x

0 otherwise

It is easy to check that this formula indeed makes RX into a coalgebra of Com. It also
becomes a coalgebra of the operad [0,∞) via item (1). By the universal property of the
coproduct of operads, these coalgebra structures uniquely determine a way of making RX

into a coalgebra of the coproduct Com + [0,∞).

Among continuous 1-parameter semigroups on RX , Markov processes have a special
property: they always approach an equilibrium. More precisely:

3.2. Lemma. If X is a finite set and α : [0,∞) //End(RX) is a Markov process, the op-
erators α(t) ∈ End(RX) converge to a fixed operator P ∈ End(RX) as t //∞. Moreover,
P 2 = P .
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Proof. This result should be well-known in the theory of Markov processes, but since
we were unable to find an easy reference we include a proof which also serves as a quick
introduction to Markov processes.

Suppose α : [0,∞) // End(RX) is a Markov process. Because α is a continuous one-
parameter semigroup of operators on RX , it follows [EN, Thm. 2.9] that α(t) is differen-
tiable, and if we set

H =
d

dt
α(t)

∣∣∣∣
t=0

then α(t) = exp(tH).
Since α(t) is stochastic for all t ≥ 0, its matrix entries must be nonnegative in the

standard basis of RX , but its off-diagonal entries vanish at t = 0 since α(0) = 1. Thus,
the off-diagonal entries of H = d

dt
α(t)

∣∣
t=0

must be nonnegative. We can define a directed
graph Γ with X as its set of nodes and an edge from i ∈ X to j ∈ X if and only if Hji > 0.
We begin by assuming that this graph is strongly connected, meaning that there is a
directed edge path from i to j for all i, j ∈ X. In this case H is irreducible: there is no
way to bring the matrix (Hij) into a block upper triangular form by permuting its rows
and columns [BC, Sec. 8.1].

Thus, for sufficiently large c > 0, H + cI will be irreducible and also have nonnegative
matrix entries. As a result, the Perron–Frobenius theorem applies [BC, Sec. 8.3]. This
says that the matrix H + cI has a real eigenvalue that is greater than the real part of
all other eigenvalues, and a positive eigenvector f : X // (0,∞) with this eigenvalue. It
follows that the same holds for H.

Suppose λ is the real eigenvalue of H that is greater than the real part of all other
eigenvalues, and let f : X // (0,∞) be a function with Hf = λf . We may assume f is
normalized to be a probability distribution. Since exp(tH) is stochastic for all t ≥ 0,

exp(tH)f = exp(tλ)f

must also be a probability distribution for all t ≥ 0. It follows that λ = 0. In particular,
H has zero as an eigenvalue. Moreover, if we regard H as a special case of an n × n
matrix of complex numbers, then all the other—possibly complex—eigenvalues λi of H
have Re(λi) < 0.

More generally, suppose the graph Γ is not strongly connected. Then we can parti-
tion X into strongly connected components: that is subsets {Sk}k∈Λ such that the
restriction of Γ to each subset is strongly connected. Moreover, these strongly connected
components are partially ordered where k � ` if and only if there exists a directed edge
path from a node in Sk to a node in S`. We can choose a linear ordering ≤ for Λ such
that k � ` implies k ≤ `. Thus, we can order the standard basis for RX in such a way
that H becomes a block upper triangular matrix, with blocks corresponding to strongly
connected components.

By our analysis of the strongly connected case, each diagonal block of H must have
zero as an eigenvalue, with all other eigenvalues having negative real part. Since H
is block upper triangular, it follows that the only possible eigenvalues of H, including
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complex eigenvalues, are zero and numbers with negative real part. Using the Jordan
normal form, it follows that for some invertible linear transformation Q, QHQ−1 is a
block diagonal sum of Jordan blocks:

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

. . . . . . . . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


where λ = 0 or Re(λ) < 0. Exponentiating, we see that Q exp(tH)Q−1 is a block diagonal
sum of square matrices of this form:

etλ tetλ
t2

2!
etλ · · · tk−1

(k − 1)!
etλ

0 etλ tetλ · · · tk−2

(k − 2)!
etλ

...
. . . . . . . . .

...
0 0 0 · · · tetλ

0 0 0 · · · etλ


As t // +∞, the above matrix converges to the identity if λ = 0 and to zero if Re(λ) <
0. Thus, it converges to an idempotent. As a consequence, exp(tH) converges to an
idempotent P ∈ End(RX) as t // +∞.

We can make [0,∞] into a commutative monoid using addition, where we define ∞+
t = t+∞ =∞ for all t ∈ [0,∞]. The set [0,∞] has a topology where it is homeomorphic
to a closed interval, e.g. by requiring that tan: [0, π/2] // [0,∞] is a homeomorphism.
With this topology [0,∞] becomes a topological monoid, and thus an operad with only
unary operations.

Since [0,∞) is a suboperad of [0,∞] in an obvious way, the phylogenetic operad
Phyl = Com + [0,∞) becomes a suboperad of Com + [0,∞], thanks to Corollary 5.4.

3.3. Theorem. If X is a finite set and α : [0,∞) // End(RX) is a Markov process, RX

becomes a coalgebra of Com+[0,∞] in a unique way extending its structure as a coalgebra
of Phyl = Com + [0,∞) described in Theorem 3.1.

Proof. Thanks to the universal property of the coproduct, we only need to prove that
RX becomes a coalgebra of [0,∞] in unique way extending its structure as a coalgebra
of [0,∞), where t ∈ [0,∞) acts as α(t). Uniqueness follows from the continuity and fact
that [0,∞) is dense in [0,∞]: this forces us to take

α(∞) = lim
t //∞

α(t).
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For existence, we first use Lemma 3.2 to note that the limit exists. Then, to note that
α : [0,∞] // End(RX) thus defined is really a coalgebra action, we note that for any
s ∈ [0,∞)

α(s)α(∞) = α(s) lim
t //∞

α(t) = lim
t //∞

α(s+ t) = α(∞)

as required, and similarly α(∞)α(s) = α(∞), and also

α(∞)α(∞) = lim
t //∞

α(s) lim
t //∞

α(t) = lim
s,t //∞

α(s+ t) = α(∞).

Combining this result and Lemma 3.2, one sees that P = α(∞) is an idempotent
(P 2 = P ) that maps the set of probability distributions on X onto the set of equilibrium
probability distributions, meaning those that are invariant under the time evolution given
by α(t).

4. Free operads

Theorem 2.9 claims that there is a bijection between phylogenetic trees and operations in
Com + [0,∞). Constructing this bijection takes some work. We need an explicit descrip-
tion of the operations in a coproduct of operads—and for that, we need a description of
the operations in a free operad. We work out the details in the next three sections.

Readers who are eager to read about the relationship between the phylogenetic operad
and the W construction can go directly to Section 7. We have tried to make that section
readable on its own, though logically it depends on all the material that comes before.

In what follows, we use ‘operad’ to mean a symmetric operad in the symmetric
monoidal category Top. Thus, our definition matches that of May [May1] except that
we allow more than one operation of arity 0. We shall show, among other things, that
there is an operad PTree with isomorphism classes of planar n-trees as its n-ary oper-
ations. Moreover PTree arises quite naturally from the theory of operads, as we now
explain.

Every operad O has an underlying ‘collection’, which is simply the list of spaces On,
forgetting composition and the permutation group actions:

4.1. Definition. A collection C consists of topological spaces {Cn}n≥0. A morphism
of collections f : C // C ′ consists of a continuous map fn : Cn // C ′n for each n ≥ 0.

Collections and morphisms between them form a category. This category is simply TopN,
where N stands for the set of natural numbers, or the corresponding discrete category.

Let Op be the category consisting of operads and morphisms between them. There
is a forgetful functor U : Op // TopN sending any operad O to the collection {On}n≥0.
Moreover:
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4.2. Lemma. The forgetful functor

U : Op // TopN

is monadic, meaning that it has a left adjoint

F : TopN //Op

giving rise to a monad UF : TopN // TopN, and the comparison functor from Op to the
category of algebras of this monad is an equivalence.

Proof. This follows from Boardmann and Vogt’s work on free algebras for colored oper-
ads, using the fact that operads are themselves the algebras of a colored operad with one
color for each arity n ∈ N. The existence of a left adjoint for U follows from Boardmann
and Vogt’s Theorem 2.24, and the monadicity of U follows from their Proposition 2.33.
For the colored operad whose algebras are operads, see [BD]. This operad began life as
a Set-based rather than a topological operad, but we can reinterpret it as a topological
operad whose spaces of operations are discrete, and this has the same algebras in Top.

The operad whose n-ary operations are isomorphism classes of planar n-trees has a
simple description in terms of this adjunction:

PTree ∼= FU(Com+)

where Com+ is the operad whose algebras are commutative topological monoids. More
concretely, Com+ is the operad, unique up to isomorphism, whose space of n-ary opera-
tions is a one-element set for each n ≥ 0. More abstractly, Com+ is the terminal operad.
It thus arises naturally in operad theory—and thus, so does the concept of planar tree.
Indeed, the role of planar trees in operad theory well-known [MSS, Sec. II.1.9], but we
deduce it from a more general statement in Corollary 4.14.

