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ACTION REPRESENTABILITY VIA SPANS AND PREFIBRATIONS

J. R. A. GRAY

Abstract. We give several reformulations of action representability of a category as
well as action representability of its category of morphisms. In particular we show that
for a semi-abelian category C, its category of morphisms is action representable if and
only if the functor from the category of split extensions in C to C, sending a split
extension to its kernel, is a prefibration. To obtain these reformulations we show that
certain conditions are equivalent for right regular spans of categories.

1. Introduction

The aim of this paper is to study action representability, in the sense of F. Borceux, G.
Janelidze and G. M. Kelly [2], and to explain that many of its aspects can be understood
as special cases of general facts about spans of categories. Let us recall the necessary
background to explain this. For a pointed category C, a split extension (of B with kernel
X) is a diagram in C

X
κ // A

α // B
β
oo

where κ is the kernel of α, and αβ = 1B. A morphism of split extensions is a diagram in
C

X
κ //

u
��

A
α //

v
��

B
β

oo

w
��

X ′ κ′ // A′
α′ // B′
β′
oo

(1)

where the top and bottom rows are split extensions (the domain and codomain respec-
tively), and vκ = κ′u, vβ = β′w and wα = α′v. Let us denote by SplExt(C) the category
of split extensions in C, and by K and P the functors sending a split extension to its
kernel and codomain, respectively. These data together form a span

C SplExt(C)Poo K // C. (2)
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Note that when the category C has finite limits the category SplExt(C) is equivalent to
Pt(C), the category of split epimorphism in C, that is, the category defined in the same
way as SplExt(C) except omitting all kernels from the diagrams involved. The functor
π : Pt(C) → C sending a split epimorphism to its codomain was called the fibration of
points by D. Bourn in [5], who first noticed its importance in categorical algebra. The
composite of the forgetful functor SplExt(C)→ Pt(C) (which is part of the equivalence
of categories mentioned above) and π gives the functor P . Recall that a finitely complete
category is protomodular [5], when the change of base functors of the fibration of points
reflect isomorphisms. Recall also that a pointed finitely complete category is protomodular
if and only if the split short five lemma holds. That is, when for each morphism of split
extensions of the form (1), if u and w are isomorphisms, then v is as well. Furthermore,
a pointed protomodular category is semi-abelian, in the sense of G. Janelidze, L. Marki
and W. Tholen [12], when it is (Barr-)exact [1], and has finite colimits.

For a pointed protomodular category C and for objectsX and B in C, let SplExt(B,X)
be the set of split extensions of B with kernel X quotiented by the equivalence relation,
under which, two split extensions are equivalent when there is a morphism between them
which is identity on both X and B. For a fixed object X, these sets determine the object
map of a functor SplExt(−, X) : Cop → Set, defined on morphisms by pulling back. It
turns out that for certain categories each of these functors is representable. In particular
this is the case for the category of groups and for the category of Lie algebras over an
arbitrary commutative ring (see [2, 3]). The representability of these functors was shown
in [2] to be equivalent to the existence of terminal objects in the fibres of K, which are
called generic split extensions. In [8] D. Bourn and G. Janelidze showed, under conditions
which hold in any semi-abelian category, that the change of base functors between the
fibres of the fibration of points are monadic. This leads to an alternative description of
split extensions as object actions, and hence to a functor Act(−, X) : Cop → Set which
is isomorphic to SplExt(−, X) : Cop → Set (see [2, 3]). Accordingly, a semi-abelian
category C is called action representable [2, 3], when for each object X in C the functor
Act(−, X) : Cop → Set is representable.

We can think of (2) as special case of a span of categories S =

A SPoo Q // B (3)

satisfying the condition:

(i) For each object S in S and each morphism f : A′ → A in A such that P (S) = A,
there exists a P -cartesian morphism s : S ′ → S in S such that P (s) = f and
Q(s) = 1Q(S).

The construction of SplExt is then a special case of the following construction. For objects
A in A and B in B, let

S(A,B) = {S ∈ S |P (S) = A and Q(S) = B}/ ∼
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where ∼ is the smallest equivalence relation such that S ∼ S ′ if there exists a morphism
s : S → S ′ with P (s) = 1A and Q(s) = 1B. For each morphism f : A′ → A in A,
it can be seen that, the condition (i) gives rise to a map S(A,B) → S(A′, B), which
sends the equivalence class [S] in S(A,B) to the equivalence class [S ′] in S(A′, B), where
s : S ′ → S is a P -cartesian morphism such that P (s) = f and Q(s) = 1B, obtained
from the condition (i). It is easy to check that these maps make S(−, B) into a functor
from Aop to Set. N. Yoneda [14] was the first to consider the condition (i) and called the
P -cartesian morphisms which it requires to exist translations. In fact he studied those
spans, which he called regular, satisfying the condition (i) together with a condition (i)∗

which is equivalent, for a span S, to requiring that the span

Bop SopQop
oo P op

// Aop (4)

also satisfies the condition (i). For a regular span S, for each object A in A, in an essential
dual way, one can construct a functor S(A,−) : B→ Set. The families of functors S(A,−)
and S(−, B) are compatible (in the sense of Proposition 1 Chapter II Section 3 of [13])
and hence determine a bifunctor S(−, ∗) : Aop×B→ Set. The construction of a bifunctor
S from a regular span S is also due to N. Yoneda and was used to study the functors
Ext(−, ∗), which can be obtained in this way from suitable spans of categories. Note
that G. Janelidze was the first to study spans satisfying the conditions (i) or (i)∗ alone,
and called them right and left regular, respectively (see [10]). In Section 3 we will see
that for a right regular span satisfying two additional conditions, the functor S(−, B)
is representable if and only if the fibre Q−1(B) has a terminal object. This essentially
recovers as a special case, the above mentioned result, that action representability is
equivalent to the existence of generic split extensions, and allows us to study action
representability by considering the functor K alone. In order to do so we will compare
various conditions on an abstract functor related to the existence of terminal objects in
its fibres (see Section 2).

