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ON FIBRANT OBJECTS IN MODEL CATEGORIES

VALERY ISAEV

Abstract. In this paper, we study properties of maps between fibrant objects in
model categories. We give a characterization of weak equivalences between fibrant ob-
jects. If every object of a model category is fibrant, then we give a simple description
of a set of generating cofibrations. We show that to construct such a model structure it
is enough to check some relatively simple conditions.

1. Introduction

The framework of model categories, introduced in [7], is an important tool in homotopy
theory. In this paper, we study properties of maps between fibrant objects. We will
show that weak equivalence between fibrant objects have a simple characterization in
terms of generating cofibrations (Proposition 3.5), which is similar to the characterization
described in [9]. In particular, if every object of a model category is fibrant, then we get a
complete characterization of weak equivalences. We will prove several properties of model
categories using this characterization.

For example, we will show that a right Quillen functor U : D → C reflects weak
equivalence between fibrant objects if and only if F (C) generates the class of cofibrations
of D in a certain sense, where F is a left adjoint to U and C is the class of cofibrations
of C (Proposition 3.11). This proposition is useful since this condition on right Quillen
functors appears in the characterization of Quillen equivalences.

If we fix the class of cofibrations, then the class of weak equivalences for which there
exists model structure in which all objects are fibrant is unique if it exists, so this raises a
natural question: when does such a model structure exist? We prove several necessary and
sufficient conditions for this to be true. Examples of applications of these constructions
are model structures on strict ω-categories (which was constructed in [5]) and topological
spaces. Examples of new model structures constructed by means of results of this paper
will be given in [4].

If a model structure in which all objects are fibrant exists, then the class of weak
equivalences of this model structure is the smallest class of weak equivalences among
model structures with this class of cofibrations. Thus a model category in which all
objects are fibrant is left-determinant (as defined in [8]). But the converse is not true.
For example, the category of simplicial sets (as well as every Grothendieck topos [1])
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carries a left-determinant model structure with monomorphisms as cofibrations, but a
model structure on this category in which all objects are fibrant and with this class of
cofibrations does not exist. To see this, consider a cylinder C for the terminal object.
Then Cq∆[0]C does not have a map from ∆[1] which maps faces of this simplex to points
of C which were not amalgamated. Thus C q∆[0] C cannot be fibrant.

Thus the class of model structures in which all objects are fibrant is much narrower
than the class of left-determinant model structures. On the other hand model categories
in which all objects are fibrant have properties not shared by left-determinant ones. Often
a set of generating trivial cofibrations is defined using cardinality bounds on domains and
codomains of maps. For example, left Bousfield localizations are often constructed in this
way. In general, there is no useful explicit description of generating trivial cofibrations, but
if all objects of a model category are fibrant, then we can give a simple explicit construction
of a set of generating trivial cofibrations (Proposition 3.6). Also, as we already noted,
model categories in which all objects are fibrant have a simple characterization of weak
equivalences in terms of generating cofibrations.

Let us discuss the main obstacles that we face when we try to construct such model
structure in which all objects are fibrant. Since we have an explicit characterization of
weak equivalences in terms of cofibrations, we just need to check that the classes of weak
equivalences, cofibrations and fibrations satisfy the required conditions. The first problem
is to prove that this class of weak equivalences satisfies the 2-out-of-3 property. The most
difficult part is to show that if f : X → Y and g : Y → Z are maps such that f and g ◦ f
are weak equivalences, then g is also a weak equivalence. For example, it is one of the
main obstacles in [5] and [4].

Theorem 4.3 implies that if we can prove the 2-out-of-3 property for weak equivalences,
then to construct the model structure, we just need to prove that the maps in JI-cell are
weak equivalences, where JI is the set of generating cofibrations defined in section 4.
A similar problem occurs when we try to construct a transferred model structure. If
F : C→ D is a left adjoint functor and C is a cofibrantly generated model category, then
to construct a model structure on D, we just need to prove that maps in F (J)-cell are
weak equivalences, where J is a set of generating trivial cofibrations of C. This condition
holds if we can construct functorial path objects for fibrant objects. Similar result holds in
our case too (Corollary 4.6). Also, analogous result holds if we there are cylinder objects
instead of path objects (Corollary 4.9).

Our main result gives a necessary and sufficient condition for the existence of a model
structure that satisfies some conditions. Thus we may compare our theorem to other
analogous criterion that exist in the literature. We already mentioned the transferred
model structures. Another such result is proved in [10], which generalizes a theorem of
Cisinski proved in [1]. First of all, the results of Olschok applies to model categories
in which all objects are cofibrant and our results applies to model categories in which
all objects are fibrant. Since there are not many model categories in which both of
these conditions hold, the two results rarely can be applied to construct the same model
structure. The results of Olschok use Jeff Smith’s theorem, and hence applies only to
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locally presentable categories. Our results applies to all bicomplete categories and give
a model structure with explicitly described set of generating trivial cofibrations. Finally,
the class of weak equivalences is completely determined by the class of cofibrations in our
setting while the theorems of Olschok give us some freedom in choosing the class of weak
equivalences.

The paper is organized as follows. In section 2, we recall basic properties of model cat-
egories and establish the notation that we use in this paper. In section 3, we prove several
results that are related to fibrant objects, fibrations and trivial cofibrations between them.
First of all, we give a characterization of weak equivalences between fibrant objects. Then
we prove that if the fibrant objects are determined by a set S of trivial cofibrations, then
trivial cofibrations and fibrations with fibrant codomains are determined by a set of gen-
erating cofibrations which is explicitly defined in terms of S. Finally, we prove a necessary
and sufficient condition for a right Quillen functor to reflect weak equivalences between
fibrant objects. In section 4, we demonstrate a method of constructing model structures
in which all objects are fibrant. We prove several necessary and sufficient conditions for
such a model structure to exist.

2. Preliminaries

In this section, we recall several standard definition and properties related to model cat-
egories. Most of the propositions are either standard or a variation of such propositions
and will be given either without a proof or with a short proof. The definition that we use
are also mostly standard. We want to apply these definitions in categories without model
structure, so we need a slightly more general definitions of cylinder and path objects.

Let C be a category and let V be an object of C. Then a cylinder object for V is an
object C(V ) together with maps γ0,γ1 : V → C(V ). If i : U → V is a morphism of C,
then a relative cylinder object for C is a cylinder object (CU(V ),γ0,γ1) for V such that
γ0 ◦ i = γ1 ◦ i. If C has the initial object 0, then a relative cylinder object for 0 → V is
just a cylinder object for V . A morphism of cylinder objects C(V1) and C(V2) is a pair of
maps f : V1 → V2 and C(f) : C(V1)→ C(V2) which commute with γ0 and γ1. Note that
we do not require that there exists a map s : C(V )→ V such that s ◦ γ0 = s ◦ γ1 = idV .
We also do not require maps γ0,γ1 to be weak equivalences in any sense.

A (left) homotopy (with respect to C(V )) between maps f, g : V → X is a map
h : C(V ) → X such that h ◦ γ0 = f and h ◦ γ1 = g. Maps are homotopic if there is
a homotopy between them. Maps are homotopic relative to i : U → V (with respect to
CU(V )) if there is a homotopy with respect to CU(V ) between them. Note that maps are
homotopic relative to i only if f ◦ i = g ◦ i. If maps f and g are homotopic, then we write
f ∼ g, and if they are homotopic relative to i, then we write f ∼i g.