As usual, the adjunction between operads and collections gives rise to an operad
morphism called the unit

ιC : C // UF (C)

for any operad O, and a morphism of collections called the counit

εO : FU(O) //O

for any collection C. These are natural transformations. Moreover, thanks to Lemma 4.2,
any operad O can be described as the coequalizer of this diagram:

FUFU(O)
εFU(O) //

FU(εO)
// FU(O) ε // O

This will give an explicit description of On as a quotient of FU(O)n by an equivalence
relation. We start by describing the functor F . For any collection C, the operations in
F (C) will be ‘C-trees’:
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4.3. Definition. For any collection C, a C-labelled planar n-tree is a planar n-tree
for which each vertex with k children is labelled by an element of Ck.

4.4. Definition. Given two C-labelled planar n-trees, we say they are isomorphic if
there is an isomorphism of their underlying planar n-trees such that the labelling of each
vertex in the first equals the labelling of the corresponding vertex in the second.

4.5. Definition. We define a C-n-tree to be an isomorphism class of C-labelled planar
n-trees. We define a C-tree to be a C-n-tree for any n = 0, 1, 2, . . . . We denote the set
of C-n-trees by CTreen.

To make C-trees into the operations of an operad, we must say how to compose them.
Instead of fully general composition

f ◦ (g1, . . . , gn)

it suffices to describe partial composition:

f ◦i g = f ◦ (1, . . . , 1, g, 1, . . . , 1) f ∈ On, 1 ≤ i ≤ n

where g appears in the ith position. Knowing partial composites we can recover all
composites, and there is an alternative axiomatization for operads, equivalent to the
standard one, using partial composition [May2, Def. 12].

Partial composition of C-trees will be defined using ‘grafting’. The rough idea is that
in the partial composite T ′ ◦iT , we glue the root of T to the ith leaf of T ′. Then we delete
the resulting vertex and combine the two edges incident to it into a single edge. Here a
picture is worth a thousand words:

•f

0

2 1

◦1 •g

0

1 2

= •f
•g

0

3 1 2

•f

0

2 1

◦2 •g

0

1 2

= •f
•g

0

2 3 1

The subtlest issue is the labelling of leaves in the tree obtained from grafting. For a formal
definition, we start with grafting for planar trees:
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4.6. Definition. Consider a planar n-tree T = (V,E, s, t) and a planar m-tree T ′ =
(V ′, E ′, s′, t′). For any 1 ≤ i ≤ m we define the grafting of T onto T ′ along i to be
the planar (n+m− 1)-tree T ′ ◦i T = (Ṽ , Ẽ, s̃, t̃) where

• Ṽ = V t V ′

• Ẽ =
(
E \ {e0}

)
t
(
E ′ \ {ei}

)
t {x}, where e0 is the edge of T with t(e0) = 0 and

ei is the edge of T ′ such that s′(ei) = i

• s̃ : Ẽ → Ṽ is defined by

e 7→



s(e) ife ∈ Eands(e) ∈ V
s′(e) ife ∈ E ′ands′(e) ∈ V ′
s′(e) ife ∈ E ′and1 ≤ s′(e) ≤ i− 1

s(e) + i− 1 ife ∈ Eand1 ≤ s(e) ≤ n
s′(e) + n− 1 ife ∈ E ′andi+ 1 ≤ s′(e) ≤ m

s(e0) ife = x

• t̃ : Ẽ → Ṽ is defined by

e 7→


t(e) ife ∈ E
t′(e) ife ∈ E ′
t(ei) ife = x

If in T the order of the children of t(ei) is e1 < · · · < ei−1 < ei < ei+1 < · · · < er, then
the order of its children in T ◦i T ′ is e1 < · · · < ei−1 < x < ei+1 < · · · < er. The order of
the children of all other vertices is unchanged.

We say that edge e0 is identified with edge ei.

Next we define grafting for C-labelled planar trees. Suppose we have two C-labelled
planar trees whose underlying planar trees are T = (V,E, s, t) and T ′ = (V ′, E ′, s′, t′).
Then we can make T ◦i T ′ into a C-labelled planar tree as follows: its set of vertices is
V t V ′, so we label the vertices in V using the labelling of T , and label those in V ′ using
the labelling of T ′.

Grafting is well-defined on isomorphism classes. We thus obtain partial composition
operations for C-trees. To make CTreen into the n-ary operations of an operad, we also
need to give it a right action of the permutation group Sn. We do this by permuting the
labels of leaves:

4.7. Definition. Given a C-labelled planar n-tree T = (V,E, s, t) and a permutation
σ ∈ Sn, we define the C-labelled planar n-tree T · σ to have the underlying planar n-tree
(V,E, s · σ, t) with same C-labelling, where s · σ : E → V t {1, . . . , n} is given by

(s · σ)(e) =

{
s(e) if s(e) ∈ V

σ−1(s(e)) otherwise.

We call this relabelling of leaves.
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This operation defines a right action of the symmetric group Sn on the set of planar
C-labelled n-trees. One can check that this is well-defined on isomorphism classes, so it
descends to an action of Sn on the set of C-n-trees.

For example, if σ ∈ S3 is the cyclic permutation

(
1 2 3
2 3 1

)
, we have

•
• •

•

0

h

2 3 1

f

g
i

·σ = •
• •

•

0

h

1 2 3

f

g
i

4.8. Lemma. Let C be a collection. There is an operad CTree such that:

• CTreen is the set of C-trees with n leaves;

• composition is given by grafting of trees;

• the unit is given by the isomorphism class of the tree with no vertices;

• the permutation group Sn acts on CTreen by relabelling leaves.

Proof. This follows via a straightforward verification of the operad axioms written in
terms of partial composition [May2, Def. 12].

Next we show that CTree is the free operad on the collection C. There is a morphism
of collections

ι : C // U(CTree)

that sends any element f ∈ Cn to the isomorphism class of the corolla with its n leaves
ordered so that 1 < · · · < n, and with its vertex labelled by f . For example, if f ∈ C3,
then

• f
1 2 3

0

ι(f) =

where the picture shows the isomorphism class of the corolla with 3 leaves ordered so that
1 < 2 < 3. We claim that ι exhibits CTree as the free operad on C. In other words:

4.9. Theorem. Let C be a collection. For any operad O and any morphism of collections
φ : C //U(O), there exists a unique operad morphism φ : CTree //O making this triangle
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commute:
C

ι

��

φ

$$
U(CTree)

U(φ)

// U(O)

Thus, CTree is the free operad on C.

Proof. The morphism φ : CTree // O making the above triangle commute is clearly
unique, because every operation in CTree is obtained from operations of the form ι(f) by
composition and permutations. The issue is to show that an operad morphism φ making
the triangle commute actually exists.

For any morphism of collections ψ : C // D, we can define a map ψ? from the set
of C-trees to the set of D-trees, mapping any C-tree T to the D-tree obtained from T
by substituting the label f of any vertex of T by ψ(f). This gives an operad morphism
ψ? : CTree // DTree. In particular, starting from φ : C // U(O) we obtain an operad
morphism

φ? : CTree // U(O)Tree.

We shall construct an operad morphism

εO : U(O)Tree //O

with the following property: εO maps the isomorphism class of the corolla with its n leaves
ordered so that 1 < · · · < n and its vertex labelled by f ∈ U(O)n to the corresponding
operation f ∈ On. It will follow that the composite

φ = εOφ?

makes the triangle commute.
We begin by saying what it means to ‘contract’ an edge of a planar tree. Before giving

the definition, we give an example. Contracting the edge e in the planar tree at left, we
obtain the planar tree at right:

4

•

2

•

3 1

t(e)
e

•

0

•
s(e)

 

4

•

2

•

3

•
1

x

0

In the resulting tree, the vertices s(e) and t(e) are gone: they have coalesced to form a
new vertex x.
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4.10. Definition. Given an n-tree T = (V,E, s, t), we define in(v) to be the set of
children of the vertex v ∈ V .

4.11. Definition. Given an n-tree T = (V,E, s, t), we call an edge e ∈ E internal if
its source and target both lie in V . We call the edges that are not internal external.

4.12. Definition. Consider a planar n-tree T = (V,E, s, t) with an internal edge e. We
define the planar n-tree T/e = (Ve, Ee, se, te), called T with its edge e contracted, as
follows:

• the vertex set Ve is given by
(
V − {s(e), t(e)}

)
t {x};

• the edge set Ee is given by E − {e};

• The maps se and te are defined as follows:

se(e
′) =

{
s(e′) if s(e′) 6= t(e)
x otherwise

te(e
′) =

{
t(e′) if t(e′) 6= t(e) and t(e′) 6= s(e)
x otherwise

The order on the children of a vertex in Ve is defined as it was in T if that vertex lies in V .
For the new vertex x, the order is defined as follows. The vertex t(e) has k1 > 0 children
by construction, while if s(e) if has no children then x has none, so we do not need to
define an order on its children. Therefore suppose that s(e) has k2 > 0 children, and
further that e is the ith child of t(e). The planar structure on T induces order-preserving
bijections

φ1 : in(t(e)) // [k1], φ2 : in(s(e)) // [k2]

where [n] is the set {1, . . . , n} with its standard linear ordering. Using these we define a
bijection

φ1 ◦i φ2 : in(t(e)) t in(s(e)) \ {e} // [k1 + k2 − 1]

as follows:

φ(y) =


φ1(y) if y ∈ in(t(e)) and 1 ≤ φ1(y) ≤ i− 1

φ2(y) + i− 1 if y ∈ in(s(e))
φ1(y) + k1 − 1 if y ∈ in(t(e)) and φ1(y) > i.