In [9] the normalizer of a monomorphism f : A → B in a pointed category C was
introduced as a triple (N, n,m), where N is an object, n : A→ N is a normal monomor-
phism (i.e. the kernel of some morphism) and m : N → B is a monomorphism such that
mn = f , which is universal amongst such factorizations. The main result of [9] was that
for a semi-abelian category C the following conditions are equivalent:

(a) C is action representable and C has normalizers;

(b) The category of monomorphisms of C is action representable;

(c) The category of morphisms of C is action representable;

(d) For each finite category I the functor category CI is action representable.

In [7] a different definition of normalizer of a monomorphism, in an arbitrary category
C, was given, which agrees with the one from [9] as soon as C is a pointed exact proto-
modular category. For a pointed category with finite limits the existence of normalizers,
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in the sense of [7], was shown to be equivalent to the functor K being a prefibration on
monomorphisms.

The main purpose of this paper is to show that the conditions: (e) K is a prefibra-
tion, and (f) every morphism admits a construction generalizing that of normalizer, are
equivalent to the conditions (a) - (d) above, and to explain that the equivalence of (c),
(d) and (e) is a special case of a general fact about spans of categories (Theorem 3.5),
which we will obtain as a corollary of a fact about functors (Theorem 2.24).

2. Prefibrations and terminal objects in fibres

Throughout the paper we will denote by 2 the category with two objects 0 and 1 and
one non-identity morphism 0 → 1. As usual each functor F : C → X induces a functor
F 2 : C2 → X2 where C2 and X2 are the functor categories from 2 to C and X, respectively.
The category C2 can be identified with the category of morphisms in C and its objects will
be written as triples (A,B, f), where A and B are objects and f : A→ B is a morphism
in C. A morphism (A,B, f) → (A′, B′, f ′) in C2 will be written as a pair (u, v), where
u : A→ A′ and v : B → B′ are morphisms in C with f ′u = vf . By the codomain functor
from C2 to C we will mean the functor sending a morphism to its codomain, that is, the
functor sending (A,B, f) to B.

Throughout this section C and X denote categories and F : C→ X denotes a functor.
We compare the conditions:

(i) F is a prefibration;

(ii) The fibres of F have terminal objects;

(iii) The fibres of F 2 have terminal objects;

(iv) The fibres of F I for some finite category I have terminal objects.

Recall that a morphism f : A→ B in C is F -precartesian if for each morphism f ′ : A′ → B
such that F (f ′) = F (f) there exists a unique morphism u : A′ → A such that fu = f ′

and F (u) = 1F (A). Recall also that F is a prefibration when for each object B in C and
each morphism θ : X → F (B) there exists an F -precartesian lifting of θ to B, that is,
there is an F -precartesian morphism f : A → B such that F (f) = θ. Note that we will
write F−1(X) for the fibre of F above X, that is, the subcategory of C consisting of those
objects and morphisms which get mapped by F to X and 1X , respectively.

Some of the results below are folklore, however not having an appropriate reference
we will give full proofs.

The first part of this section is devoted to comparing (i), (ii) and (iii) above. In
particular a condition, weaker than (i), is given whose conjunction with (iii) is equivalent
to the conjunction of (i) and (ii). We begin by examining under what conditions a
prefibration has terminal objects in its fibres.

Essentially by definition we have:
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2.1. Lemma. For an object B in C, an object X in X, and a morphism θ : X → F (B)
in X, the functor F admits an F -precartesian lifting of θ : X → F (B) to B if and only
if the functor FB : (C ↓ B) → (X ↓ F (B)), which sends (A, f) to (F (A), F (f)), has a
terminal object in its fibre FB−1

(X, θ).

On the other hand we have:

2.2. Lemma. Suppose F preserves terminal objects and T is a terminal object in C. For
an object X in X there is an F -precartesian lifting of the morphism X → F (T ) to T if
and only if the fibre F−1(X) has a terminal object.

Proof. Since T is a terminal object in C and F preserves terminal objects it follows
that for each object X in X the first projection F T−1

(X,X → F (T )) → F−1(X) is an
isomorphism. The claim now follows by Lemma 2.1.

As an immediate corollary we obtain:

2.3. Proposition. Suppose C has a terminal object. If F preserves terminal objects and
is a prefibration, then the fibres of F have terminal objects.

2.4. Remark. Since F is a prefibration if and only if for each X in C the inclusion
F−1(X)→ (X ↓ F ) has a right adjoint, one obtains another simple proof of the previous
proposition by observing that under the above conditions (X ↓ F ) has a terminal object
and hence, since right adjoints preserve limits, so does F−1(X).

Next we show that if F is a prefibration and has terminal objects in its fibres, then
F 2 has terminal objects in its fibres. In addition we will also see that the existence of
terminal objects in the fibres of F 2 implies the existence of terminal objects in the fibres
of F .

Since for any category C the diagonal functor ∆ : C→ C2 has both a left and a right
adjoint, it follows that if C2 has a terminal object, then so does C, and the image of a
terminal object under ∆ is terminal in C2. As an immediate consequence we obtain:

2.5. Lemma. For each object X in X, the categories F 2−1
(X,X, 1X) and (F−1(X))2 are

the same and hence if (A,B, f) is a terminal object in F 2−1
(X,X, 1X), then f is an

isomorphism and A and B are terminal objects in the fibre F−1(X).

On the other hand we have:

2.6. Lemma. Let θ : X → Y be a morphism in X. For a morphism f : A→ B in C such
that F (f) = θ the following conditions are equivalent:

(a) F−1(Y ) has a terminal object and the triple (A,B, f) is a terminal object in
F 2−1

(X, Y, θ);

(b) B and (A,B, f) are terminal objects in F−1(Y ) and F 2−1
(X, Y, θ), respectively;

(c) B is a terminal object in F−1(Y ) and f is an F -precartesian morphism.
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Proof. Suppose that (A,B, f) and B̃ are terminal objects in F−1(X, Y, θ) and F−1(Y ),
respectively. It follows that there is a unique morphism u : B → B̃ in F−1(Y ) and
hence a unique morphism (s, t) : (A, B̃, uf) → (A,B, f) in F−1(X, Y, θ). However, this
means that ut : B̃ → B̃ and (s, tu) : (A,B, f)→ (A,B, f) are morphisms in F−1(Y ) and
F−1(X, Y, θ), respectively, and hence are both identity morphisms. This means that B is
isomorphic to B̃ in F−1(Y ) proving (a) implies (b).