Note that ∼ is reflexive if and only if there exists a map s : CU(V ) → V such that
s ◦ γ0 = s ◦ γ1 = idV . In this case we will say that CU(V ) is reflexive. Relation ∼r is
reflexive if and only if there exists a map t : X → P (X) such that p0 ◦ t = p1 ◦ t = idX . In
this case we will say that P (X) is reflexive. If P (X) is reflexive, then we say that a right
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homotopy h : V → P (X) between f, g : V → X is constant on i : U → V if h◦ i = t◦f ◦ i.
In this case, we write f ∼ri g and say that f and g are homotopic relative to i.

Let C be a category and let X be an object of C. A path object for X is an object
P (X) together with maps p0, p1 : P (X) → X. A (right) homotopy between morphisms
f, g : V → X is a map h : V → P (X) such that p0 ◦ h = f and p1 ◦ h = g. We say that f
and g are right homotopic and write f ∼r g if there exists a right homotopy h : V → P (X)
between them. A morphism of path objects P (X) and P (Y ) is a pair of maps f : X → Y
and P (f) : P (X)→ P (Y ) which commute with p0 and p1.

Let V, Y be objects of a category C and R some relation on the set C(V, Y ). Given
two morphisms f : U → V and g : X → Y , we say that f has the left lifting property
(LLP) up to R with respect to g, and g has the right lifting property (RLP) up to R with
respect to f if for every commutative square of the form

U u //

R
f
��

X

g

��
V v

//

h

??

Y,

there is a dotted arrow h : V → X such that h ◦ f = u and (g ◦ h)Rv. We say a map f
has the right lifting property up to R with respect to an object V if it has this property
with respect to the map 0→ V . Given a morphism f and a set of morphisms I, the map
f has the left (right) lifting property up to R with respect to I if it has this property with
respect to all morphisms in I. Note that a map has the right (left) lifting property if it
has this property up to the equality relation. Often, we need to talk about maps which
have RLP up to ∼i with respect to some map i. In this case, we will say that a map has
RLP up to relative homotopy with respect to i.

Let R be the maximal relation on the set C(V, Y ), that is for every f1, f2 : V → Y , we
have f1Rf2. We will say that g : X → Y is pure with respect to f : U → V if g has RLP
up to R with respect to f . Thus g is pure with respect to f if and only if every square as
above has a lift in which the top triangle commutes but the lower need not. The notion
of pure morphism is (formally) similar to the concept of λ-pure morphism, used in the
theory of accessible categories.

We list a few elementary properties of pure morphisms in the following proposition:

2.1. Proposition. The following holds in every category C:

1. If g has RLP up to some relation with respect to f , then g is pure with respect to f .

2. Pure maps are closed under composition.

3. If f : X → Y and g : Y → Z are maps such that g ◦ f is pure, then f is also pure.

4. Every split monomorphism is pure with respect to all maps.

5. If a map is pure with respect to itself, then it is a split monomorphism.
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Model categories were introduced in [7]. For an introduction to the theory of model
categories see [2, 3]. We will denote the sets of cofibrations, fibrations and weak equiva-
lences of a model category by C, F , and W , respectively.

Let C be a model category. Then there is a reflexive relative cylinder object CU(V )
for every map i : U → V of C. There is also a reflexive path object P (X) for every object
X of C. The following proposition is standard:

2.2. Proposition. If i : U → V is a cofibration and X is a fibrant object, then maps
f, g : V → X are left homotopic relative to i if and only if they are right homotopic
relative to i. This homotopy relation is an equivalence relation.

The definitions of a deformation retract and a strong deformation retract are standard.
A map f : X → Y is an inclusion of a deformation retract if there is a map g : Y → X
such that g ◦ f = idX and f ◦ g ∼ idY . A map f : X → Y is an inclusion of a strong
deformation retract if the homotopy is relative to f .

The following lemmas are slight generalizations of standard properties of model cate-
gories.

2.3. Lemma. [Homotopy extension property] Let C be a category, and let i : U → V
be a morphism of C. Suppose that for an object X of C, there exists a path object
p0, p1 : P (X)→ X such that p0 has RLP with respect to i.

Let i : U → V ∈ C, u : U → X, and v : V → X be maps, and let h : U → P (X) be
a homotopy between v ◦ i and u. Then there exists a map v′ : V → X and a homotopy
h′ : V → P (X) between v and v′ such that h = h′ ◦ i.

Proof. Let h : U → P (X) be a homotopy between v ◦ i and u. Consider the following
diagram:

U h //

i
��

P (X)

p0
��

V v
// X

By assumption, we have a lift h′ : V → P (X). Then we can define v′ as p1 ◦ h′.

This lemma can be illustrated as follows:

U
u //

i
��

∼r
X

V

v

>> U
u //

i
�� ∼r

X

V

v′
>>

v

LL

If we have a diagram on the left, then we can find a map v′ such that the diagram on the
right commutes. Moreover, if we restrict the homotopy between v and v′ on U , then we
get the original homotopy between v ◦ i and u.

Let ∼r∗ be the reflexive transitive closure of ∼r. Then the previous lemma also holds
for ∼r∗ in place of ∼r:
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2.4. Lemma. Let C be a category that satisfies conditions of the previous lemma. Let
i : U → V ∈ C, u : U → X, and v : V → X be maps, and let h1, . . . , hn : U → P (X) be a
sequence of homotopies such that p1 ◦ hj = p0 ◦ hj+1 for every 1 ≤ j < n, p0 ◦ h1 = v ◦ i
and p1 ◦ hn = u. Then there exists a map v′ : V → X and a sequence of homotopies
h′1, . . . , h

′
n : V → P (X) such that p1 ◦ h′j = p0 ◦ h′j+1 for every 1 ≤ j < n, p0 ◦ h′1 = v and

p1 ◦ h′n = v′ and hj = h′j ◦ i for every 1 ≤ j ≤ n.

Proof. Apply the previous lemma n times.

Let C be a category and let I be a class of morphisms of C. Then we define I-inj to
be the class of morphisms of C that has RLP with respect to I, I-cof to be the class of
morphisms of C that has LLP with respect to I-inj, and I-cell to be the class of transfinite
compositions of pushouts of elements of I. Elements of I-cell are called relative I-cell
complexes. Every relative I-cell complex belongs to I-cof.

We say that a set I of maps of a cocomplete category C permits the small object
argument if the domains of maps in I are small relative to I-cell. The following proposition
is standard and appears in this form in [3].

2.5. Proposition. Suppose that C is a complete and cocomplete category, W is a class
of morphisms of C, and I, J are sets of morphisms of C. Then C is a cofibrantly generated
model category with I as the set of generating cofibrations, J as the set of generating trivial
cofibrations, andW as the class of weak equivalences if and only if the following conditions
are satisfied:

(A1) I and J permit the small object argument.

(A2) W has the 2-out-of-3 property and is closed under retracts.

(A3) I-inj ⊆ W.

(A4) J-cell ⊆ W ∩ I-cof.

(A5) Either J-inj ∩W ⊆ I-inj or I-cof ∩W ⊆ J-cof.