This induces a linear order on in(x).

More generally, we can define contraction for U(O)-labelled planar trees for any operad
O. Suppose T is a U(O)-labelled planar tree with an internal edge e. We define the U(O)-
labelled planar tree T/e as follows. Its underlying planar tree is the underlying planar
tree of T with its edge e contracted. We label all the vertices other than new vertex x just
as in T . As for x, suppose that the vertices t(e) and s(e) are labelled by the operations
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f ∈ Ok and g ∈ O`, respectively, and suppose that e is the ith child of t(e). Then we label
the vertex x by the operation f ◦i g. This yields a U(O)-tree: we have f ◦i g ∈ Ok+`−1,
and by definition x has k + `− 1 children.

Contraction is well-defined on isomorphism classes, so we can define contraction for
U(O)-trees. For example, if we contract the edge between f and g in the U(O)-tree at
left, we get the one at right:

4

•

2

•

3

•

1

e

f

h

0

•
g

 

4

•

2

•

3

•
1

e

f ◦2 g

h

0

Iterating this operation, we can assign to any U(O)-tree T with n leaves a unique
U(O)-tree which is a corolla with n leaves and with the unique vertex labelled by the
composite of all the operations in O labelling vertices of T . This assignment does not
depend on the order in which we contract the internal edges, since the composition in O
is associative. We denote the label of the vertex of this corolla by εO(T ).

We claim that the resulting map

εO : U(O)Tree //O

is an operad morphism. To show this, the only nontrivial task is to show that

εO(T ′ ◦i T ) = εO(T ′) ◦i εO(T )

when T and T ′ are U(O)-trees. To do this, we note that instead of contracting all the
internal edges of a tree, we could contract only those in a subtree. Here we borrow a
definition from Fresse [Fresse, A 1.5]:

4.13. Definition. A subtree S = (VS, ES, inS, sS, tS) of a planar n-tree T = (V,E, s, t)
is given by:

• a set of vertices VS ⊆ V ,

• a set of edges ES ⊆ E,

• a set inS ⊆ V t {1, . . . , n} such that inS ∩ VS = ∅,

• an element 0S ∈ V such that 0S /∈ VS and such that there is a unique edge e0 in ES
with t(e0) = 0S,
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• sS = s|ES and tS = t|ES .

This data satisfies the following requirement: an edge e is in ES if and only if t(e) ∈
VS t {0S} if and only if s(e) ∈ VS t inS.

The last requirement in the definition ensures that in a subtree S there is a unique
directed edge path from any vertex to 0S, and also that if a vertex is in VS then all its
children and the edge with this vertex as its source are in ES. Furthermore, a subtree is
completely determined by its set of vertices or its set of edges, as noted by Fresse [Fresse,
A 1.6]. We also note that we have modified Fresse’s definition slightly, to ensure that all
trees are subtrees of themselves. Fresse requires the set of vertices VS to be non-empty so
that trivial trees are not allowed to be subtrees. Thanks to the last requirement in the
definition, our modification allows trivial trees to be subtrees only of themselves.

The definition of subtree can be generalized to C-labelled planar trees and further to
C-trees, where the subtree inherits its labels from the original tree. For example, given
this C-3-tree:

•
•

2 1 3

f

g

0

this is a C-subtree:

0S

•

2 1

g

while this is not:

0S

•f

3

because an edge that is a child of the vertex labelled f is not included.
Given a tree T with a subtree S, call an edge e ∈ ES internal to S if s(e) and t(e)

lie in VS, and external to S otherwise. As noted by Fresse [Fresse], contracting the
edges internal to a subtree S of a U(O)-tree we obtain another U(O)-tree. We call this
operation contraction of the subtree S. For example, we can contract the subtree
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containing the vertices in the green ellipse at left, and obtain the U(O)-tree at right:

• f

•g • h

•k

0

2 1 4 3

 
•f ◦2 (h ◦1 k)

•g

0

2 1 4 3

Now we can check that

εO(T ′ ◦i T ) = εO(T ′) ◦i εO(T )

when T and T ′ are U(O)-trees. At left, we first graft T onto T ′ and then contract the
resulting U(O)-tree. Thanks to the associativity of operadic composition, this is the same
as grafting T onto T ′, then contracting the subtree T of T ′ ◦i T , and then contracting
the resulting U(O)-tree. But this is the same as contracting T ′, contracting T , and then
composing the operations in O that label the two resulting corollas. This is the expression
at right. This completes the proof of Theorem 4.9.

The simplest case of Theorem 4.9 is when C = U(Com+), where Com+ is the terminal
operad:

4.14. Corollary. Let PTree be the operad whose n-ary operations are isomorphism
classes of planar n-trees, with composition defined by grafting and permutation group
actions given by relabelling leaves. Then PTree ∼= FU(Com+).

Proof. Since Com+ has just one operation of each arity, there is always just one way to
label vertices of a planar tree by operations of Com+. Thus, an operation U(Com+)Tree
can be naturally identified with an isomorphism class of planar trees, and by Lemma 4.8
we have U(Com+)Tree ∼= PTree as operads. The result then follows from Theorem 4.9.

More generally, we make the following definition, closely tied to Definition 4.5:

4.15. Definition. For any operad O, we define an O-n-tree to be a U(O)-n-tree, where
U(O) is the underlying collection of O. We define an O-tree to be a U(O)-tree.

Thus, an O-tree is an operation in FU(O). Recall that Com+ is the terminal operad,
so there is a unique operad morphism !O : O // Com+. This in turn gives a morphism

FU(!O)) : FU(O) // FU(Com+) ∼= PTree
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sending each O-tree to the isomorphism class of its underlying planar n-tree. For example:

FU(!O) : • g1 •g2 • g3

• f

3 2 1

7→

0

• • •
•

3 2 1

0

This clarifies the special role of planar n-trees in the theory of operads.
On the other hand, the counit of the adjunction between operads and collections

εO : FU(O) //O

maps each O-tree to an operation in O. For example:

εO : • g1 •g2 • g3

• f

3 2 1

7→

0

• f ◦ (g1, g2, g3)

3 2 1

0

We can use this to describe operations in O as equivalence classes of O-trees, in a way
that will be useful later.

First note that we can act on a planar tree by permuting the children of a vertex.
More precisely:

4.16. Definition. Suppose S is a subtree of a planar n-tree T , and that S consists
of a single vertex. Then the linear order on inS gives an order-preserving isomorphism
f : inS // [k] for some k ≥ 0. Define the permutation of S by σ to be the planar n-tree
S · σ with same underlying k-tree as S and linear order on inS given by σ−1 ◦ f .

This definition can be generalized in a straightforward way to C-labelled planar n-trees
and further to C-n-trees. We are now ready to state our result:

4.17. Theorem. Let O be an operad. Then εO maps two O-trees to the same operation
of O if and only if we can go from one O-tree to the other by a finite sequence of the
following moves:

1. Given any O-tree, replace any subtree consisting of a vertex together with its children
and their source vertices by its contraction.

2. For any O-tree, replace any edge by a corolla with one vertex labelled by the identity
1 ∈ O1.



OPERADS AND PHYLOGENETIC TREES 1429

3. For any O-tree, replace any subtree S given by exactly one vertex v labelled by
f · σ, where σ ∈ Sk and f ∈ Ok, by the subtree obtained by permuting S by σ and
substituting the label of v by f .

The following is a move of type 1:

• g1 •g2 • g3

• f • f ◦ (g1, g2, g3)∼

This is a move of type 2:

•1 ∼

and for σ =

(
1 2 3
2 1 3

)
, this is a move of type 3:

•

•

•sg

f · σ ∼

•

•f

gs •

Proof. By Lemma 4.2 we know that (O, εO) is the coequalizer of the following diagram:

FUFU(O)
εFU(O) //

FU(εO)
// FU(O)

Furthermore by Theorem 4.9 we know that operations in FUFU(O) are FU(O)-trees,
so they are isomorphism classes of planar trees with vertices labelled by O-trees. We say
that two O-trees T, T ′ ∈ FU(O)n are equivalent if and only if T and T ′ are related by
the smallest equivalence relation with

εFUO(H) ∼ FUεO(H)

for all H ∈ FUFU(O)n. We give an example of an operation in FUFU(O) and its image
under the morphisms εFUO and FUεO in Figure 1. To prove the theorem, it suffices to
show that two trees in FU(O)n are equivalent if and only if they differ by a finite sequences
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•

•

•
•i

•

•g

h

1 2

3

0

•f

1 2

0

1 3

2

0

(a) An operation in FUFU(O)3.