Now, suppose that (A,B, f) and B are terminal objects in F 2−1
(X, Y, θ) and F−1(Y ),

respectively. If f ′ : A′ → B is a morphism in C such that F (f ′) = θ, then there exists
a unique morphism (p, q) : (A′, B, f ′) → (A,B, f) in F 2−1

(X, Y, θ). However q being a
morphism in F−1(Y ) is necessarily 1B and so f is F -precartesian, proving that (b)⇒(c).

To prove that (c)⇒(a), suppose f : A → B is F -precartesian morphism and B is a
terminal object in F−1(Y ). If (A′, B′, f ′) is an object in F 2−1

(X, Y, θ), then there exists
a unique morphism t : B′ → B in F−1(Y ). However this means that tf ′ : A′ → B is
mapped by F to θ and so there exists a unique morphism s : A′ → A such that F (s) = 1X
and fs = tf ′. It is easy to check that (s, t) is the unique morphism from (A′, B′, f ′) to
(A,B, f) in F 2−1

(X, Y, θ).

As easy consequences of Lemmas 2.5 and 2.6 we have:

2.7. Proposition. If F has terminal objects in its fibres and is a prefibration, then F 2

has terminal objects in its fibres.

2.8. Proposition. If F 2 has terminal objects in its fibres, then F has terminal objects in
its fibres and the codomain functor sends terminal objects in the fibres of F 2 to terminal
objects in the fibres of F .

Combining Proposition 2.3 and 2.7 we obtain:

2.9. Proposition. Suppose that F preserves terminal objects and C has a terminal ob-
ject. If F is a prefibration, then F 2 has terminal objects in its fibres.

It follows from Lemma 2.6 that when F 2 has terminal objects in its fibres, certain
F -precartesian liftings exist. However, in general one cannot obtain all liftings from this
condition alone. For instance, if C is the (partially) ordered set with elements a, a1, a2, b
and b1 and order generated by ai ≤ a ≤ b and ai ≤ b1 ≤ b, considered as a category,
X = 2, and F is the functor with F (a1) = F (a2) = F (a) = 0 and F (b) = F (b1) = 1, then
F 2 has terminal objects in its fibres, but F is not a prefibration.

Next we introduce a condition on F , which is weaker than being a prefibration, under
which we prove that if F 2 has terminal objects in its fibres, then F is a prefibration.

Let D : G → C be a diagram (i.e. a morphism of graphs from a graph G to the
underlying graph of C) and let (X,φ) be a cone over FD. We call a cone (A, γ) over D an
F -precartesian lifting of (X,φ) to D if F (A, γ) = (X,φ) (i.e. F (A) = X and F (γx) = φx
for each x in G0), and for each cone (A′, γ′) over D such that F (A′, γ′) = (X,φ), there
exists a unique cone morphism u : (A′, γ′) → (A, γ) such that F (u) = 1X . If (X,φ) is
a limit of FD, then we say that F weakly creates the limit (X,φ) if there is cone (A, γ)
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which is the limit of D and F (A, γ) = (X,φ). Note that F weakly creates the limit (X,φ)
as soon as D has a limit in C, F preserves limits, and F is an isofibration.

2.10. Remark. Let D : G→ C be a diagram, and let (X,φ) be a cone over FD.

(a) If (X,φ) is a limit of FD, then the existence of an F -precartesian lifting of (X,φ)
to D follows from F weakly creating the limit of (X,φ). In fact F weakly creates
the limit of (X,φ) if and only if (X,φ) admits an F -cartesian lifting to D i.e. there
exist a cone (A, γ) over D such that F (A, γ) = (X,φ) and for each cone (A′, γ′) over
D together with a cone morphism v : F (A′, γ′) → (X,φ) there exist a unique cone
morphism u : (A′, γ′)→ (A, γ) such that F (u) = v;

(b) If G is a graph with one object x and no morphisms, then the existence of an F -
precartesian lifting of (X,φ) to D is essentially the same as an F -precartesian lifting
of φx : X → F (D(x)) to D(x);

(c) If G is the empty graph, then the existence of an F -precartesian lifting of (X,φ) to D
is essentially the same as the existence of a terminal object in the fibre of F−1(X);

(d) If F is a topological functor, then (X,φ) admits an F -cartesian lifting to D. For
discrete graphs this holds by definition, while for an arbitrary graph, since every topo-
logical functor is faithful, such a lifting can be constructed as the lifting of a cone over
a discrete diagram.

Essentially by definition we have:

2.11. Lemma. Let D : G → C be a diagram, ∆C : C → CG and ∆X : X → XG be the
diagonal functors, and (X,φ) be a cone over FD. There is an F -precartesian lifting of
(X,φ) to D if and only if the fibre FD−1

(X,φ) of the functor FD : (∆C ↓ D)→ (∆X ↓ FD)
which takes a cone (A, γ) to the cone (F (A), Fγ) has a terminal object.

