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COMBINATORICS OF BRANCHINGS IN HIGHER DIMENSIONAL
AUTOMATA

PHILIPPE GAUCHER

ABSTRACT. We explore the combinatorial properties of the branching areas of execu-
tion paths in higher dimensional automata. Mathematically, this means that we inves-
tigate the combinatorics of the negative corner (or branching) homology of a globular
w-category and the combinatorics of a new homology theory called the reduced branch-
ing homology. The latter is the homology of the quotient of the branching complex by
the sub-complex generated by its thin elements. Conjecturally it coincides with the non
reduced theory for higher dimensional automata, that is w-categories freely generated
by precubical sets. As application, we calculate the branching homology of some w-
categories and we give some invariance results for the reduced branching homology. We
only treat the branching side. The merging side, that is the case of merging areas of
execution paths is similar and can be easily deduced from the branching side.

1. Introduction

After [22, 14], one knows that it is possible to model higher dimensional automata (HDA)
using precubical sets (Definition 2.1). In such a model, a n-cube corresponds to a n-
transition, that is the concurrent execution of n 1-transitions. This theoretical idea would
be implemented later. Indeed a CaML program translating programs in Concurrent Pascal
into a text file coding a precubical set is presented in [10]. At this step, one does not
yet consider cubical sets with or without connections since the degenerate elements have
no meaning at all from the point of view of computer-scientific modeling (even if in the
beginning of [12], the notion of cubical sets is directly introduced by intellectual reflex).

In [14], the following fundamental observation is made : given a precubical set (K, )n>0
together with its two families of face maps (0%) for a € {—,+}, then both chain com-
plexes (ZK,,0%), where ZX means the free abelian group genmerated by X and where
0% = Y .(=1)"*ox, give rise to two homology theories HY for o € {—,+} whose non-
trivial elements model the branching areas of execution paths for a« = — and the merging
areas of execution paths for o = + in strictly positive dimension. Moreover the group H
(resp. H{ ) is the free abelian group generated by the final states (resp. the initial states)
of the HDA.

Consider for instance the 1-dimensional HDA of Figure 1. Then u — w gives rise to a
non-trivial homology class which corresponds to the branching which is depicted.

Then the first problem is that the category of precubical sets is not appropriate to
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Figure 1: A 1-dimensional branching area
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Figure 2: A 1-dimensional branching area

identify the HDA of Figure 1 with that of Figure 2 because there is no morphism between
them preserving the initial state and both final states.

No matter : it suffices indeed to work with the category of precubical sets endowed
with the +; cubical composition laws satisfying the axioms of Definition 2.4 and with the
morphisms obviously defined. Now for any n > 1, there are n cubical composition laws
+1,...,+n representing the concatenation of n-cubes in the n possible directions. Let
X =wu+;vand Y :=w+; x. Then there is a unique morphism f in this new category
of HDA from the HDA of Figure 2 to the HDA of Figure 1 such that f : v — X and
f:w Y. However f is not invertible in the category of precubical sets equipped with
cubical composition laws because there still does not exist any morphism from the HDA
of Figure 1 to the HDA of Figure 2.

To make f invertible (recall that we would like to find a category where both HDA
would be isomorphic), it still remains the possibility of formally adding inverses by the
process of localization of a category with respect to a collection of morphisms. However
a serious problem shows up : the non-trivial cycles u —w and X — Y of Figure 1 give rise
to two distinct homology classes although these two distinct homology classes correspond
to the same branching area. Indeed there is no chain in dimension 2 (i.e. Ky = {}), so no
way to make the required identification !

This means that something must be added in dimension 2, but without creating ad-
ditional homology classes. Now consider Figure 3. The element A must be understood
as a thin 2-cube such that, with our convention of orientation, 0] A = u, 0; A = u,
Of A =¢€07v, 0f A =0, B =¢,0;v. And the element B must be understood as another
thin 2-cube such that 9, B = ¢,0; v, 05 B = ;0 v and 9] B = 0] B = v. In such a situa-
tion, 0~ (A 42 B) = u +; v — u therefore u +; v and u become equal in the first homology
group H; . By adding this kind of thin 2-cubes to the chain complex (ZK,,d~), one can
then identify the two cycles u —w and X — Y. One sees that there are two kinds of thin
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cubes which are necessary to treat the branching case. The first kind is well-known in
cubical set theory : this is for example B = e;v or 9 A = €0, v. The second kind is
for example A which will be denoted by I'; v and which corresponds to extra-degeneracy
maps as defined in [6].

To take into account the symmetric problem of merging areas of execution paths, a
third family T'j” of degeneracy maps will be necessary. In this paper, we will only treat
the case of branchings. The case of mergings is similar and easy to deduce from the
branching case. The solution presented in this paper to overcome the above problems is
then as follows :

e One considers the free globular w-category F(K') generated by the precubical set
K : it is obtained by associating to any n-cube x of K a copy of the free globular
w-category I™ generated by the faces of the n-cube (paragraph 3.1) ; the faces of
this n-cube are denoted by (x; k; ...k,) ; one takes the direct sum of all these cubes
and one takes the quotient by the relations

for any y € K,,.1, a € {—,+}and 1 <i<n+1.

e Then we take its cubical singular nerve N2(F(K)) (which is equal also to the free
cubical w-category generated by K) ; the required thin elements above described
(the three families ¢;, I'; and T'}") do appear in it as components of the algebraic
structure of the cubical nerve (Definition 2.4 and Definition 3.3).

e The branching homology of F'(K) (Definition 3.5) is the solution for both following
reasons :

1. Let x and y be two n-cubes of the cubical nerve which are in the branching
complex. If  +; y exists for some j with 1 < j < n, then  and z +; y are
equal modulo elements in the chain complex generated by the thin elements
(Theorem 9.2) ;

2. The chain complex generated by the thin elements is conjecturally acyclic in
this situation, and so it does not create non-trivial homology classes (Conjec-
ture 3.6).