•

•

•i

g ◦1 h

f

1 3

2

0

(b) The morphism FUεO
sends the operation in
Figure 1(a) to the O-tree
obtained by applying εO
to the vertex labels.

•

•

•

•

f

g

h

i1

3

2

0

(c) The morphism εFUO sends
the operation in Figure 1(a) to
the tree obtained by grafting
the vertex labels.

Figure 1: Example of an operation in FUFU(O)3 and its image under FUεO and εFUO.

of moves (1)–(3). For the ‘if’ direction, it is enough to show that T and T ′ are equivalent
if they differ by exactly one of these moves.

For moves of type (1) and (2) it is enough to consider trees with leaves labelled by
1 < · · · < n, since εFUO and FUεO are equivariant. We call such trees unpermuted.
Furthermore, if T is an unpermuted tree and T ′ = T · σ we say that T ′ has leaves
permuted by σ.

First suppose that T ′ is obtained from T by applying a move of type (1) in the forward
direction. This means that T contains a subtree S with k ≤ n leaves and T ′ is obtained
from T by contracting S. We denote by v the vertex of T ′ corresponding to the contraction
of S. Let H be the FU(O)-tree whose underlying isomorphism class of planar n-trees is
the same as that of T ′ and whose vertex v is labelled by S, while every other vertex vi is
labelled by a corolla with unpermuted leaves and vertex labelled by the label of vi in T ′.
In this case have T = εFUO(H) and T ′ = FUεO(H) as desired.

Next suppose that T ′ is obtained from T by applying move (2) in the forward direction.
Let v be the vertex of T labelled by the identity that is replaced by an edge in T ′. Then
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we let H be the FU(O)n-tree with underlying isomorphism class of planar n-trees that of
T and such that v is labelled by the isomorphism class of the tree with no vertices. We
again have T = εFUO(H) and T ′ = FUεO(H).

Finally, suppose that T and T ′ have arbitrary leaf labellings and that T ′ is obtained
from T by a move of type (3). Let H be the FU(O)-tree with underlying n-tree a
corolla with unpermuted leaves and its only vertex labelled by T , and similarly let H ′

be the FU(O)-tree with underlying n-tree a corolla with unpermuted leaves and its only
vertex labelled by T ′. Then we clearly have that T = εFU(O)(H) and T ′ = εFU(O)(H

′).
Furthermore, the equality FUεO(H) = FUεO(H ′) shows that T and T ′ are equivalent.

Conversely, we have to show that for any tree H ∈ FUFU(O)n we can go from
εFUO(H) to FUεO(H) with a finite sequence of moves (1)–(3). We prove this by induction
on the number n of vertices of H that are labelled by trees that are not unpermuted
corollas.

For n = 0 we have εFUO(H) = FUεO(H). So, assume that H has exactly n + 1
vertices labelled by trees other than unpermuted corollas. Let v be one of these vertices
and denote its label by S. First, suppose that S is not the isomorphism class of the tree
with no vertices. Let H̃ be the FU(O)-tree obtained from H by substituting the label of

v by a corolla with its vertex labelled by εO(S). Then we have FUεO(H) = FUεO(H̃).

Let T = εFU(O)(H) and T̃ = εFU(O)(H̃). The label of v is sent in T to a subtree with

underlying tree that of S and same labels on the vertices, while it is sent in T̃ to a
vertex labelled by εO(S). Thus we can go from T to T̃ with a move of type (1) or type
(3) or both. Next, assume that S is the isomorphism class of the tree with no vertices.

Then we let H̃ be the FU(O)n-tree obtained from H by deleting v. In this case we have

εFU(O)(H) = εFU(O)(H̃), and we can go from FUεO(H) to FUεO(H̃) with a move of type
(2) in the forward direction.

The claim now follows by the induction hypothesis. This completes the proof of
Theorem 4.17.

5. Coproducts of operads

We can use Theorem 4.9 and Theorem 4.17 to describe the coproduct of operads. Given
operads O and O′, their coproduct is an operad O+O′. Its algebras are easy to describe:
by the universal property of the coproduct, an algebra of O + O′ is a topological space
that is an algebra both of O and O′. Its collection of operations, on the other hand, is a
bit complicated.

Leinster [Leinster] has described the coproduct for non-symmetric operads in the cat-
egory of sets. To prove our result, we adapt his result to the operads we are considering:
symmetric topological operads.

To build O +O′, first note that there are epimorphisms

εO : FU(O) //O, εO′ : FU(O′) //O′.
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Taking their coproduct, we obtain an epimorphism

εO + εO′ : FU(O) + FU(O′) //O +O′.

On the other hand, left adjoints preserve coproducts, so we have a canonical isomorphism

FU(O) + FU(O′) ∼= F (U(O) + U(O′))

This gives us, with a slight abuse of notation, an epimorphism

εO + εO′ : F (U(O) + U(O′)) //O +O′.

By Theorem 4.9, operations in F (U(O) +U(O′)) can be seen as U(O) +U(O′)-trees. The
epimorphism above thus lets us describe operations of O + O′ as equivalence classes of
U(O) + U(O′)-trees.

What is the equivalence relation? This is answered by the following result, which is
based on Theorem 4.17. To state the result we will need the following definition:

5.1. Definition. Let O and O′ be operads. A O-subtree of a U(O) + U(O′) tree is a
subtree having vertices labelled only by operations of O.

5.2. Theorem. Let O and O′ be operads. Operations in F (U(O) +U(O′)) may be iden-
tified with U(O) + U(O′)-trees. Two U(O) + U(O′)-trees map to the same operation of
O +O′ via the operad morphism

εO + εO′ : F (U(O) + U(O′)) //O +O′

if and only if we can go from one to the other by a finite sequence of the following moves:

1. For any U(O) + U(O′)-tree, we can replace any O-subtree by its contraction.

2. For any U(O) + U(O′)-tree, we can replace any edge by a corolla with its vertex
labelled by the identity 1 ∈ O1.

3. For any U(O)+U(O′)-tree, we can replace any O-subtree given by exactly one vertex
v labelled by f · σ, where σ ∈ Sk and f ∈ Ok, by the subtree obtained from S by
permuting S by σ and substituting the label of v by f .

4. The same as (1) with O′ instead of O.

5. The same as (2) with O′ instead of O.

6. The same as (3) with O′ instead of O.
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Proof. We know from Theorem 4.17 that operations in O + O′ are equivalence classes
of U(O) + U(O′)-trees, while operations in F (U(O) + U(O′)) are U(O) + U(O′)-trees by
Theorem 4.9.

Since εO+εO′ is equivariant, we may prove the statement only for unpermuted U(O)+
U(O′)-trees. Given a O-tree T , we have εO + εO′(T ) = iO(εO(T )) where iO : O //O +O′

is part of the data of the coproduct. Similarly, we have εO + εO′(T
′) = iO′(εO′(T

′)) for any
O′-tree T ′. We can write any U(O) +U(O′)-tree as a composition of O- and O′-trees, and
call such a collection of trees a decomposition of T . We write

T = S1 ◦j1 S2 ◦j2 · · · ◦k−1 Sk

for such a decomposition, where Si is either a O-tree or a O′-tree.
We define a partial order on the set of decompositions of a tree: a decomposition D is

smaller then a decomposition D′ if by substituting none or a finite number of trees in D
by their decomposition we obtain D′. It is easy to see that every tree has maximum and
minimum decompositions which are unique up to a permutation of the terms. We then
have

εO + εO′(T ) = εO+O′(S1) ◦j1 εO+O′(S2) ◦j2 · · · ◦k−1 εO+O′(Sk)

where each term εO+O′(Si) is either iOεO(Si) or iO′εO′(Si) depending on whether Si is an
O-tree or O′-tree. This does not depend on the decomposition of the tree because εO and
εO′ are operad morphisms. The morphism εO + εO′ sends two trees T and T ′ to the same
equivalence class in O +O′ if and only if

εO+O′(S1)◦j1 εO+O′(S2)◦j2 · · ·◦jk−1
εO+O′(Sk) = εO+O′(S

′
1)◦j′1 εO+O′(S

′
2)◦j′2 · · ·◦jk′−1

εO+O′(S
′
k′)

If we take the minimum decompositions of T and T ′, we necessarily have k = k′, and
εO+O′(Sp) = εO+O′(S

′
p) for all 1 ≤ p ≤ k (if necessary take a permutation of the decom-

position of one of the trees). Since iO and iO′ are monomorphisms, this is equivalent to
either εO(Sp) = εO(S ′p) or εO′(Sp) = εO′(S

′
p). By Theorem 4.17 we know that this is the

case if and only if we can go from Sp to S ′p with a finite sequence of moves 1, 2, 3. We
thus obtain the desired result.