Let us denote by G∨ the graph with three objects x, y and z and two morphisms
i : x → z and j : y → z. We will be interested in the situation where D : G∨ → C is
a diagram and (X,φ) is a cone over FD such that D(i) is F -precartesian and φx = 1X .
In such a situation if g : A → D(y) is a morphism in C such that F (g) = φy, then since
F (D(j)g) = F (D(i)) there is a unique morphism γx : A→ D(x), shown in the display

A
g //

_

F

��

γx
  

D(y)
D(j)

  

_

F

��

D(x)
D(i)

//
_

F

��

D(z)
_

F

��

X
φy //

φx

FD(y)

FD(j)
  

FD(x)
FD(i)

// FD(z),
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such that F (γx) = φx = 1X . One easily checks that the pair (A, γ) with γy = g and
γz = D(j)g = D(i)γx is a cone over D such that F (A, γ) = (X,φ). This means that the
functor sending (A′, γ′) in FD−1

(X,φ) (where FD is defined as in the previous lemma) to
(A′, γ′y) in FD(y)−1

(X,φy) is an isomorphism.
As an easy corollary of this observation via Lemmas 2.1 and 2.11 we obtain:

2.12. Proposition. For each diagram D : G∨ → C and each cone (X,φ) over FD such
that D(i) is F -precartesian and φx = 1X :

(a) If g : A → D(y) is an F -precartesian lifting of φy to D(y), then there is a unique
cone (A, γ) with γy = g which is an F -precartesian lifting of (X,φ) to D.

(b) If (A, γ) is an F -precartesian lifting of (X,φ) to D, then γy is F -precartesian lifting
of φy to D(y).

2.13. Remark. Lemma 2.7 of [7] can be recovered from (b) of the previous proposition
(see Remark 2.10(a) above).

2.14. Remark. According to Lemma 2.6 the previous proposition would remain true if
we replaced the assumption “D(i) is F -precartesian” by “(D(x), D(z), D(i)) and D(z) are
terminal objects in F 2−1

(FD(x), FD(z), FD(i)) and F−1(FD(z)), respectively”. In par-
ticular, this means that an F -precartesian lifting of FD(i) to an object B in F−1(FD(z))
can be obtained as a lifting of a limiting cone to such a diagram D where D(j) is the
unique morphism from B to D(z) in F−1(FD(z)).

Consider the successively weaker conditions:

2.15. Condition. For each diagram D : G∨ → C, and each cone (X,φ) over FD

(a) If D(i) is F -precartesian and φx = 1X , then there exists an F -precartesian lifting of
(X,φ) to D;

(b) If D and (X,φ) are as in (a) and FD(j) is a monomorphism, then there exists an
F -precartesian lifting of (X,φ) to D.

(c) If D and (X,φ) are as in (a) and FD(j) = 1FD(y), then there exists an F -precartesian
lifting of (X,φ) to D.

2.16. Remark. Note that Conditions 2.15 (b) and (c) hold when F weakly creates pull-
backs. In particular they hold when C has pullbacks, F preserves pullbacks, and F is an
isofibration.

As an immediate corollary of Proposition 2.12 we obtain:

2.17. Proposition. If F is prefibration, then F satisfies Conditions 2.15 (a), (b) and
(c).

As a corollary of Proposition 2.12 and Lemma 2.6 we obtain:
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2.18. Proposition. The functor F is a prefibration with terminal objects in its fibres if
and only if

(i) The fibres of F 2 have terminal objects, and

(ii) F satisfies Condition 2.15 (a), (b) or (c).

Proof. The “only if” part follows from Propositions 2.7 and 2.17, while the “if” part
follows from Proposition 2.8 and Proposition 2.12 via Remark 2.14.

2.19. Corollary. Suppose that F weakly creates pullbacks. The functor F is a pre-
fibration with terminal objects in its fibres if and only if F 2 has terminal objects in its
fibres.

2.20. Proposition. Let E : C → C be a functor, and let κ : 1C → E be a natural
transformation. The functor F is a prefibration if and only if

(i) for each object B in C and for each morphism θ : X → FE(B) in X there exists an
F -precartesian lifting of θ to E(B), and

(ii) for each diagram D : G∨ → C and each cone (X,φ) over FD such that D(j) = κB
for some B in C, φx = 1X and D(i) is F -precartesian, there is an F -precartesian
lifting of (X,φ) to D.

Proof. The “only if” part follows from Proposition 2.17, while the “if” part follows from
Proposition 2.12

2.21. Remark. Condition 2.20 (ii) follows from F weakly creating pullbacks as soon as
the components of κ are monomorphisms (see Remark 2.10(a)).

Next we show, under certain conditions, that if F 2 has terminal objects in its fibres,
then for each finite category I the functor F I also has terminal objects in its fibres.

2.22. Proposition. Suppose F weakly creates finite connected limits. If the fibres of the
functor F 2 have terminal objects, then for each finite category I the fibres of the functor
F I have terminal objects.

Proof. Let I be a finite category. We may assume I is non-empty since the otherwise
the claim is trivially true. We will show that the fibres of the functor F I have terminal
objects. To simplify notation let us write TX for the terminal object in F−1(X), T(X,Y,θ) =

(Tθ, TY , p2) for the terminal object in F 2−1
(X, Y, θ) and p1 : Tθ → TX for the unique

morphism in F−1(X). Note that this notation is consistent since the codomain functor
takes terminal objects in the fibres of F 2 to terminal objects in the fibres of F (see
Proposition 2.8). For each object x in I, let Gx be the graph with objects

Gx0 = (x ↓ I)0 t (x ↓ I)1,

with morphisms
Gx1 = (x ↓ I)1 × {1, 2} ∼= (x ↓ I)1 t (x ↓ I)1
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and with domain d and codomain c the unique maps making the diagrams

(x ↓ I)1
ι1 //

ι2 $$

Gx1

d
��

(x ↓ I)1
ι2oo

ι2zz
Gx0

(x ↓ I)1
ι1 //

ι1d $$

Gx1

c

��

(x ↓ I)1
ι2oo

ι1czz
Gx0

(in which the ιi’s are the various coproduct inclusions) commute. Each morphism j :
x′ → x induces a functor j∗ : (x ↓ I) → (x′ ↓ I) which takes an object (y, f) to (y, fj)
and a morphism h : (y, f)→ (z, g) to h : (y, fj)→ (z, gj). This functor in turn induces a
graph morphism Gj : Gx → Gx′ with object map Gj0 and morphism map Gj1 the unique
maps making the diagrams

(x ↓ I)0
ι1 //

j∗0
��

Gx0

Gj0

��

(x ↓ I)1
ι2oo

j∗1
��

(x′ ↓ I)0
ι1 // Gx′0

(x′ ↓ I)1
ι2oo

(x ↓ I)1
ι1 //

j∗1
��

Gx1

Gj1

��

(x ↓ I)1
ι2oo

j∗1
��

(x′ ↓ I)1
ι1 // Gx′1

(x′ ↓ I)1
ι2oo

commute. For an object X in XI we will construct the terminal object in the fibre F I−1
(X).