3. Properties of model categories

In this section, we will prove various properties of model categories that are related to
fibrant objects. In particular, we will give a characterization of weak equivalences between
fibrant objects.

3.1. Weak equivalences between fibrant objects. The following propositions
give useful characterizations of trivial cofibrations and weak equivalences between fibrant
objects. The characterization for weak equivalences is similar to the one described in [9].
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3.2. Proposition. Let C be a model category. A cofibration between fibrant objects is a
weak equivalence if and only if it is an inclusion of a strong deformation retract.

This characterization of trivial cofibrations is probably well-known. Similar proposi-
tions are proved in [2], but we could not find a reference for this property, so we include
a proof for the sake of convenience.

Proof. Every inclusion of a deformation retract becomes an isomorphism in the homo-
topy category and every such map is a weak equivalence. To prove the converse, let us
show that every weak equivalence with a fibrant domain is pure with respect to cofibra-
tions. This follows from the fact that every weak equivalence can be factored into a trivial
cofibrant and a trivial fibration. Every trivial fibration is pure with respect to cofibrations,
and every trivial cofibration f : X → Y with a fibrant domain is a split monomorphism
since we have a lift in the diagram below, hence it is pure with respect to any map.

X
idX //

f
��

X

Y

>>

Now, let f : X → Y be a trivial cofibration between fibrant objects. Since X is fibrant,
f has a retraction g : Y → X. By the 2-out-of-3 property, g is a weak equivalence. Since
Y is fibrant, g is pure with respect to cofibrations. Consider the following diagram:

Y qX Y
[f◦g,idY ] //

[γ0,γ1]
��

Y

g

��
CX(Y ) g◦s

// X

Since g is pure with respect to cofibrations, we have a lift, which gives us a homotopy
between f ◦ g and idY .

Now, we need to prove a technical lemma, which we formulate in a general form since
we will need it later.

3.3. Lemma. Let C be a finitely cocomplete category, and let i : U → V and g : Y → Z
be maps of C. Let CU(V ) be a relative cylinder object for i. Suppose that for every
A ∈ {Y, Z}, there exists a path object p0, p1 : P (A) → A, which satisfy the following
conditions:

1. For every A ∈ {Y, Z}, p0 : P (A)→ A has RLP with respect to i and it is pure with
respect to [γ0,γ1] : V qU V → CU(V ).

2. There exists a morphism of path objects (g, P (g)) : P (Y )→ P (Z).

3. Either p1 : P (Z) → Z has RLP with respect to i or there exists a map s : P (Z) →
P (Z) such that p0 ◦ s = p1 and p1 ◦ s = p0.

Let f : X → Y be a map of C such that f has RLP up to ∼r∗ with respect to U , and
g ◦ f has RLP with respect to i up to ∼i. Then g also has RLP with respect to i up to ∼i.
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Proof. Suppose that we have a commutative square as below. Then there exists a
map ux : U → X such that f ◦ ux ∼r∗ u which means that there is a sequence of
homotopies h1, . . . , hn : U → P (Y ) for some n such that p0 ◦h1 = f ◦ ux, p1 ◦hn = u, and
p1 ◦ hj = p0 ◦ hj+1 for every 1 ≤ j < n.

∼r∗

X

f
��

U

ux

>>

i
��

u
// Y

g
��

V v
// Z

We can define a sequence of homotopies h1
u, . . . , h

n
u between g ◦ f ◦ ux and v ◦ i. If p1

has RLP with respect to i, then let hju = P (g) ◦ hj; otherwise let hju = s ◦ s ◦ P (g) ◦ hj.
By Lemma 2.4, there exists a map vz : V → Z and a sequence of homotopies h1

3, . . . , h
n
3 :

V → P (Z) between vz and v such that hj3 ◦ i = hju. Indeed, if p1 has RLP with respect to
i, then we can apply Lemma 2.4 to p1, p0 : P (Z)→ Z. If we defined hju as s◦s◦P (g)◦hj,
then we can apply Lemma 2.4 to s ◦ P (g) ◦ hj to get a sequence of homotopies h1

4, . . . , h
n
4

between v and vz. Then we can define hj3 as s ◦ hj4.
By assumption on g ◦ f , there exists a map vx : V → X such that g ◦ f ◦ vx and

vz are relatively homotopic. Note that h1, . . . , hn is a sequence of homotopies between
f ◦ux = f ◦ vx ◦ i and u. Thus, by Lemma 2.4, we have a map vy : V → Y and a sequence
of homotopies h1

y, . . . , h
n
y : V → P (Y ) between f ◦ vx and vy such that hjy ◦ i = hj. In

particular, vy ◦ i = u. Thus we only need to prove that g ◦ vy and v are homotopic
relative to i. If hju = P (g) ◦ hj, then let hj1 = P (g) ◦ hjy. If hju = s ◦ s ◦ P (g) ◦ hj,
then let hj1 = s ◦ s ◦ P (g) ◦ hjy. Then hj1 ◦ i = hju. Thus we have a sequence of maps

[hj1, h
j
3] : V qU V → P (Z).

Now, let us show that p1 ◦ hj1 ∼i p1 ◦ hj3 whenever p0 ◦ hj1 ∼i p0 ◦ hj3. Indeed, if h0 is a
relative homotopy between p0 ◦ hj1 and p0 ◦ hj3, then consider the following diagram:

V qU V
[hj1,h

j
3]

//

[γ0,γ1]

��

P (Z)

p0

��
CU(V )

h0
// Z

Since p0 is pure with respect to [γ0,γ1], we have a lift q : CU(V )→ P (Z). Then p1 ◦ q is
a relative homotopy between p1 ◦ hj1 and p1 ◦ hj3.

Finally, to complete the proof we need to show that g ◦ vy and v are relatively homo-
topic. Since g ◦ vy = p1 ◦ hn1 and v = p1 ◦ hn3 , the previous observation implies that it is
enough to prove that p0 ◦ h1

1 and p0 ◦ h1
3 are relatively homotopic. But p0 ◦ h1

1 = g ◦ f ◦ vx
and p0 ◦ h1

3 = vz and these maps are relatively homotopic by definition of vx.
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If I is a class of maps of a category C, then let us denote by JI the class of maps
γ0 : V → CU(V ) for each U → V ∈ I. This notation is slightly abusive since the class JI

depends on the choice of cylinder objects CU(V ). If the cylinder objects are not specified
explicitly in some statement, then it holds for any choice of these objects.

Now, we will show that if I generates the class of cofibrations of a model category in
which all objects are fibrant, then a map is a weak equivalence if and only if it has RLP
up to relative homotopy with respect to I. Thus the following proposition implies that if
a map of such a model category is a weak equivalence and belongs to JI-inj, then it is a
trivial fibration. This implies that JI can be used as a set of generating trivial cofibrations
if it permits the small object argument (see Proposition 3.6).

3.4. Proposition. Let C be a category, and let I be a class of maps of C. If f : X →
Y ∈ JI-inj has RLP up to relative homotopy with respect to I, then f ∈ I-inj.

Proof. Suppose we have a commutative square as below. We need to find a lift V → X
such that both triangles commute.