Theorem 5.2 tells us what the operations of (O+O′)n are, but what about its topology?
We know that there is an epimorphism εO + εO′ from F (U(O) + U(O′)) to O + O′. The
topology of the spaces F (U(O) +U(O′))n underlying the free operad F (U(O) +U(O′)) is
the finest topology making the maps in : On

//F (U(O)+U(O′))n and i′n : O′n //F (U(O)+
U(O′))n continuous. It is also easy to show that the topology of (O + O′)n is the finest
topology making the maps (εO+ εO′)n : F (U(O)+U(O′))n //O+O′n continuous. We will
need this fact in Appendix A, where we study the topology of the space of phylogenetic
trees.

We can also use Theorem 5.2 to show that for any operads O and O′, any suboperad
of O is a suboperad of O +O′:

5.3. Definition. Given a pair of operads P and Q, we say that P is a suboperad of
Q if it is equipped with a monomorphism ι : P //O.
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5.4. Corollary. Let O and O′ be operads. Then the morphisms ιO : O //O +O′ and
ιO′ : O // O + O′ that are part of the data of the coproduct are monomorphisms. As a
consequence, any suboperad of O becomes a suboperad of O +O′.

Proof. We note that since limits of operads can be computed pointwise [Fresse, Prop.
I.1.2.4], a morphism ι : P //Q is monic if and only if all the maps ιn : Pn //Qn is monic
in Top. Furthermore, the monomorphisms in Top are the continuous injections. Thus, we
only need to prove that each map ιO,n : On

// (O + O′)n is a continuous injection. This
is easy to see from the explicit description of O+O′ given in Theorem 5.2, together with
the description of the topology on O +O′.

6. The coproduct of an operad and a unary operad

We next give an explicit description of the operations of the coproduct O + O′ when O′

is an operad having only unary operations.

6.1. Definition. Let C be a collection and M a set. A (C,M)-labelled planar n-
tree is a C-n-tree together with a map ` : E //M assigning a label in M to each edge.
An isomorphism of (C,M)-labelled planar n-trees is an isomorphism of the underlying
C-n-trees that preserves the labelling of edges.

6.2. Definition. A (C,M)-n-tree is an isomorphism class of (C,M)-labelled planar
n-trees. A (C,M)-tree is a (C,M)-n-tree for some n.

We further make the following definition, closely linked to Definition 4.15:

6.3. Definition. For any operad O and any set M we define an (O,M)-n-tree to be
a (U(O),M)-n-tree. An (O,M)-tree is a (U(O),M)-tree.

The notion of subtree introduced in Definition 4.13 can be extended to (C,M)-trees,
where the subtree inherits its labels from the original tree. More precisely, a subtree of a
(C,M)-tree (T, l) is a (C,M)-tree (S, l|ES) where S is a subtree of T . We can also extend
the definition of permutation on subtrees to (C,M)-trees. Suppose that S consists of a sin-
gle vertex and that inS consists of k elements. The permutation of (S, l|ES

) by σ ∈ Sk

is the (C,M)-tree (S ·σ, l|ES) where S ·σ is the permutation of S by σ (see Definition 4.16).

We are now ready to state the result that we need to prove Theorem 2.9. For this we
first give the following definition of equivalence relation:

6.4. Definition. Let O and O′ be operads, and suppose that O′ only has unary opera-
tions. We say that two (O,O′1)-trees are equivalent if we can reach one from the other
by a finite sequence of moves of this type: for any such tree (T, `), we can replace any
(O,O′1)-subtree (S, `|ES) where S has exactly one vertex v labelled by f ·σ, with σ ∈ Sk and
f ∈ Ok, by the subtree obtained from (S, `|ES) by permuting (S, `|ES) by σ and substituting
the label of v by f .
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6.5. Theorem. Suppose O and O′ are operads and O′ has only unary operations. The
operations of the coproduct O+O′ are in bijection with equivalence classes of (O,O′1)-trees
such that no unary vertex is labelled by 1O and no internal edge is labelled by 1O′, where
the equivalence relation is as in Definition 6.4.

For example, if σ =

(
1 2 3
2 1 3

)
:

•

•

•s
`2

g

`5 `6

`1

f · σ

`3

`4

∼

•

•
`2 `1

`3

`4

`5 `6

f

gs •

Proof. We use Theorem 5.2, which describes any operation of O+O′ as an equivalence
class of U(O) + U(O′)-trees. There is an operad morphism

εO + εO′ : F (U(O) + U(O′)) //O +O′

sending U(O) +U(O′)-trees to operations of O+O′. This map is onto, and Theorem 5.2
says when two U(O) +U(O′)-trees are sent to the same operation of O+O′. We can use
this to describe operations of O +O′.

To begin, recall from Definition 4.5 that a U(O) +U(O′)-tree is an isomorphism class
of planar n-trees where each vertex with k children is labelled by:

• an operation in Ok if k > 1 or k = 0;

• either an operation in O′1 or in O1 if k = 1.

We can draw these trees in a simpler way as follows. If a vertex v has one child and is
labelled by ` ∈ O′1, we redraw it by using this operation ` to label the unique edge having
v as its source. For example, consider the following U(O) + U(O′)-tree, where we use
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f1, . . . , f5 to denote operations from O and `1, . . . , `4 to denote operations in O′1:

•f4 •1O′ •f1 •f2 • `1

•f3 •1O′ • `2

• f5

4 1 3 2 8 6 5 7

• `3

0

• `4

We redraw this as follows:

•f4 •
1
•f1 •f2 •

`1

•f3 •
1

•
`2

• f5

4 1 3 2 8 6 5 7

•
`3

0

•
`4

Note we are writing 1 for the operation 1O′ labelling the edges. This redrawing process
never loses information, so henceforth we draw U(O) +U(O′)-trees in this simplified way.

By Theorem 5.2, an operation in O+O′ is an equivalence class of U(O)+U(O′)-trees.
In terms of our simplified style of drawing these trees, the equivalence relation is generated
by the following moves:

1. Suppose a subtree consists of a vertex v labelled by f ∈ Ok with children e1, . . . ek,
with each s(ei) having ni children of its own, and labelled by fi ∈ Oni , and suppose
that the edges e1, . . . , ek are either not labelled or labelled by 1. Then we can replace
this subtree by the corolla with n1 + · · ·+nk leaves and it unique vertex labelled by
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f ◦ (f1, . . . , fk), and edge labels (if any) those of the original tree. For example:

•f1 •f2 •f3

• f1
 

• f ◦ (f1, f2, f3)

(This picture does not show the whole tree, only the subtree being modified. The
sources of the edges at top can be vertices or leaves; the target of the edge at bottom
can be a vertex or the root.)

2. Suppose the edges e : u // v, e′ : v // w are labelled by operations `, `′ ∈ O′1, and
suppose that v is the target of just one edge, namely e. Then we can remove the
vertex v, replace the edges e and e′ by a single edge f : u // w, and label this new
edge by ` ◦ `′. In pictures:

`
•

•
`′

•

 ` ◦ `′

(The source of the edge at top left can be a vertex or leaf; the target of the edge at
bottom left can only be a vertex, not the root.)

3. Suppose a vertex v is labelled by 1O. Then we can remove the label of the vertex:

1O• • 

(The source of the edge at top can be a vertex or leaf; the target can be a vertex or
the root.)

4. Suppose a vertex v is unlabelled and is the target of just one edge e : u // v and
suppose there is an edge e′ : v // 0. Suppose e is labelled by the identity 1. Then
we can remove the vertex v and replace the edges e : u // v, e′ : v // 0 by a single
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edge f : u // 0, which is unlabelled:

1
•

0 0

 

(The source of the edge at right can be a vertex or leaf; the target must be the
root.)

5. We can add the label 1 to any unlabelled edge not incident to the root:

•
 

•
1

(The source of this edge can be a vertex or leaf; the target must be a vertex, not
the root.)

6. Suppose a vertex v is labelled by f · σ, where f ∈ Ok and σ ∈ Sk. Then we can
permute its children by σ−1 and substitute the label of v by f :

•f · σ

T1 Tk· · ·
 

• f

Tσ−1(1) Tσ−1(k)
· · ·

(The target of the bottom edge can be a vertex or root. Here T1, . . . Tk denote the
‘full subtrees ending in v’, that is, Ti is the subtree with edge incident to the root
the i-th child of v and inTi consisting only of leaves and termini of the original tree.)

Move (1) here corresponds to item (1) of Theorem 5.2. Move (2) corresponds to item (4)
of that theorem. Moves (3) corresponds to item (2) of that theorem. Moves (4) and (5)
correspond to item (5). Move (6) corresponds to item (3). Item (6) does not arise, since
O′ has only unary operations.