Let Dx : Gx → C be the diagram defined on objects by

Dx0(y, f) = TX(y) and Dx0(h : (y, f)→ (z, g)) = TX(h),

and on morphisms by

Dx1(h : (y, f)→ (z, g), 1) = p1 and Dx1(h : (y, f)→ (z, g), 2) = p2.

Since the images of p1 : TX(h) → TX(y) and p2 : TX(h) → TX(z) under F are F (p1) = 1X(y)

and F (p2) = X(h), respectively, it follows that the cone (X(x), α) over FDx defined for
each (y, f) in Gx0 by α(y,f) = X(f) and for each h : (y, f)→ (z, g) in Gx0 by αh = X(f)
is the limit of FDx. Therefore by assumption there is a cone (TX(x), λx) over Dx such
that Fλx = α which is the limit of Dx. An easy calculation shows that for each morphism
j : x′ → x in I the diagram

Gx

Gj //

Dx   

Gx′

Dx′~~
C

commutes. This commutative diagram induces a canonical morphism

TX(x′)→ TX(x)
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such that for each (y, f) is Gx0 and each h : (y, f)→ (z, g) in Gx0 the diagram

TX(y)

TX(x′) //

λx′
Gj(y,f)

;;

λx′
Gj(h) ##

TX(x)

λx(y,f)
cc

λxh{{
TX(h)

commutes. It can easily be checked that assigning TX(j) to be this canonical morphism
determines a functor TX : I→ C. We will show that this functor, considered as an object
in CI, is a terminal object in F I−1

(X). Let H be an object in F I−1
(X) and let x be an

object in I. For each morphism h : (y, f)→ (z, g) in (x ↓ I) the diagram

H(x)

H(f)

��

H(g)

##
H(y)

H(h)
//

vh

��

uy

{{

H(z)

uz

��
TX(y) TX(h)p1

oo
p2
// TX(z),

in which uy and uz are the unique morphisms into the terminal objects in the fibres
F−1(X(y)) and F−1(X(z)), respectively, and (vh, uz) is the unique morphism into the
terminal object in F 2−1

(X(y), X(z), X(h)), commutes. It follows that βx with components
βx(y,f) = uyH(f) for each (y, f) in Gx0 and βxh = vhH(f) for each h : (y, f)→ (z, g) in Gx0

determines a cone (H(x), βx) over Dx and hence a unique morphism ωx : (H(x), βx) →
(TX(x), λx). Let j : x′ → x be a morphism in I. Since for each (y, f) in Gx0 and for each
h : (y, f)→ (z, g) in G0x each of the triangles in each of the diagrams

H(x′)
ωx′ //

H(j)

��

βx′Gj(y,f)

##

TX(x′)

TX(j)

��

λx′
Gj(y,f)

zz
TX(y)

H(x) ωx
//

βx(y,f)

;;

TX(x)

λx(y,f)

dd

H(x′)
ωx′ //

H(j)

��

βx′Gj(h)

##

TX(x′)

TX(j)

��

λx′
Gj(h)

zz
TX(h)

H(x) ωx
//

βxh
;;

TX(x)

λxh
dd

commutes, it follows that ω = (ωx)x∈I is a natural transformation H to TX . To see
that ω lies in the fibre F I−1

(X) note that for each x in I, λx(x,1x)
ωx = ux and hence

F (ωx) = F (λx(x,1x)
)F (ωx) = F (ux) = 1X(x). Let ω′ be a morphism from H to TX in

F I−1
(X). Since for each (y, f) in Gx0

λx(y,f)ω
′
x = λy(y,1y)

TX(f)ω′x = λy(y,1y)
ω′yH(f)
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and λy(y,1y)
ω′y is a morphism from H(y) to TX(y) in F−1(X(y)) it must be uy it follows

that λx(y,f)ω
′
x = βx(y,f) . A similar calculation shows for each h : (y, f)→ (z, g) in Gx0 that

λxhωx = βxh proving that ω′ = ω.

2.23. Remark. Note that in the above proof one could replace weak creation of limits by
the existence of F -precartesian liftings of suitable cones.

Combining Propositions 2.9, 2.18 and 2.22, and Corollary 2.19 we obtain:

2.24. Theorem. Suppose X has a terminal object and F weakly creates finite limits. The
following conditions are equivalent:

(a) F is a prefibration;

(b) For each finite category I the functor F I is a prefibration;

(c) The fibres of the functor F 2 have terminal objects;

(d) For each finite category I the fibres of F I have terminal objects.

Proof. The implications (a)⇒ (c), (c)⇒ (a), and (c)⇒ (d) follow from Proposition 2.9,
Corollary 2.19 and Proposition 2.22, respectively. Since trivially (b) implies (a), and (d)
implies (c), it follows that to complete the proof it is sufficient to prove that (d) implies
(b). However since for any finite category I it follows from (d) that the functor F I×2, and
hence (F I)2, has terminal objects in its fibres, Proposition 2.18 (applied to F I) implies
that F I is a prefibration since Condition 2.15 (c) holds for F I because it weakly creates
those finite limits which are componentwise.

2.25. Proposition. Let 〈I,H, η, ε〉 : C → D be an adjunction such that FHI = F
and 1F ◦ η = 1F . If g : D → D′ is an FH-precartesian morphism, then H(g) is an
F -precartesian morphism.