U

i∈I
��

u //

∼i

X

f
��

V v
//

g
>>

Y

By assumption, we have a lift g : V → X together with a relative homotopy h : CU(V )→
Y between f ◦g and v. Since f has RLP with respect to γ0, we have a lift h′ : CU(V )→ X
in the following diagram:

V
g //

γ0

��

X

f
��

CU(V ) h //

h′
;;

Y.

Then h′ ◦ γ1 is a required lift in the original square. Indeed, the top triangle commutes
because h′ ◦ γ1 ◦ i = h′ ◦ γ0 ◦ i = g ◦ i = u and the bottom triangle commutes because
f ◦ h′ ◦ γ1 = h ◦ γ1 = v.

Now we assume that C is a model category and CU(V ) is a correct relative cylinder
object, that is it is a factorization of the map [idV , idV ] : V qU V → V into a cofibration
[γ0,γ1] : V qU V → CU(V ) followed by a weak equivalence CU(V ) → V . The following
propositions gives a characterization of weak equivalences between fibrant objects.

3.5. Proposition. Let C be a model category, and let I be a class of maps of C which
generates the class of cofibrations (that is, the class of cofibrations equals to I-cof). Let
f : X → Y be a morphism of C such that X and Y are fibrant. Then the following
conditions are equivalent:

1. f is a weak equivalence.

2. f has RLP up to relative homotopy with respect to cofibrations.
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3. f has RLP up to relative homotopy with respect to I.

Proof. (1⇒ 2) Consider the following commutative square in which c is a cofibration:

U //

c
��

X

f
��

V // Y

Factor f into a trivial cofibration i : X → Z followed by a trivial fibration p : Z → Y .
Since c is a cofibration and p is a trivial fibration, we have a lift q : V → Z. Since
i is a trivial cofibration between fibrant objects, by Proposition 3.2, it has a retraction
r : Z → X such that i ◦ r ∼i idZ .

U //

c

��

X

i
�� ∼i

X

i
��

Z

p
��

r

>>

Z

V //

q
>>

Y

Then r ◦ q is a required lift.
(2⇒ 3) Obvious.
(3 ⇒ 1) Factor f into a trivial cofibration f ′ : X → Z followed by a fibration g :

Z → Y . Let us prove that f ′ has RLP up to ∼r with respect to every object. By
Proposition 3.2, there exists a map g′ : Z → X and a homotopy f ′ ◦ g′ ∼f ′ idZ . By
Proposition 2.2, we have a right homotopy h : Z → P (Z) between f ′ ◦ g′ and idZ . For
every morphism u : U → Z we can define a lift u′ : U → Y as g′ ◦ u. Then h ◦ u is a
homotopy between f ′ ◦ u′ and u.

Since Z and Y are fibrant, conditions of Lemma 3.3 are satisfied. Hence, g has RLP
up to relative homotopy with respect to I. Since JI consists of trivial cofibrations, by
Proposition 3.4, g is a trivial fibration. Thus f is a weak equivalence by the 2-out-of-3
property.

Often the class of cofibrations is generated by a much smaller class I. Thus the last
condition in the previous proposition gives us a useful characterization of weak equiva-
lences between fibrant objects which is easy to verify in practice. In particular, if every
object in a model category is fibrant, then this proposition gives us a complete charac-
terization of weak equivalences, which we will use in the next section. The equivalence
1 ⇔ 3 is well-known for topological spaces. A variation of this proposition is proved in
[9], where a map between fibrant objects is proved to be a weak equivalence if and only
if it satisfies a slightly stronger version of the second condition of Proposition 3.5.

Let C be a model category in which every object is fibrant. If C has a set of generating
cofibrations I which satisfies a mild additional hypothesis, then using the characterization
of weak equivalence that we gave in Proposition 3.5, we can construct a set of generating
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trivial cofibrations for this model structure. This shows that the model category is cofi-
brantly generated in this case, and the set of generating trivial cofibrations has a simple
explicit description in terms of generating cofibrations.

3.6. Proposition. Let C be a model category in which every object is fibrant. Sup-
pose that the class of cofibrations is generated by a set I such that the domains and the
codomains of maps in I are small relative to I-cell. Then the model structure is cofibrantly
generated.

Proof. By the small object argument, there exists a reflexive relative cylinder object
CU(V ) such that [γ0,γ1] : V qU V → CU(V ) is a cofibration and the map CU(V ) → V
is a trivial fibration. We prove that JI is a set of generating trivial cofibrations. Let us
check the conditions of Proposition 2.5:

(A1) The set I permits the small object argument by assumption. By [3, Proposi-
tion 2.1.16], the codomains of maps in I are small relative to I-cof. Since maps
in JI are cofibrations (see (A4) below) and the domains of maps in JI are the
codomains of maps in I, the set JI also permits the small object argument.

(A2) The class of weak equivalences is closed under retracts and satisfies 2-out-of-3 since
C is a model category.

(A3) Since I generates cofibrations, the class I-inj consists of trivial fibrations.

(A4) A map γ0 : V → CU(V ) in JI is the composition of maps V → V qU V → CU(V ),
where the first map is a pushout of a cofibration U → V and the second map is a
cofibration by assumption. Moreover, the map CU(V ) → V is a weak equivalence;
hence, γ0 is also a weak equivalence by 2-out-of-3.

(A5) By Proposition 3.4 and Proposition 3.5, if f ∈ JI-inj ∩W , then f ∈ I-inj.

3.7. Trivial cofibrations and fibrations with fibrant codomains. If some
of the objects of a model category are not fibrant, then sometimes we can characterize
fibrant objects as those which have the RLP with respect to some set of trivial cofibrations
S which is considerably smaller than a set of generating cofibrations. For example, the
Joyal model structure on simplicial sets has weak Kan complexes as fibrant objects, which
are simplicial sets that have RLP with respect to inner horns. But inner horns do not
generate the whole class of trivial cofibrations. Another example is the category of marked
simplicial sets constructed in [6, Proposition 3.1.3.7]. Finally, [2, Lemma 3.3.11] implies
that a left Bousfield localization of a model category also has an explicit description of a
set of maps characterizing fibrant objects provided the original model category has such
a description.

Let S be a set of trivial cofibrations such that an object is fibrant if and only if it has
the RLP with respect to S. We should not expect that there is always a simple explicit
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description of a set of generating trivial cofibrations in terms of S. But we can show that
the class (JI ∪ S)-cof contains all trivial cofibrations with fibrant codomains. Moreover,
a map with a fibrant codomain is a fibration if and only if it has the RLP with respect
to this set. For simplicial sets with the Joyal model structure, (a slightly stronger version
of) this result was proved in [6, Corollary 2.4.6.5] (where it is attributed to Joyal).

3.8. Proposition. Let C be a model category. Let I be a set of generating cofibrations,
and let S be a set of trivial cofibrations such that every object that has the RLP with
respect to S is fibrant. Suppose that the domains and the codomains of maps in I and the
domains of maps in S are small relative to I-cell.

Then a map with a fibrant codomain is a trivial cofibration if and only if it belongs
to (JI ∪ S)-cof. A map with a fibrant codomain is a fibration if and only if it belongs to
(JI ∪ S)-inj.

Proof. Maps in S are trivial cofibrations by assumption and maps in JI are trivial
cofibrations by (A4) in the proof of Proposition 3.6. Thus maps in (JI∪S)-cof are trivial
cofibrations and fibrations belong to (JI ∪ S)-inj.