If we repeatedly apply moves (1)–(5) in the forward direction, this process eventually
terminates. The resulting U(O)+U(O′)-tree is independent of which order we apply these
moves, thanks to Newman’s Lemma [Newman], also called the Diamond Lemma, which
says that a terminating abstract rewriting system is confluent if it is locally confluent.
We call a U(O) + U(O′)-tree reduced if it is the result of this process.
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In our example, we obtain this reduced U(O) + U(O′)-tree:

`1 ◦ `21 1 1 1 1 1 1

•f3 ◦ (f4, f1)

•f5 ◦ f2

4 1 3 2 8 6 5 7

•
`3

0

`4

Here is an example of the reduction process that illustrates subtleties concerning the edge
incident to the root:

•f

•
1

11 2 3

0

(4)
 •f

•
1

1 2 3

0

(3)
 

1 1 1

•f

1 2 3

0

1 1 1

In a reduced U(O) + U(O′)-tree, the edge incident to the root is unlabelled. Edges
incident to leaves are labelled by operations in O′1. Edges incident to neither leaves nor
the root are labelled by operations in O′1 different from the identity. So, to turn our
reduced U(O) +U(O′)-tree into a (O,O′1)-labelled tree, we apply the following rule. Only
one of these two cases will apply:

• Suppose v is the target of a single edge e : u // v and there is an edge e′ : v // 0.
Suppose e is labelled by the operation ` 6= 1O′ in O′1. Then we remove the vertex v
and replace the edges e and e′ by a single edge f : u // 0, which is labelled by `:

`
• `

0 0
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• Suppose v is the target of more than one edge and there is an edge e : v // 0. Then
label the edge e by 1 (that is, 1O′). For example:

• •

0

1

0

 

The result is no longer a U(O) +U(O′)-tree since now every edge, even the edge incident
to the root, is labelled with an operation of O′.

In our running example, this rule produces the following (O,O′1)-tree:

`1 ◦ `21111111

•f3 ◦ (f4, f1)

•f5 ◦ f2

4 1 3 2 8 6 5 7

`3

0

`4

One can check that this rule always gives a (O,O′1)-tree with no internal edge labelled
by 1 (that is, 1O′) and no unary vertex labelled by 1O, and that it loses no information.
Furthermore, it is easy to see that move (6) generates the equivalence relation in the
statement of the lemma. Finally, one can check that every such equivalence class of
(O,O′1)-trees arises from a U(O) + U(O′)-tree via this process. Thus, we obtain the
desired result.

We are now finally able to prove Theorem 2.9, which says that n-ary operations in
the phylogenetic operad are in one-to-one correspondence with phylogenetic n-trees. The
statement of this theorem is somewhat inadequate, because we really have a specific
bijection in mind.

Proof. By Lemma 6.5 we know that there is a bijection between operations of Com +
[0,∞) and equivalence classes of (Com, [0,∞))-trees without unary vertices and such that
no internal edge is labelled by 0. Since the symmetric group action on Com is trivial,
each such equivalence class [T ] consists of all the trees obtained from T by varying its
planar structure. Hence the bijection of Lemma 6.5 sends operations of Com + [0,∞) to
phylogenetic trees.
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7. The W construction and the phylogenetic operad

The W construction was introduced by Boardman and Vogt [BV] to study homotopy
invariant algebraic structures on topological spaces. In their construction, Boardman and
Vogt used elements of [0, 1] to label edges of trees, using the fact that this space becomes
a commutative topological monoid under the operation

x ? y = x+ y − xy

However, this topological monoid is isomorphic to the monoid [0,∞] introduced in the
previous section:

7.1. Lemma. There is an isomorphism ψ : ([0,∞],+) // ([0, 1], ?).

Proof. We use an argument due to Trimble [Trimble]. Note that

x ? y = 1− (1− x)(1− y).

Thus, there is an isomorphism of topological monoids

φ : ([0, 1], ?) // ([0, 1], ·)
x 7→ 1− x.

Further, the topological monoid ([0, 1], ·) is isomorphic to ([0,∞],+) via the map

([0, 1], ·) // ([0,∞],+)
x 7→ − lnx.

So, we can freely adapt Boardman and Vogt’s original construction by using elements
of [0,∞] instead of [0, 1]. For this, we first recall the definition of O-trees, which we
introduced in Section 4. Given two planar n-trees with k-ary vertices labelled by k-ary
operations of O, we say that they are isomorphic if there is an isomorphism of their
underlying planar n-trees such that the labelling of each vertex in the first tree equals the
labelling of the corresponding vertex in the second. Then an O-n-tree is an isomorphism
class of planar n-trees with k-ary vertices labelled by k-ary operations of O.

Given an operad O, we define a new operad W (O), where for any natural number
n = 0, 1, 2, . . . an element of W (O)n is an equivalence class of pairs (T, l), where

1. T is an O-n-tree

2. a length map ` : E → [0,∞] such that external edges are mapped to ∞. For any
e ∈ E we call l(e) the length of e.

The equivalence relation on these pairs is generated by the following moves. For any pair
(T, l) in W (O)n:
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1. any subtree of T consisting of one vertex labelled by 1O ∈ O1 together with the two
adjacent edges labelled by `1 and `2 can be replaced by an edge labelled by `1 + `2:

`1

• 1O
`2

∼ `1 + `2

2. any subtree S of T formed by a vertex v in T of arity r labelled by f ·σ, where σ ∈ Sr
and f ∈ Or, can be substituted with the subtree obtained from S by permuting S
by σ and substituting the label of v by f :

T1
. . . Tr

• f · σ
∼

Tσ−1(1) . . . Tσ−1(r)

• f

3. any edge of length 0 may be shrunk away by composing the labels of its adjacent
vertices using the composition in O.

The space W (O)n inherits a topology from the spaces O0, . . . , On and from [0,∞]. Let
(T, `) be a pair of an O-n-tree and a length map, and denote the underlying isomorphism
class of planar n-trees of T by λ. Given λ, (T, `) is uniquely determined by the labels
assigned to edges and vertices of λ, so we can see it as a point of the set∏

j

O
mj
j × [0,∞]r

where mj is the number of vertices of λ having arity j and r is the number of internal
edges of λ. We endow this set with the product topology. Taking the disjoint union
over all isomorphism classes of planar n-trees and taking the quotient of the resulting
space by the above equivalence relations, an element of W (O)n is a point in the following
topological space: (∐

λ

∏
jλ
O
mjλ
jλ
× [0,∞]rλ

)
/∼

where we take the topology to be the quotient topology. In [BV] the space W (O)n is
described as (∐

λ

∏
jλ
O
mjλ
jλ
× [0,∞]rλ × Sn

)
/∼

where Sn is endowed with the discrete topology. This is because they consider λ as being
the underlying graph of a tree, while for us λ is the underlying isomorphism class of planar
n-trees, and we define an n-tree to have leaves labelled by 1, . . . , n.

Given twoO-trees with length maps (T, `) and (T ′, `′), we define their partial composite
(T, `) ◦i (T ′, `′) as the partial composite T ◦i T ′ of the underlying O-trees, together with
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the length function that sends every edge to its image under l or l′ and the new internal
edge that arises from the grafting to ∞. The unit for this composition is given by the
1-tree without vertices and unique edge labelled by ∞. Similarly, for any O-n-tree T and
σ ∈ Sn we define (T, l) · σ = (T · σ, l). These operations are easily seen to be well-defined
on equivalence classes and to be continuous, and thus endow W (O) with the structure of
a topological operad.

The operad W (O) is closely related to the coproduct O + [0,∞]. To see this, recall
that by Lemma 6.5 operations of O + [0,∞] can be identified with equivalence classes
of O-trees with no unary vertex labelled by 1O, and edges labelled by numbers in [0,∞]
such that internal edges are not labelled by zero, where the equivalence relation is given
by the symmetric group action on operations of O.

Thus an operation of O + [0,∞] is in W (O) if and only if it is an equivalence class
of an O-n-tree with all external edges labelled by ∞. From this we see that the unit of
O+[0,∞] is not in W (O), so W (O) fails to be a suboperad of O+[0,∞]. However, W (O)
is a non-unital suboperad of O + [0,∞], and its unit is an idempotent of O + [0,∞]:

7.2. Theorem. The inclusions ιn : W (O)n // O + [0,∞]n induce a morphism of non-
unital topological operads. Moreover, the spaces W (O)n and O + [0,∞]n are homotopy
equivalent if n 6= 1.

Proof. By the previous discussion, and the remarks at the end of Section 5, it is easy to
see that the inclusion is continuous. The contracting homotopy

F : O + [0,∞]n × [0, 1] //O + [0,∞]n

is defined as follows:
((T, l), t) 7→ (T, l̂t)

where

l̂t : E // [0,∞] : e 7→

{
l(e), ifeis an internal edge

α((1− t)α−1(l(e)), otherwise.

with α : ([0, 1], ?) // ([0,∞],+) the inverse to the isomorphism of Lemma 7.1.

On the other hand, the operads O+[0,∞] and O+[0,∞) are closely related to Com+.
To see how, we first need to choose a convenient category of topological spaces, such as
the category of compactly generated Hausdorff spaces [Strickland]. Note that the spaces
Phyln are metric spaces and are thus compactly generated Hausdorff spaces. We consider
the model structure on this category in which weak equivalences are weak homotopy
equivalences and fibrations are Serre fibrations. This model structure induces a model
structure on the category of operads in which weak equivalences and fibrations are given
by pointwise weak equivalences and fibrations, respectively [BM1]. Berger and Moerdijk
proved that for this model structure, if O is a Σ-cofibrant and well-pointed operad, W (O)
gives a cofibrant resolution of O [BM2, Thm. 5.1] and further they showed that in this
case algebras over W (O) are invariant under homotopy in the sense of Boardman and
Vogt [BM1, Thm. 3.5]. So, we make the following definition:
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7.3. Definition. A morphism of topological operads f : O //O′ is a weak equivalence
if for every n the map fn is a weak homotopy equivalence. We say that f is a homotopy
equivalence if there exists g : O′ //O such that gn is a homotopy inverse to fn for every
n.