Proof. Suppose that f : A → H(D′) is a morphism in C such that F (f) = FH(g).
By adjunction there exists a morphism f : I(A) → D′ such that H(f)ηA = f and hence
FH(f) = FH(g). It follows that there exists a unique morphism u : I(A)→ D such that
FH(u) = 1FH(D) and which makes the diagram

I(A)
u

}}

f

""
D g

// D′
(5)

commute. This determines by adjunction a morphism u = H(u)ηA such that F (u) =
1FH(D) making the diagram

A
u

||

f

##
H(D)

H(g)
// H(D′)

(6)
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commute. The uniqueness of u follows from the fact that the adjunction 〈I,H, η, ε〉
determines a bijection between diagrams of the form (5) and (6) (with FH(u) = 1FH(D)

and F (u) = 1FH(D), respectively).

2.26. Proposition. Let 〈T, η, µ〉 be a monad on C such that FT = F and 1F ◦ η = 1F ,
let UT : CT → C be the forgetful functor from the category of algebras over the monad T
to C, let (B, β) be an object in CT , and let θ : X → F (B) be a morphism in X.

(a) If f : A → B is an F -precartesian lifting of θ to B, then there exists a unique
morphism α : T (A) → A such that (A,α) is a T -algebra and f is a morphism from
(A,α) to (B, β) in CT which is an FUT -precartesian lifting of θ to (B, β);

(b) If f : (A,α)→ (B, β) is an FUT -precartesian lifting of θ to (B, β), then f considered
as a morphism from A to B is an F -precartesian lifting of θ to B.

Proof. Note that for each object (C, γ) in CT , since F (ηC) = 1F (C) it follows that
F (γ) = F (γ)F (ηC) = F (γηC) = 1F (C).
(a) Let f : A → B be an F -precartesian morphism such that F (f) = θ. Since as noted
above F (β) = 1F (B) it follows that F (βT (f)) = F (f) = θ. Therefore there exists a unique
morphism α : T (A) → A such that fα = βT (f) and F (α) = 1X . The fact that (A,α) is
a T -algebra follows from the fact (B, β) is a T -algebra, and from the fact that for each
pair of parallel morphisms u, v : W → A if F (u) = F (v) = 1F (A) and fu = fv, then
u = v. The same fact together with the assumption that f is F -precartesian implies that
f : (A,α)→ (B, β) is an FUT -precartesian morphism.
(b) The claim follows directly from Proposition 2.25.

As a corollary we obtain:

2.27. Theorem. Let 〈T, η, µ, 〉 be a monad on C such that FT = F and 1F ◦ η = 1F ,
and let UT : CT → C be as in previous proposition. If F is a prefibration, then FUT

is a prefibration. Furthermore if F weakly creates limits or more generally if F satisfies
Condition 2.15 (c), then F is prefibration if and only if FUT is a prefibration.

Proof. The first claim is a direct corollary of the previous proposition. The second
claim now follows from Proposition 2.20 where E = T and κ = η, since by assumption
Condition 2.20 (ii) is satisfied and Condition 2.20 (i) follows from Proposition 2.26 (b).

3. Spans

In this section we study right regular spans of categories. As explained in the introduction,
these consist of those spans S =

A SPoo Q // B (7)

satisfying the first of the conditions:
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3.1. Condition.

(i) For each object S in S and each morphism f : A′ → A in A such that P (S) = A there
exists a P -cartesian morphism s : S ′ → S in S such that P (s) = f and Q(s) = 1Q(S);

(ii) The induced functor 〈P,Q〉 : S→ A× B reflects isomorphisms;

(iii) The induced functor 〈P,Q〉 : S→ A× B is faithful.

Note that Condition 3.1 (iii) follows from Condition 3.1 (ii) when S has equalizers and
both P and Q preserve equalizers.

3.2. Proposition. Let S be a span satisfying Conditions 3.1 (i) and (ii). Let s : S ′ → S
be a morphism in S. If Q(s) = 1Q(S), then s is P -cartesian.

Proof. According to Condition 3.1 (i) there exists a P -cartesian morphism s : S → S
such that P (s) = P (s) and Q(s) = 1Q(S). Therefore by the universal property of s
there exists a unique morphism u : S ′ → S such that su = s and P (u) = 1P (S). Since
1Q(S) = Q(s) = Q(s̄u) = Q(s̄)Q(u) = 1Q(S)Q(u) = Q(u) it follows from Condition 3.1 (ii)
that u is an isomorphism and hence s is P -cartesian.

3.3. Theorem. Let S be a span satisfying Conditions 3.1 (i) - (iii). For each object
B in B the category Q−1(B) has a terminal object if and only if the functor S(−, B) is
representable.

Proof. Since the representability of S(−, B) is equivalent to the existence of a termi-
nal in its category of elements, it follows that the proof will be completed if we show
Q−1(B) is equivalent to Ele(S(−, B)), the category of elements of S(−, B). It follows
from Proposition 3.2 that for each morphism s : S ′ → S in Q−1(B)

S(P (s), B)([S]) = [S ′]

and hence assigning to each S ′ in Q−1(B), the pair (P (S ′), [S ′]) in Ele(S(−, B)) and
assigning to each morphism s : S ′ → S in Q−1(B) the morphism P (s) : (P (S ′), [S ′]) →
(P (S), [S]) in Ele(S(−, B)) determines a functor H : Q−1(B) → Ele(S(−, B)) which is
surjective on objects. To see that H is full note that if f : (P (S ′), [S ′]) → (P (S), [S])
is a morphism in Ele(S(−, B)), then there exists a P -cartesian lifting s̄ : S̄ → S of f
to S such that Q(s̄) = 1B and [S̄] = [S ′]. But, as follows from Condition 3.1 (ii), the
equality [S̄] = [S ′] implies the existence of an isomorphism u : S ′ → S̄ such that both
P (u) and Q(u) are identity morphisms, and hence the image under H of s̄u : S ′ → S is
f as desired. On the other hand, Condition 3.1 (iii) implies that H is faithful, and hence
is an equivalence of categories.
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3.4. Theorem. Let S be a span such that B has a terminal object and Q weakly creates
finite limits. For each object B in B the following conditions are equivalent:

(a) The category Q−1(B) has a terminal object;

(b) There is a Q-precartesian lifting of the morphism B → Q(1) to 1.