Let f : X → Z be a trivial cofibration such that Z is fibrant. Factor f into a map
g : X → Y ∈ (JI ∪ S)-cell followed by a map h : Y → Z ∈ (JI ∪ S)-inj.

X
g //

f
��

Y

h
��

Z

>>

Z

By the 2-out-of-3 property, h is a weak equivalence. Since it is a weak equivalence between
fibrant objects, by Proposition 3.5, it has RLP up to relative homotopy with respect to
I. By Proposition 3.4, f ∈ I-inj. Hence, we have a lift Z → Y as shown in the diagram
above. Thus f is a retract of g and it belongs to (JI ∪ S)-cof.

Let f : X → Y be a map in (JI ∪ S)-inj such that Y is fibrant. To prove that it is a
fibration, we need to show that it has RLP with respect to every trivial cofibration. Let
i : U → V be a trivial cofibration, and let u : U → X and v : V → Y be maps such that
the obvious square commutes. Factor v into a map V → Z ∈ S-cell followed by a map
Z → Y ∈ S-inj.

U
u //

i
��

X

f
��

V // Z //

>>

Y

Since Z is fibrant and the map U → Z is a trivial cofibration, it belongs to (JI ∪ S)-cof.
Since f belongs to (JI ∪ S)-inj, we have a lift Z → X in the diagram above. Thus f has
RLP with respect to i.
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3.9. Quillen equivalences. Let U : D→ C be a right Quillen functor with left adjoint
F : C → D. Then F a U is a Quillen equivalence if and only if U reflects weak equiv-

alences between fibrant objects and for every cofibrant X, map X
ηX−→ UF (X)

U(rF (X))−−−−−→
URF (X) is a weak equivalence, where η is the unit of the adjunction and rF (X) is a fibrant
replacement for F (X). In this subsection, we give an equivalent condition for the first
part of this characterization, which is easier to verify sometimes. We prove that U reflects
weak equivalences between fibrant objects if and only if F (CC) generates CD in a certain
sense, where CC and CD are classes of cofibrations of C and D respectively.

To describe this characterization, we need to introduce a bit of notation. This notation
is similar to the usual notation related to lifting properties, but we work with lifting
properties up to a homotopy relation. Let I be a class of cofibrations of some model
category C. Then we define I-injh as the set of maps of C between fibrant objects which
have RLP up to relative homotopy with respect to I. We define I-cofh as the set of
cofibrations of C which have LLP up to relative homotopy with respect to I-injh. We will
call elements of I-cofh weak I-cofibrations.

As usual, we have the following properties: I ⊆ I-cofh, I-cofh-injh = I-injh, I-cofh-cofh =
I-cofh, I-inj ⊆ I-injh, and if I ⊆ J, then J-injh ⊆ I-injh and I-cofh ⊆ J-cofh. Proposition 3.5
implies that C-injh =W and if I-cof = C, then I-injh =W and I-cofh = C. The following
lemma is analogous to [3, Lemma 2.1.8]:

3.10. Lemma. Let U : D → C be a right Quillen functor with left adjoint F : C → D.
Then the following are true:

1. If f is a cofibration in C and g is a map between fibrant objects in D, then F (f)
has LLP up to relative homotopy with respect to g if and only if f has this property
with respect to U(g).

2. U(F I-injh) ⊆ I-injh for every class of cofibrations I.

3. F (I-cofh) ⊆ F I-cofh for every class of cofibrations I.

Proof. The proof is identical to the proof of the analogous lemma for ordinary lifting
properties.

1. Since F is a left Quillen functor, it preserves relative cylinder objects, and hence
also relations ∼f for every cofibration f . Now, the statement holds by adjunction
as usual.

2. Let g ∈ F I-injh and f ∈ I. Then g has RLP up to ∼F (f) with respect to F (f), and
by (1), U(g) has RLP up to ∼f with respect to f . Thus U(g) ∈ I-injh, as required.

3. Let f ∈ I-cofh and g ∈ F I-injh. Then by (2), U(g) has RLP up to ∼f with respect
to f . By (1), g has RLP up to ∼F (f) with respect to F (f). Thus F (f) ∈ F I-cofh.
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Now, we can prove the characterization of Quillen equivalences. Sometimes this con-
dition is easier to verify. For example, if F (CC)-cof contains cofibrations of D, then this
condition holds immediately.

3.11. Proposition. Let U : D → C be a right Quillen functor with a left adjoint
F : C → D. Then U reflects weak equivalences between fibrant objects if and only if
CD ⊆ F (CC)-cofh.

Proof. Let f : X → Y be a map of D such that X and Y are fibrant. Then U(f) is a
weak equivalence if and only if U(f) ∈ CC-injh by Proposition 3.5. But U(f) ∈ CC-injh
if and only if f ∈ F (CC)-injh by the previous lemma. Thus we only need to prove that
F (CC)-injh ⊆ WD if and only if CD ⊆ F (CC)-cofh. But this follows from the facts that
WD = CD-injh and CD-cofh = CD which hold by Proposition 3.5.

3.12. Corollary. A Quillen adjunction F a U is a Quillen equivalence if and only if
the map X → URF (X) is a weak equivalence for every cofibrant X and CD ⊆ F (CC)-cofh.

3.13. Properties of weak I-cofibrations. Just as ordinary cofibrations, the class
of weak I-cofibrations is closed under retracts as we will see in the proposition below. But
it is also closed under weaker notion of retracts that we now introduce. Let f : X → Y
and g : Z → W be maps of some model category. Then we say that f is a weak retract
of g if there exists a diagram of the following form:

X //

f
��

Z //

g

��

X

��
Y //W // Y ′

where the composition of the top row is the identity morphism and the composition of
the bottom row is a trivial cofibration.

In order to use Corollary 3.12, we need to be able to construct weak I-cofibrations.
The following proposition gives us several useful closure properties.

3.14. Proposition. For every model category C and every class of cofibrations I in it,
the class of weak I-cofibrations is closed under pushouts, transfinite compositions, and
weak retracts.

Proof. Let i : U → V be a weak I-cofibration. Let i′ : U ′ → V ′ be a pushout of i, and
let f : X → Y be a map in I-injh. Then consider the following diagram:

U //

i
��

U ′ //

i′

��

X

f
��

V // V ′ // Y

Since i ∈ I-cofh, there exist a map v : V → X and a homotopy h : V → P (Y ) between
f ◦ v and V → V ′ → Y constant on i. Then by the universal property of pushouts, there
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exist maps v′ : V ′ → X and h′ : V ′ → P (Y ) such that V → V ′
v′−→ X is v, U ′

i′−→ V ′
v′−→ X

is U ′ → X, V → V ′
h′−→ P (Y ) is h, and h′ ◦ i′ is the constant homotopy:

U //

i
��

U ′ //

i′

�� ∼r
i′

X

f
��

V // V ′ //

v′
>>

Y

Thus i′ has LLP up to ∼i′ with respect to f .
Now, let us show that weak I-cofibrations are closed under transfinite compositions.