Now, since the intervals [0,∞] and [0,∞) are contractible, we have:

7.4. Proposition. Suppose that O is an operad in which every space On is contractible.
Then O + [0,∞] and O + [0,∞) are both homotopy equivalent to the terminal operad,
Com+.

Proof. First note that the underlying topological spaces of both operads O+ [0,∞] and
O+[0,∞) are contractible: the constant map taking O+[0,∞)n, respectively O+[0,∞]n,
to the one-point space consisting of the equivalence class of the n-corolla with all edges
labelled by 0 exhibit this one-point space as a deformation retract of O + [0,∞)n and
O + [0,∞]n. Any operad with a one-point space in every arity is canonically isomorphic
to the operad Com+, and furthermore the constant maps are easily seen to extend to
morphisms of operads. Therefore, both operads are homotopy equivalent to Com+.

We thus have the following commutative diagram:

O + [0,∞) O

O + [0,∞]

α

β

in which the morphisms α and β are weak equivalences, and hence so is the inclusion of
O + [0,∞) in O + [0,∞], by the 2-out-of-3 property.

In conclusion, suppose we have a Markov process on a finite set X. We saw in Theorem
3.1 that there is a unique way to extend this to a coalgebra of the phylogenetic operad.
In Theorem 3.3 we saw that this can be further extended to a coalgebra of Com + [0,∞].
We thus have the following commutative diagram:

Com + [0,∞) = Phyl Coend(RX)

W (Com) Com + [0,∞]

Com

ι

α

β

Except for the non-unital inclusion ι, all the arrows are operad homomorphisms, and those
in the two triangles at left are weak equivalences. For further explorations of operads
related to the phylogenetic operad, see the work of Devadoss and Morava [DM1, DM2].
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A. The topology on Phyln

Here we provide a proof of Theorem 2.11, in which we related the topology on the space of
n-ary operations of the phylogenetic operad with the topology on the space Tn of metric
n-trees introduced in [BHV]. We restate this theorem here:

A.1. Theorem. For every n 6= 1 there is a homeomorphism

Phyln
∼= Tn × [0,∞)n+1,

and Phyl1
∼= T1 × [0,∞).

To prove this, we give an explicit description of the topology on Phyln in Lemma A.3.
We first need to introduce some notation:

A.2. Definition. Let T be any isomorphism class of n-trees with no vertices of arity 0
or 1. We define UT as follows:

1. If T is an isomorphism class of 1-trees, we let UT be an open subset of [0,∞).

2. If T is an isomorphism class of binary n-trees, we have

UT = U1 × · · · × Un−2 × V1 × · · · × Vn+1

with Ui an open subset of (0,∞) for i = 1, . . . , n−2 and Vj an open subset of [0,∞)
for j = 1, . . . , n+ 1.

3. Otherwise, T is an isomorphism class of n-trees with k < n − 2 internal edges.
Consider the binary n-trees such that by contracting some of their internal edges
e1, . . . , em we obtain T , where m = n− 2− k; denote by T̃1, . . . , T̃a the isomorphism
classes of such binary trees. We then define

UT = UT0 t UT̃1 t · · · t UT̃a .

Here
UT0 = U1 × · · · × Uk × V1 × · · · × Vn+1

where Ui is an open subset of (0,∞) for i = 1, . . . , k and Vj is an open subset of
[0,∞) for j = 1, . . . , n+ 1. Furthermore, for any l = 1, . . . , a,

UT̃l = UT0 × Ue1 × · · · × Uem
where each set Uei is of the form (0, ri) for some ri in (0,∞) for i = 1, . . . ,m.

A.3. Lemma. The bijection ψ : Com+[0,∞)n //Phyln of Theorem 2.9 endows the space
of phylogenetic n-trees with the topology whose basis is given by sets of the form⊔

T

UT

where T ranges over isomorphism classes of n-trees with no unary vertices, and the sets
UT are as in Definition A.2.
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Proof. First note that a basis for the topology on F (Com + [0,∞))n is given by sets of
the form ⊔

T

WT

where T ranges over isomorphism classes of planar n-trees, and for T having k unary
vertices and mj vertices of arity j ≥ 2, WT is an open set in

k⊔
i=0

(
[0,∞)i × Comk−i

1

)
×
∏
j

Com
mj
j .

The sets of the form
⊔
T UT as defined in Definition A.2 are easily seen to satisfy the

properties of a basis.
First we show that these sets are open in the quotient topology, namely that for any

such set U =
⊔
T UT its preimage ε−1 ◦ ψ−1(U) is open in F (Com + [0,∞))n, where we

write ε instead of εCom + ε[0,∞). Let x ∈ ε−1 ◦ ψ−1(U). Then there exists z ∈ U such
that x ∈ ε−1 ◦ ψ−1(z). Let `1, . . . , `k for (k ≤ n− 2) be the labels of the internal edges of
z, and h1, . . . , hn+1 the labels of the external edges. To describe the elements of the set
ε−1 ◦ψ−1(z) we introduce the following notation: let z̃ ∈ ε−1 ◦ψ−1(z) be the unique (up to
non-planar isomorphism) U(Com)+U([0,∞))-tree that is obtained from z by substituting
every edge labelled by ` with the 1-corolla with its unique vertex labelled by ` and choosing
any planar structure for z̃. Recall that we denote by fj the unique operation of Comj,
for j any natural number. Now we can obtain all elements of ε−1 ◦ψ−1(z) from z̃ through
the following moves:

(a) every subtree of z̃ consisting of a 2-ary vertex v labelled by f2 is substituted by a
subtree with one vertex of arity 2 labelled by f2 and uv ≥ 0 unary vertices labelled
by f1

(b) every subtree of z̃ consisting of a j-ary vertex v labelled by fj ( for j > 2) is
substituted by a subtree with rv ≥ 1 vertices of arity 1 ≤ j1, . . . , jrv ≤ j labelled
by fj1 , . . . , fjrv with

∑rv
i=1(ji − 1) + 1 = j and mv ≥ 0 unary vertices labelled by

0 ∈ [0,∞)

(c) every subtree of z̃ consisting of a unary vertex v labelled by ` ∈ [0,∞) is substi-
tuted by a subtree with d` ≥ 1 unary vertices labelled by `1, . . . , `d` ∈ [0,∞) with∑d`

i=1 `i = ` and mv ≥ 0 unary vertices labelled by the identity of Com

(d) choose a planar structure for the resulting tree.

If y is a U(Com) + U([0,∞))-tree that was obtained from z̃ through moves (a)–(d),
then we also say that its underlying isomorphism class of planar trees H was obtained
from z̃ through moves (a)–(d). Similarly, if T is the underlying isomorphism class of trees

of z we denote by T̃ the underlying isomorphism class of planar trees of z̃, and we say
that H is obtained from T̃ through moves (a)–(d).
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We next need to introduce some notation. For n ≥ 1 let φn be the continuous map

φn : [0,∞)n+1 // [0,∞)
(x1, . . . , xn+1) 7→ x1 + · · ·+ xn+1.

We also set φ0 be the identity on [0,∞). If W is open, then φ−1
n (W ) is an open subset of

[0,∞)n+1.
We now consider three cases:

1. z ∈ UT , with UT as in item (1) of Definition A.2.

2. z ∈ UT , with UT as in item (2) of Definition A.2.

3. z ∈ UT , with UT as in item (3) of Definition A.2.

In the first case we have x ∈ φ−1
n (UT ), with UT an open subset of [0,∞), so φ−1

n (UT ) is
open in F (Com + [0,∞))1.

In the second case, z has n− 2 internal edges. We then have

x ∈
⊔
H

n−2∏
p=1

φ−1
d`p

(Up)×
n+1∏
q=1

φ−1
dhq

(Vq)×
n−1∏
r=1

(Com2 × Com
uvr
1 ) .

Here H ranges over isomorphism classes of planar n-trees obtained from z̃ by moves (a),
(b), and (d). Thus, the disjoint union is taken over all numbers d`1 , . . . , d`n−2 , dh1 , . . . dhn+1 ≥
0 and uv1 , . . . , uvn−1 ≥ 0 for v1, . . . , vn−1 the 2-ary vertices of z. This set is open in
F (Com + [0,∞))n and is contained in ε−1 ◦ ψ−1(UT ) and therefore in ε−1 ◦ ψ−1(U).