(c) There is a Q-precartesian lifting of the morphism B → Q(1) to S in Q−1(1);

If, in addition, S satisfies Conditions 3.1 (i) - (iii), then these conditions are further
equivalent to:

(d) The functor S(−, B) is representable.

Proof. The equivalence of (a), (b) and (c) follows from Lemma 2.2 and Lemma 2.7 of
[7] (or from Proposition 2.12 via Remark 2.13). The claim now follows from the previous
theorem.

It is easy to check that if S is a span satisfying Conditions 3.1 (i) - (iii), then for each
category I the span SI =

AI SIP I
oo QI

// BI (8)

also satisfies Conditions 3.1 (i) - (iii). Therefore, combining the previous theorem and
Theorem 2.24 we obtain:

3.5. Theorem. Let S be a span such that B has a terminal object and Q weakly creates
finite limits. The following conditions are equivalent:

(a) The functor Q is a prefibration;

(b) For each finite category I the functor QI is a prefibration;

(c) The fibres of the functor Q2 have terminal objects;

(d) For each finite category I the fibres of the functor QI have terminal objects.

If, in addition, S satisfies Conditions 3.1 (i) - (iii), then these conditions are further
equivalent to:

(a) For each object (B,B′, β) in B2 the functor S2(−, (B,B′, β)) is representable;

(b) For each finite category I and for each object B in BI the functor SI(−, B) is repre-
sentable.
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4. Action representability

In this section, for a semi-abelian category C, we add to the conditions equivalent to C2

being action representable of Theorem 4.8 of [9], which include the condition that C is
action representable and has normalizers. In addition when C is a pointed category with
finite limits we study conditions equivalent to the existence of generic split extensions for
C2. In particular we show that this condition is equivalent to each morphism admitting a
universal construction generalizing that of normalizer from [7] and also to the functor K
being a prefibration. This last part is related to Theorem 1.8 of [7] where, as explained
above, it was already shown that C has normalizers in the sense described there if and
only if K is a prefibration on monomorphisms. Some of the results of this section will be
obtained by applying Theorem 3.5 to the span SE(C) =

C SplExt(C)Poo K // C (9)

where, as explained in the introduction, SplExt(C) is the category of split extensions,
and K and P are the functors which send a split extension to its kernel and codomain,
respectively. As mentioned above, when C is semi-abelian, the existence of generic split
extensions is equivalent to action representability [2]. This fact, up to the equivalence of
split extensions and actions, can also be seen as a consequence of Theorem 3.3. Indeed,
when C is pointed protomodular with finite limits, Conditions 3.1 (i) - (iii) hold for the
span SE(C), and, as explained in the introduction, the functors

SplExt(−, X) : Cop → Set and SE(C)(−, X) : Cop → Set

are the same. Applying Theorem 3.4 to SE(C) we obtain:

4.1. Theorem. Let C be a pointed category with finite limits. The following conditions
are equivalent:

(a) The category C has generic split extensions;

(b) For each object X in C there is a K-precartesian lifting of X → 0 to the split extension
0 //0 //0oo ;

(c) For each object X in C there is a K-precartesian lifting of X → 0 to each split
extension with kernel 0.

When C is semi-abelian these conditions are further equivalent to:

(d) The category C is action representable.

To explain more clearly part of the connection between action representability and
the existence normalizers, discovered in [9], for a pointed category C with finite limits
we will consider a certain monad on SplExt(C) and apply Theorem 2.27. For arbitrary
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morphisms f : X → Z and g : Y → Z in a category C let us denote a chosen pullback as
follows

X ×
〈f,g〉

Y
π2 //

π1
��

Y

g

��
X

f
// Z.

Let KGpd(C) be the category with objects 8-tuples (X,G0, G1, d, c, e,m, k) consisting of
objects and morphisms such that the diagram on the left

G1 ×
〈d,c〉

G1
m // G1

d //

c
// G0eoo X k // G1

d // G0
e

oo (10)

is a groupoid and the diagram on the right is a split extension. A morphism with domain
(X,G0, G1, d, c, e,m, k) and codomain (X ′, G′0, G

′
1, d
′, c′, e′,m′, k′) is a triple (u, v, w) where

u : X → X ′, v : G1 → G′1 and w : G0 → G′0 are morphisms in C such that the diagram
on the left is a functor

G1 ×
〈d,c〉

G1
m //

v×v

��

G1

v

��

d //

c
// G0

w

��

eoo

G′1 ×
〈d′,c′〉

G′1
m′ // G′1

d′ //

c′
// G′0e′oo

X
k //

u

��

G1

v

��

d // G0

w

��

e
oo

X
k // G1

d // G0
e

oo

and the diagram on the right is a morphism of split extensions. In [4] (see also [6]) D.
Bourn showed that the functor U : KGpd(C)→ SplExt(C) which assigns to each object
(X,G0, G1, d, c, e,m, k) in KGpd(C) the split extension on the right in (10) is monadic.
In fact he showed more generally that for a category C with finite limits the forgetful
functor from the category of groupoids in C to the category of split epimorphisms in
C, defined in essentially the same way (omitting all kernels), is monadic. Let us write
〈T, η, µ〉 for this monad and recall how it is defined. The functor T assigns to a split
extension

X
κ // A

α // B
β
oo (11)

the split extension

X
〈0,κ〉 // A×

〈α,α〉
A

π1 // A.
〈1,1〉
oo

The natural transformations η and µ have component at (11) the left and right hand
diagrams

X
κ // A

α //

〈βα,1〉
��

B
β

oo

β
��

X
〈0,κ〉 // A×

〈α,α〉
A

π1 // A
〈1,1〉
oo

X
〈0,〈0,κ〉〉// (A×

〈α,α〉
A)×
〈π1,π1〉

(A×
〈α,α〉

A)
π1 //

π2×π2
��

A×
〈α,α〉

A
〈1,1〉
oo

π2

��
X

〈0,κ〉 // A×
〈α,α〉

A
π1 // A,
〈1,1〉

oo
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respectively. This means that for the monad 〈T, η, µ〉 we have KT = K and 1K ◦ η =
1K ◦ µ = 1K . Furthermore, it is easy to check that the comparison functor from the
category KGpd(C) to the category of algebras SplExt(C)T is an isomorphism. This
means, writing UT for the forgetful functor from the category SplExt(C)T to the category
SplExt(C), that the functor KU is prefibration whenever the functor KUT is.