Let X : λ → C be a λ-sequence such that the maps xα : Xα → Xα+1 are weak I-
cofibrations. Consider the following commutative square:

X0
u //

��

Y

f
��

Xλ v
// Z

where Y and Z are fibrant and f ∈ I-injh. We construct partial functions g and h from
λ + 1 to the class of morphisms of C such that gα : Xα → Y and hα : Xα → P (Z) by
transfinite recursion on α. Let g0 = u, and let h0 be the constant homotopy on f ◦ u.

The maps gα+1 and hα+1 are defined whenever gα and hα are defined and hα is a
homotopy between f ◦ gα and v ◦ xα,λ (where xα,λ is the map Xα → Xλ). By the
homotopy extension property for right homotopies in model categories, there exist a map
v′ : Xα+1 → Z such that v′ ◦ xα = f ◦ gα and a homotopy h′ : Xα+1 → P (Z) between v′

and v ◦ xα+1,λ such that h′ ◦ xα = hα:

Xα
gα //

xα
��

Y

f

��
Xα+1

v′
++

v ◦xα+1,λ

33∼ Z

Since xα is a weak I-cofibration, there exist a map gα+1 : Xα+1 → Y such that gα+1 ◦xα =
gα and a homotopy h′′ : CXα(Xα+1)→ Z between f ◦ gα+1 and v′. Consider the following
diagram:

Xα+1
h′ //

γ1

��

P (Z)

��
CXα(Xα+1)

〈h′′,v ◦xα+1,λ ◦ s〉
//

h′′′
44

Z × Z

Since γ1 is a trivial cofibration and P (Z)→ Z ×Z is a fibration, there exists a lift h′′′ in
this diagram. We define hα+1 as h′′′ ◦ γ0. Note that hα+1 is a homotopy between f ◦ gα+1

and v ◦ xα+1,λ. Moreover, hα+1 ◦ xα = h′′′ ◦ γ0 ◦ xα = h′′′ ◦ γ1 ◦ xα = h′ ◦ xα = hα.
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If α is a limit ordinal, the maps gα and hα are defined if and only if gβ+1 ◦ xβ = gβ
and hβ+1 ◦ xβ = hβ for every β < α. If this holds, then the maps {gβ}β<α and {hβ}β<α
determine cones for α → λ

X−→ C, so we can define gα and hα by the universal property
of colimits. It is easy to see by induction on α that maps gα and hα are always defined
and commute with the maps xα. In particular, we have a map gλ : Xλ → Y such that
gλ ◦ x0,λ equals to u. Moreover, the map hλ : Xλ → P (Z) is a relative homotopy between
f ◦ gλ and v.

Finally, let us prove that I-cofibrations are closed under weak retracts. Suppose that
i : U → V is a weak retract of a weak I-cofibration f : X → Y . Then there exist maps
V → Y and Y → V ′ such that V → Y → V ′ is a trivial cofibration. Let g : Z → W ∈
I-injh, u : U → Z, and v : V → W be maps such that v ◦ i = g ◦ u. Since W is fibrant, v
factors through V → Y → V ′. Thus we have the following diagram:

U //

i
��

X //

f
��

U
u //

��

Z

g

��
V // Y // V ′ //W

Since f is a weak I-cofibration, there exists a lift Y → Z such that Y → Z
g−→ W is

relatively homotopic to Y → V ′ → W . Then V → Y → Z is the required lift in the
original square.

We can also prove the following standard proposition:

3.15. Proposition. Let I be a set of maps in a model category admitting the small object
argument. Then every weak I-cofibration is a weak retract of a relative I-cell complex.

Proof. Let f : X → Y be a weak I-cofibration. Let rY : Y → R(Y ) be a fibrant
replacement for Y . Factor rY ◦ f into a relative I-cell complex X → Z followed by a map
Z → R(Y ) ∈ I-inj. Since Z → R(Y ) is a weak equivalence between fibrant objects, we
have a lift in the following diagram:

X //

f
��

Z

��
Y rY

//

<<

R(Y )

Thus f is a weak retract of X → Z.

4. Existence of model structures

In this section, we will give necessary and sufficient conditions for the existence of a
model structure in which all objects are fibrant. Throughout this section let C be a
fixed complete and cocomplete category and I a set of maps of C such that the domains
and the codomains of maps in I are small relative to I-cell. Suppose that for every
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map i : U → V in I, there exists a reflexive relative cylinder object CU(V ) such that
[γ0,γ1] : V qU V → CU(V ) ∈ I-cof. Note that such a cylinder object always exists by
the small object argument, but sometimes we can choose another object which is more
convenient to work with.

Let JI = { γ0 : V → CU(V ) | i : U → V ∈ I }, and let WI be the set of maps which
have RLP up to relative homotopy with respect to I. We will consider the following
conditions:

For every composable f ∈ JI-cell and g, if g ◦ f ∈ WI, then g ∈ WI (*)

For every composable f ∈ JI-cell ∪WI and g, if g ◦ f ∈ WI, then g ∈ WI (*’)

First, let us prove a general lemma about split monomorphisms. It seems that it
should be well-known, but we could not find a proof of this result in the literature, so we
include it here for the sake of convenience.

4.1. Lemma. Split monomorphisms are closed under pushouts, retracts, and transfinite
compositions.

Proof. The only nontrivial statement is the last part. To prove that split monomor-
phisms are closed under transfinite compositions, consider a λ-sequence X : λ→ C such
that the maps xα : Xα → Xα+1 are split monomorphisms. We construct a partial function
r from λ+1 to the class of morphisms of C such that rα : Xα → X0 by transfinite recursion
on α. Let r0 = idX0 . Let rα+1 = rα ◦ x′α whenever rα is defined, where x′α : Xα+1 → Xα is
a splitting of xα. Finally, if α is a limit ordinal and rβ+1 ◦ xβ = rβ for every β < α, then

the maps rβ determine a cone for α→ λ
X−→ C. Since Xα is a colimit of this diagram, we

can define rα by the universal property if these conditions hold; otherwise, rα is undefined.
It is easy to see by induction on α that maps rα are always defined and commute with
the maps xα. In particular, we have a retraction rλ : Xλ → X0 of the map X0 → Xλ.

Now, we can prove the main technical lemma of this section:

4.2. Lemma. If condition (*) holds, then the following are true:

1. Every weak equivalence factors into a map in JI-cell followed by a map in I-inj.

2. Every weak equivalence has RLP up to relative homotopy with respect to I-cof.

3. For every f : X → Y and g : Y → Z, if g ∈ WI and g ◦ f ∈ WI, then f ∈ WI.

4. For every f : X → Y and g : Y → Z, if f ∈ WI and g ∈ WI, then g ◦ f ∈ WI.

5. JI-cell ⊆ WI.
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Proof. Let f : X → Z be a weak equivalence. Factor f into maps f ′ : X → Y ∈ JI-cell
and g : Y → Z ∈ JI-inj. By assumption, g ∈ WI. By Proposition 3.4, g ∈ I-inj. This
proves (1).

This implies that weak equivalences are pure with respect to cofibrations. Indeed,
maps in I-inj are pure with respect to cofibrations and maps in JI-cell are pure with
respect to all maps since they are split monomorphisms. The last statement follows from
Lemma 4.1 since the maps γ0 : V → CU(V ) are split monomorphisms by assumption.