For the third case, we have that z has k < n− 2 internal edges and k+ 1 vertices. Let
b be the number of 2-ary vertices of z and c = k + 1 − b the number of vertices of arity
greater than two. We then have:

x ∈
⊔
H

k∏
p=1

φ−1
d`p

(Up)×
n+1∏
q=1

φ−1
dhq

(Vq)×
b∏

r=1

(Com2 × Com
uvr
1 )×

c∏
i=1

(
φ−1
mwi

([0, δwi))×
rwi∏
s=1

Comjis

)

Here H ranges over isomorphism classes of planar n-trees obtained from z̃ by moves (a)–
(d). Thus, the disjoint union is taken over all numbers d`1 , . . . , d`k , dh1 , . . . dhn+1 ≥ 0 and
uv1 , . . . , uvb ≥ 0 for v1, . . . , vb the 2-ary vertices of z, and further for i = 1, . . . , c and wi
a vertex of z with arity 2 < jwi the numbers rwi ≥ 1, mwi ≥ 0 and 1 ≤ ji1 , . . . , jirwi ≤
jwi such that

∑
s(jis − 1) + 1 = jwi . This is an open set in F (Com + [0,∞))n, and

furthermore by choosing the numbers δwi appropriately, one has that this set is contained
in ε−1 ◦ ψ−1(UT ) ⊆ ε−1 ◦ ψ−1(U). Therefore the sets of the form

⊔
T UT as defined in

Definition A.2 are open in the quotient topology.



1448 JOHN C. BAEZ AND NINA OTTER

It remains to show that the topology induced by these sets is the quotient topology.
So we have to show that if ε−1 ◦ ψ−1(U) is open in F (Com + [0,∞))n, then U is open in
Phyln. We prove this by contradiction, namely we show that if U is not open in Phyln,
then ε−1 ◦ ψ−1(U) is not open in F (Com + [0,∞))n. So suppose that U ⊆ Phyln is not
open. First note that if T is an isomorphism class of n-trees with k internal edges and
mj vertices of arity j, then the phylogenetic n-trees whose underlying isomorphism class
of n-trees is T are points in this space:

UT = (0,∞)k × [0,∞)n+1 ×
∏
j

Com
mj
j .

Thus we can write Phyln as the space

Phyln =
⊔
T

UT

where T ranges over isomorphism classes of n-trees, and we can write U as

U =
⊔
T

(U ∩ UT ).

Therefore for at least one T the set U ∩ UT is not open. Since the Comj are one-point
sets, we must have that

U ∩ UT =
⋃
i

Vi

with
Vi = Vi1 × · · · × Vik × Ṽi1 × · · · × Ṽin+1 ×

∏
j

Com
mj
j

where Vis ⊆ (0,∞) for s = 1, . . . , k and Ṽit ⊆ [0,∞) for t = 1, . . . , n+ 1, and at least one

of the Vis or Ṽit is not open. Furthermore, supposing that k = n− 2, we have

ε−1 ◦ ψ−1(U ∩ UT ) =
⋃
i

ε−1 ◦ ψ−1(Vi)

=
⋃
i

⊔
H

φ−1
d1

(Vi1)× · · · × φ−1
dk

(Vik)× φ−1
dk+1

(Ṽi1)× · · · × φ−1
dk+n+1

(Ṽin+1)

×
n−1∏
r=1

Com2 × Com
uvr
1 .

Here H ranges over isomorphism classes of planar n-trees obtained from T̃ through moves
(a), (b) and (d). Thus, the coproduct is taken over all numbers d1, . . . , dk+n+1 ≥ 0 and
uv1 , . . . , uvn−1 ≥ 0 for v1, . . . , vn−1 the 2-ary vertices of T . The case in which k < n− 2 is

similar. Now, suppose that any of the Vis or Ṽit is not open. Then for ds = 0 and dt = 0
the set φ−ds(Vis) or φ−dt(Ṽit) is not open, and so ε−1 ◦ψ−1(U ∩UT ) is not open, and hence
neither is ε−1 ◦ ψ−1(U). This completes the proof.
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Proof Proof of Theorem A.1. The claim is valid for n = 0, since there are no
metric 0-trees, nor any phylogenetic 0-trees. A phylogenetic 1-tree must have just one
edge, labelled by a number in [0,∞), while the unique metric 0-tree has its one edge
labelled by zero. Thus there is a bijection between Phyl1 and T1 × [0,∞), and by the
explicit description of the topology on Phyl1 in Lemma A.3 it follows that this bijection
is a homeomorphism.

For n > 1 a phylogenetic n-tree gives a metric n-tree together with an (n + 1)-tuple
of lengths in [0,∞), namely the lengths labelling the external edges of the phylogenetic
tree. Conversely, a metric n-tree together with an (n+ 1)-tuple of lengths in [0,∞) gives
a phylogenetic tree with these lengths labelling its external edges. We thus have a specific
bijection between operations of Phyln and elements of Tn × [0,∞)n+1. We denote this
bijection by

f : Phyln //Tn × [0,∞)n+1.

We now show that this assignment is a homeomorphism. By Lemma A.3 we know
that a basis for the topology on the set of phylogenetic n-trees is given by sets of the
form

⊔
T UT where T is an isomorphism class of n-trees with no unary vertices and UT is

described by item (2) or (3) in Definition A.2. On the other hand, a basis for the topology
on Tn is given by the balls B(x, ε) = {y ∈ Tn|d(x, y) < ε} for any ε > 0 and any x ∈ Tn.

We first show that the bijection f : Phyln // Tn × [0,∞)n+1 is continuous. Let B ⊆
Tn × [0,∞)n+1 be a basic open set. Then B is of the form W × V with W open in Tn

and V open in [0,∞)n+1. Let x ∈ W and y ∈ V . Then there exists a ball B(x, ε) such
that x ∈ B(x, ε) ⊆ U , and an open rectangle ry such that y ∈ ry ⊆ V .

First, suppose that x lies in the interior of an (n−2)-dimensional orthant. The orthant
corresponds to the isomorphism class of some binary n-tree T . Let `1, . . . , `n−2 be the
labels of the internal edges of x. Then for δ small enough, the set

R = (`1 − δ, `1 + δ)× · · · × (`n−2 − δ, `n−2 + δ)× ry

is such that
f−1((x, y)) ∈ {T} ×R

⊆ f−1(B(x, ε)× ry)
⊆ f−1(B)

and {T} ×R is a basic open set of Phyln satisfying item (2) of Definition A.2.
Now suppose that x lies on the boundary of one or more (n−2)-dimensional orthants.

Then this boundary corresponds to the isomorphism class of an n-tree T with k internal
edges. Let `1, . . . , `k denote the labels of the internal edges of x, and let T̃1, . . . , T̃a be
the isomorphism classes of binary n-trees corresponding to the a neighboring (n − 2)-
dimensional orthants.

Let R denote the open rectangle

(`1 − δ, `1 + δ)× · · · × (`k − δ, `k + δ)× ry.
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Then for δ small enough the set

Q = ({T} ×R) ∪
a⋃
i=1

{T̃i} ×R× (0, δ)× · · · × (0, δ)︸ ︷︷ ︸
n−2−k times

 .

has
f−1((x, y)) ∈ Q

⊆ f−1(B(x, ε)× ry)
⊆ f−1(B).

Furthermore, Q is a basic open set of Phyln satisfying item (3) of Definition A.2. Therefore
f is continuous.

It remains to show that f is open. For this, let U ⊆ Phyln be an open set, and let
z ∈ U , and (x, y) = f(z) with x ∈ Tn and y ∈ [0,∞)n+1. First suppose that z is binary.
Let `1, . . . , `n−2 denote the labels of the internal edges of z, and h1, . . . , hn+1 the labels
of the external edges. For all i = 1, . . . , n + 1 we set Vi = (hi − δ, hi + δ) if hi 6= 0 and
Vi = [0, δ) otherwise. Then the set

f−1((x, y)) ∈ {T} ×R
⊆ f−1(B(x, ε)× ry)
⊆ f−1(B)

is a basic open set of Phyln which is a neighborhood of z and, for δ small enough, contained
in U . Thus we have

f(z) ∈ B(x, δ
2
)× V1 × · · · × Vn+1

⊆ f(R)
⊆ f(U).

Now suppose that z is not binary. That is, suppose the underlying isomorphism class T
of n-trees of z does not contain binary trees. Let T̃1, . . . , T̃a be the isomorphism classes
of binary n-trees corresponding to T (as defined in Definition A.2). Let `1, . . . , `k denote
the labels of the internal edges of z, and h1, . . . , hn+1 the labels of the external edges.
Similarly as before, we define Vi = (hi − δ, hi + δ) if hi 6= 0 and Vi = [0, δ) otherwise, for
all i = 1, . . . , n+ 1. Denote by R the open rectangle

(`1 − δ, `1 + δ)× · · · × (`k − δ, `k + δ)× V1 × · · · × Vn+1.

Then the set

Q = {T} ×R ∪
a⋃
i=1

{T̃i} ×R× (0, δ)× · · · × (0, δ)︸ ︷︷ ︸
n−2−k times


is a basic open set in Phyln which is a neighborhood of z and, for δ small enough, contained
in U . Finally, we have

f(z) ∈ B(x, δ
2
)× V1 × · · · × Vn+1

⊆ f(Q)
⊆ f(U).
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Therefore f is open. This completes the proof of Theorem 2.11.
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