4.2. Theorem. Let C be a pointed category with finite limits. The following conditions
are equivalent:

(a) The category C2 has generic split extensions;

(b) For each finite category I the category CI has generic split extensions;

(c) The functor K is a prefibration;

(d) For each finite category I the functor KI is a prefibration;

(e) The functor KU is a prefibration;

(f) For each finite category I the functor KIU I is a prefibration;

(g) For each morphism f : X ′ → X there is an K-precartesian lifting of f to the split
extension

X
〈0,1〉 // X ×X

π1 // X;
〈1,1〉
oo (12)

(h) For each morphism f : X ′ → X there exists a groupoid

G1 ×
〈d,c〉

G1
m // G1

d //

c
// G0eoo (13)

together with morphisms k : X ′ → G1 and h : G0 → X such that k is the kernel of d
and hck = f , which is universal amongst such triples.

When in addition C is semi-abelian, these conditions are further equivalent to:

(i) For each morphism f : X ′ → X there exists a pair ((N,X ′, ζ, g), h) such that
(N,X ′, ζ, g) is an internal crossed module (in the sense of G. Janelidze in [11]) and
h : N → X is a morphism such that hg = f , which is universal amongst such;

(j) The category C is action representable and C has normalizers;

(k) The category of monomorphisms in C is action representable;

(l) The category C2 is action representable;

(m) For each finite category I the category CI is action representable.
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Proof. Applying Theorem 3.5 to the span SE(C) we find that (a), (b), (c) and (d) are
equivalent. Next we will prove that (c) is equivalent to (g). To do so let E : SplExt(C)→
SplExt(C) be the functor which sends a split extension (11) to the split extension at the
bottom of the diagram

X κ //

κ
��

A
α //

〈βα,1〉
��

B
β

oo

β
��

A
〈0,1〉 // A× A

π1 // A,
〈1,1〉
oo

(14)

and let κ : 1SplExt(C) → E be the natural transformation with component at (11) the mor-
phism of split extensions (14). According to Remarks 2.10 (a) and 2.21 and Proposition
2.20, where F = K and E and κ are as above, it follows that (c) and (g) are equiva-
lent. Since when C is semi-abelian so is C2, it follows that (l) and (a) are equivalent.
The equivalence of (c) and (e) follows from Theorem 2.27 via the remarks proceeding the
theorem.

Therefore since (e) and (f) are equivalent by Theorem 2.24, (j), (k), (l) and (m) by
Theorem 4.8 of [9], and (h) and (i) are reformulations of each other when C is semi-abelian
(as follows from [11]), to complete the proof we will show that (g) and (h) are equivalent.
Note that each split extension of the form (12) is part of the data describing the indiscrete
groupoid on X (together with the kernel of its domain) and that the data given in (h)
is essentially the same as a KU -precartesian lifting of f to the indiscrete groupoid on
X (with chosen kernel of its domain). The equivalence of (g) and (h) follows from these
observations and Proposition 2.26.

Let us specifically highlight the fact that Theorem 4.2 characterizes action repre-
sentability in ‘good’ categories in standard Grothendieck terms, as follows:

4.3. Corollary. A semi-abelian category with normalizers is action representable if,
and only if, the functor assigning to a split extension its kernel is a prefibration.

4.4. Remark. As mentioned above, in [7] a definition of the normalizer of a monomor-
phism in an arbitrary category C was given, which is different to the definition in [9]
even when C is pointed. Indeed, when C is pointed and has finite limits the normalizer
of a monomorphism f : X ′ → X in the sense of [7] can equivalently be defined as a
commutative diagram

X ′

f

��

n
��

κ // R

〈r1,r2〉
��

N
〈0,1〉 //

m
��

N ×N

X

where the upper square is a pullback and the morphisms r1, r2 : R→ N are the projections
of an equivalence relation, which is universal amongst such commutative diagrams. It can
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be seen that the morphisms m and n are necessarily a monomorphism (see Proposition
2.3 [7]) and a Bourn-normal monomorphism, respectively, and furthermore that n is a
normal monomorphism (i.e. the kernel of some morphism) when C is exact.

Since by Proposition 2.26, the data in (h) determines a K-precartesian morphism

X ′

f

��

k // G1

d //

〈hd,hc〉
��

G0
d

oo

h
��

X
〈0,1〉 // X ×X

π1 // X;
〈1,1〉
oo

it can be checked that when f is a monomorphism so are both h and 〈hd, hc〉, and so the
groupoid (13) is an equivalence relation corresponding to the normal subobject ck. From
this it follows that the commutative diagram

X ′

f

��

ck
��

k // G1

〈d,c〉
��

G0
〈0,1〉 //

h
��

G0 ×G0

X

is the normalizer of f in sense of [7]. This means that when f is an arbitrary morphism the
data in (h) or equivalently (i), when C is semi-abelian, can be thought of as a generalization
of the normalizer to an arbitrary morphism. It is easy to check that for a semi-abelian
category C the existence of these “generalized normalizers” is equivalent to requiring that
for each object X in C the forgetful functor from the category of crossed modules with
objects of the form (B,X, ζ, f) to the category (X ↓ C), sending (B,X, ζ, f) to (B, f) has
a right adjoint.
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