Now, let us prove (2). Since every weak equivalence factors into a map in JI-cell
followed by a map in I-inj, to prove that every weak equivalence has RLP up to ∼i with
respect to every cofibration i : U → V , it is enough to show that every map in JI-cell has
this property. Let f : X → Y be a map in JI-cell. It has a retraction g : Y → X which
is a weak equivalence by condition (*). Hence, g is pure with respect to cofibrations. Let
u : U → X and v : V → Y be maps such that the obvious square commutes. Consider
the following diagram:

V qU V
[f◦g◦v,v] //

[γ0,γ1]
��

Y

g

��
CU(V ) g◦v◦s

// X

Since g is pure with respect to cofibrations, we have a relative homotopy between f ◦ g ◦ v
and v. Thus g ◦ v is a required lift in the original square:

U u //

i
�� ∼i

X

f
��

V v
//

g◦v
>>

Y

Now, let us prove (3). Let f : X → Y and g : Y → Z be maps such that g ∈ WI and
g ◦ f ∈ WI. Consider the following diagram:

U
u //

i
��

X

f
��

V v //

  

Y

g
��
Z

Since g ◦ f ∈ WI, we have a lift q : V → X and a homotopy h : CU(V ) → Z between
g ◦ f ◦ q and g ◦ v. Consider the following diagram:

V qU V
[f◦q,v]//

[γ0,γ1]
��

Y

g

��
CU(V )

h
// Z
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Since g is pure with respect to cofibrations, we have a lift h′ : CU(V )→ Y which gives us
a homotopy between f ◦ q and v.

Now, let us show that every f : X → Y ∈ JI-cell is a weak equivalence. Let g : Y → X
be a retraction of f . Since g ◦ f = idX , the retraction g is a weak equivalence by (*). By
(3), f is a weak equivalence too.

Finally, let us prove that weak equivalences are closed under compositions. To do this,
it is enough to show that relation ∼i is transitive. Let h0 : CU(V ) → X be a homotopy
between f : V → X and f ′ : V → X, and let h1 : CU(V ) → X be a homotopy between
f ′ : V → X and f ′′ : V → X. Then consider the following diagram:

V
γ1 //

γ0

��

CU(V )

p0

��
CU(V ) p1

//

s

��

Z

q

��
V γ1

// CU(V )

Since p0 ∈ JI-cell, q is a weak equivalence. Consider the following diagram:

V qU V
[p0◦γ0,p1◦γ1] //

[γ0,γ1]
��

Z

q

��
CU(V ) CU(V )

Since q is pure with respect to cofibrations, we have a lift h : CU(V )→ Z. Then [h0, h1]◦h
is a homotopy between f and f ′′.

4.3. Theorem. Let C be a bicomplete category, and let I be a set of maps of C such that
the domains and the codomains of maps in I are small relative to I-cell. Suppose that for
every map i : U → V in I, there exists a reflexive relative cylinder object CU(V ) such that
[γ0,γ1] : V qU V → CU(V ) ∈ I-cof.

Then there exists a model structure on C with I-cof as the class of cofibrations and
JI-cof as the class of trivial cofibrations if and only if condition (*’) holds.

Proof. First, suppose that such a model structure on C exists. Then every object is
fibrant (since JI-cof are split monomorphisms by Lemma 4.1) and CU(V ) is a correct cylin-
der object. By Proposition 3.5,WI is the class of weak equivalences. Hence, condition (*’)
holds.

Now, suppose that condition (*’) holds. Let us verify the conditions of Proposition 2.5:

(A1) Since the domains of maps in JI are the codomains of maps in I, the classes I and
JI permit the small object argument by assumption.
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(A2) The closure of WI under retracts is obvious. One part of the 2-out-of-3 property
holds by assumption and the other two parts follow from Lemma 4.2.

(A3) Since CU(V ) is reflexive, if a map has RLP with respect to every map in I, it also
has RLP up to relative homotopy with respect to these maps.

(A4) Maps in JI are cofibrations by definition. Maps in JI-cell are weak equivalences by
Lemma 4.2.

(A5) Proposition 3.4 implies that if a map is a weak equivalence and has RLP with
respect to JI-inj, then it has RLP with respect to I.

If maps in I satisfy some mild additional assumptions, then we can simplify the con-
dition in Theorem 4.3:

4.4. Proposition. Suppose that the domains of maps in I are cofibrant. Then conditions
(*) and (*’) are equivalent.

Proof. Condition (*’) obviously implies condition (*). Let us prove the converse. Let
f : X → Y and g : Y → Z be maps such that f ∈ WI and g ◦ f ∈ WI. By Lemma 4.2, we
can factor f into maps f ′ : X → X ′ ∈ JI-cell and g′ : X ′ → Y ∈ I-inj. Since f ′ ∈ JI-cell
and g ◦ g′ ◦ f ′ = g ◦ f ∈ WI, condition (*) implies that g ◦ g′ ∈ WI. Consider the following
diagram:

X ′

g′

��
U u

//

i
��

u′
>>

Y

g
��

V v
// Z

Since U is cofibrant, we have a lift u′ : U → X ′. Since g ◦ g′ ∈ WI, we have a lift
v′ : V → X ′ such that g ◦ g′ ◦ v′ ∼i v. Then g′ ◦ v′ is a required lift in the original square.

Thus the main problem is to verify condition (*). There are a few ways to do this,
but the idea is the same: we need to assume that there exists some notion of homotopy
on sets of maps which satisfies some conditions. There are two standard ways to do this:
using path and cylinder objects. Now, we present this constructions. Note that we use
very weak notions of path and cylinder objects (see section 2).

4.5. Proposition. Condition (*) holds if and only if for every object X, there exists a
path object P (X) such that the following conditions hold:

1. For every f : X → Y , there exists a morphism of path objects (f, P (f)) : P (X) →
P (Y ),
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2. Either p1 has RLP with respect to I or there exists a map s : P (X) → P (X) such
that p0 ◦ s = p1 and p1 ◦ s = p0.

3. p0 has RLP with respect to I.

4. Either path objects are reflexive and maps 〈p0, p1〉 : P (X)→ X ×X have RLP with
respect to JI or maps in JI-cell have RLP up to ∼r∗ with respect to the domains of
maps in I.

Proof. If condition (*) holds, then we can define path objects as usual using a factoriza-
tion of the diagonal X → X ×X into maps X → P (X) ∈ JI-cell and P (X)→ X ×X ∈
JI-inj. The second and the third conditions follow from Lemma 4.2 and Proposition 3.4.
The first condition is obvious since P (f) can be constructed as a lift in the following
diagram:

X //

��

Y // P (Y )

��
P (X) //

44

X ×X // Y × Y

The last condition is also obvious since the path object is reflexive and 〈p0, p1〉 ∈ JI-inj
by construction.

Let us prove the converse. If the second option of (4) holds, then condition (*) holds
by Lemma 3.3. Thus we only need to prove that the first option of (4) implies the second.
Indeed, let f : X → Y be a map in JI-cell, and let g : Y → X be its retraction. Consider
the following diagram:

X
t◦f //

f

��

P (Y )

〈p0,p1〉
��

Y
〈f◦g,idY 〉

//

77

Y × Y

We have a lift h : Y → P (Y ) which gives us a right homotopy between f ◦ g and idY .
Now, for every u : U → Y , we can define a lift u′ = g ◦ u : U → X and a homotopy h ◦ u
between f ◦ u′ and u. Thus f has RLP up to ∼r with respect to any object.

4.6. Corollary. Let C be a category and let I be a set of maps of C such that the
domains of maps in I are cofibrant and the conditions of Theorem 4.3 are satisfied. Then
there exists a model structure on C with I-cof as the class of cofibrations and JI-cof as the
class of trivial cofibrations if and only if there exist path objects that satisfy the conditions
of Proposition 4.5.

4.7. Example. An example of a model category defined in this way is a folk model
structure on the category of ω-categories which was constructed in [5]. The conditions of
Proposition 4.5 follow from the results of [5], but some of them are not needed for this
proposition. Thus the construction of this model structure can be somewhat simplified
using the general results of this section.
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Instead of path objects, we could try to use cylinder objects to verify condition (*). The
advantage of this approach is that we do not need to define a cylinder object for every
object of the category, only for objects that are domains and codomains of generating
cofibrations. The disadvantage is that we still need to verify that maps in J-cell has RLP
up to ∼ with respect to the domains of generating cofibrations.

Recall that a cylinder object for an object X is any object C(X) together with maps
γ0,γ1 : X → C(X). We do not require C(X) to be a proper cylinder object. That is,
maps X → C(X) may not be weak equivalences and a map C(X)→ X may not exist at
all.

4.8. Proposition. Suppose that, for every object X which is either the domain or the
codomain of a map in I, there exists a cylinder object C(X) such that the following con-
ditions hold:

1. For every i : U → V ∈ I, there exists a morphism of cylinder objects (i, C(i)) :
C(U)→ C(V ).

2. There exists a map s : C(X) → C(X) such that s ◦ i0 = i1, s ◦ i1 = i0, and
C(i) ◦ s = s ◦ C(i).

3. These cylinder objects satisfy the homotopy extension property. That is, if i : U →
V ∈ C, u : U → X and v : V → X are maps, and h : C(U) → X is a homotopy
between v◦i and u, then there exists a map v′ : V → X and a homotopy h′ : C(V )→
X between v and v′ such that h = h′ ◦ C(i).

4. Maps in JI-cell have RLP up to ∼∗ with respect to the domains of maps in I.

5. For every i : U → V ∈ I, we have a lift p in the following diagram:

V qU V
f //

[γ0,γ1]
��

T

CU(V )

p

;;

where T = CU(V ) q(VqUV ) (C(V ) qC(U) C(V )) is the pushout of maps [γ0,γ1] :
V qU V → CU(V ) and γ0qγ0 γ0 : V qU V → C(V )qC(U)C(V ), and f : V qU V → T

is the composite V qU V
γ1qγ1γ1−−−−−→ C(V )qC(U) C(V )→ T .

Then condition (*) holds. If the domains of maps in I are cofibrant, then the converse is
true.

Proof. Assume that conditions (1)-(5) hold. Then the proof of (*) is similar to the proof
of Lemma 3.3. Suppose that we have a commutative square as below, where f ∈ JI-cell
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and g ◦ f ∈ WI. By condition (4), there exists a map ux : U → X and a sequence of
homotopies h1, . . . , hn : C(U)→ Y between f ◦ ux and u.

∼∗

X

f
��

U

ux

>>

i
��

u
// Y

g
��

V v
// Z

Then we have a sequence of homotopies g ◦h1 ◦s, . . . , g ◦hn ◦s between v ◦ i and g ◦f ◦ux.
By the homotopy extension property, there exists a map vz : V → Z and a sequence of
homotopies h1

3, . . . , h
n
3 : C(V )→ Z between v and vz such that hj3 ◦ C(i) = g ◦ hj ◦ s.

Since g ◦ f ∈ WI, there exists a map vx : V → X and a homotopy h2 : CU(V ) → Z
between g ◦ f ◦ vx and vz. Note that h1 ◦ s ◦ s, . . . , hn ◦ s ◦ s is a sequence of homotopies
between f ◦ ux = f ◦ vx ◦ i and u. Thus, by the homotopy extension property, we have
a map vy : V → Y and a sequence of homotopies h1

y, . . . , h
n
y : C(V ) → Y between

f ◦ vx and vy such that hjy ◦ C(i) = hj ◦ s ◦ s. In particular, vy ◦ i = u. Thus we

only need to prove that g ◦ vy and v are homotopic relative to i. If we let hj1 = g ◦ hjy,
then hj1 ◦ C(i) = g ◦ hj ◦ s ◦ s = hj3 ◦ s ◦ C(i). Thus we have a sequence of maps
[hj1, h

j
3 ◦ s] : C(V )qC(U) C(V )→ Z.

If [hj1, h
j
3◦s]◦(γ0qγ0γ0) : VqUV → Z extends to CU(V ), then [hj1, h

j
3◦s]◦(γ1qγ1γ1) also

extends to CU(V ). Indeed, if [hj1, h
j
3◦s]◦(γ0qγ0γ0) = h0◦[γ0,γ1] for some h0 : CU(V )→ Z,

then there is a map q : T → Z constructed by the universal property of the pushout T .
Then q ◦ p : CU(V )→ Z is an extension of [hj1, h

j
3 ◦ s] ◦ (γ1qγ1 γ1), where p : CU(V )→ T

is the map from condition (5).
Finally, note that h2 is an extension of [g ◦ f ◦ vx, vz] = [h1

1, h
1
3 ◦ s] ◦ (γ0 qγ0 γ0). It

follows that we have an extension of [hn1 , h
n
3 ◦ s] ◦ (γ1 qγ1 γ1) = [g ◦ vy, v], which defines a

relative homotopy between g ◦ vy and v.
Now, let us assume that the domains of maps in I are cofibrant and condition (*)

holds. Then Theorem 4.3 and Proposition 4.4 imply that we have a structure of a model
category. Thus the conditions (1)-(4) are obvious. Let us prove condition (5). Consider
the following diagram:

V qU V //

γ0qγ0γ0

��

CU(V )

��
V qU V

γ1qγ1γ1 //

��

C(V )qC(U) C(V )

��

// T

��
V qU V // CU(V )

CU(V ) CU(V )
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Since the map γ0 qγ0 γ0 : V qU V → C(V ) qC(U) C(V ) is a trivial cofibration, the map
CU(V ) → T is also a trivial cofibration. It follows that the map T → CU(V ) is a weak
equivalence, which implies that it has the RLP with respect to cofibrations up to a relative
homotopy. Since the horizontal map V qU V → T in the diagram is f , we have a map
p : CU(V )→ T such that V qU V → CU(V )

p→ T equals to f .

4.9. Corollary. Let C be a category and let I be a set of maps of C such that the
domains of maps in I are cofibrant and the conditions of Theorem 4.3 are satisfied. Then
there exists a model structure on C with I-cof as the class of cofibrations and JI-cof as
the class of trivial cofibrations if and only if there exist cylinder objects that satisfy the
conditions of Proposition 4.8.

4.10. Example. An example of a model category defined in this way is the usual model
structure on topological spaces. If we define C(X) as the usual cylinder [0, 1] ×X, then
the conditions of Proposition 4.8 are easy to verify directly.
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