We have explained above the situation in dimension 1. The 2-dimensional case is
depicted in Figure 8. Additional explanations are available at the end of Section 9.

The branching homology (or negative corner homology) and the merging homology (or
positive corner homology) were already introduced in [12]. This invariance with respect
to the cubifications of the underlying HDA was already suspected for other reasons. The
branching and merging homology theories are the solution to overcome the drawback of
Goubault’s constructions.

There are three key concepts in this paper which are not so common in the general
literature and which we would like to draw to the reader’s attention.
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Figure 3: Identifying u 47 v and u

1. the extra structure of connections I't on cubical sets, which allow extra degenerate
elements in which adjacent faces coincide. This structure was first introduced in [6].

2. the notion of folding operator. This was introduced in the groupoid context in
6], to fold down a cube to an element in a crossed complex, and in the category
context in [1] to fold down a cube to an element in a globular category. Properties
of this folding operator are further developed in [2]. This we call the ‘usual folding
operator’.

3. the notion of thin cube, namely a multiple composition of cubes of the form ¢;y or
I'*z. A crucial result is that these are exactly the elements which fold down to 1 in
the contained globular category.

So there are many ways of choosing a cycle in the branching complex for a given
homology class, i.e. a given branching area, according to the choice of the cubification
of the considered HDA. This possibility of choice reveals an intricate combinatorics. The
most appropriate tool constructed in the mathematical theory of cubical sets to study
this combinatorics is not relevant here. The machinery of folding operators [6, 1] does not
work indeed for the study of the branching homology because the usual folding operators
are not internal to the branching chain complex (see Section 6.2). The core of this
paper is the proposal of a new folding operator adapted for the study of the branching
complex (Section 6.5). This operator enables us to deduce several results on the reduced
branching homology, the latter being obtained by taking the quotient of the former by
the sub-complex generated by its thin elements. This sub-complex is conjecturally acyclic
for a wide variety of w-categories, including that freely generated by a precubical set or
a globular set (Conjecture 3.6). Our main result is that the negative folding operator
induces the identity map on the reduced branching complex (Corollary 8.4). Using some
relations between the branching homology of some particular w-categories and the usual
simplicial homology of some associated w-categories (Theorem 5.5), the behaviour of the
composition maps (the globular and the cubical ones) modulo thin elements is completely
studied (Section 9). All these results lead us to a question about the description of
the reduced branching complex using globular operations by generators and relations
(Proposition 9.4 and Question 9.6) and to two invariance results for the reduced branching
homology (Proposition 11.1 and Theorem 11.2).
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This paper is organized as follows. Section 2 recalls some important notations and con-
ventions for the sequel. In Section 3, the branching homology and the reduced branching
homology are introduced. In Section 4, the matrix notations for connections and de-
generacies are described. Next in Section 5, the branching homology of some particular
w-categories (the w-categories of length at most 1) is completely calculated in terms of the
usual simplicial homology. In Section 6, the negative folding operators are introduced. In
Section 7, the negative folding operators are decomposed in terms of elementary moves.
In Section 8, we prove that each elementary move appearing in the decomposition of the
folding operators induces the identity map on the reduced branching complex. Therefore
the folding operators induce the identity map as well. In Section 9, the behaviour of the
cubical and globular composition laws in the reduced branching complex is completely
studied. In the following Section 10, some facts about the differential map in the reduced
branching complex are exposed. In the last Section 11, some invariance results for the re-
duced branching homology are exposed and the reduced branching homology is calculated
for some simple globular w-categories.

2. Preliminaries : cubical set, globular and cubical category

Here is a recall of some basic definitions, in order to make precise some notations and
some conventions for the sequel.

2.1. DEFINITION. [6] [16] A cubical set consists of a family of sets (K, )n>0, of a family of

o €;
face maps K,—=K,,_1 fora € {—,+} and of a family of degeneracy maps K, 1——=K,
with 1 <1 < n which satisfy the following relations

1. 85‘8]@ = 85_18? foralli < j < n and o,f € {—,+} (called sometimes the cube
aziom)

2. €i€j = €416 foralli < j<n

3. 0te; = €105 fori <j<nand o€ {—,+}
4. Ofe; = €;08 fori>j<mnandae{— +}
5. 0%e;=1d

A family (K, )n>o0 only equipped with a family of face maps 0 satisfying the same aziom
as above is called a precubical set. An element of Ky will be sometimes called a state, or
a 0-cube and an element of K,, a n-cube, or a n-dimensional cube.

2.2. DEFINITION. Let (K,)n>0 and (Ly)n>0 be two cubical (resp. precubical) sets. Then
a morphism f from (Kp)n>o0 to (Ln)n>o @5 a family f = (fn)nso of set maps f, : K, — L,
such that f,0% = 0% f,, and fne; = € f (resp. fu0F = 0> f) for any i. The corresponding
category of cubical sets is isomorphic to the category of pre-sheaves Sets™" over a small
category L. The corresponding category of precubical sets is isomorphic to the category of
pre-sheaves Sets™" ™" over a small category [JP".
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2.3. DEFINITION. [5] [26] [24] A (globular) w-category is a set A endowed with two
families of maps (d, = Sn)nso0 and (df = t,)n>0 from A to A and with a family of
partially defined 2-ary operations (x,)n>0 where for anyn > 0, %, is a map from {(a,b) €
A x Ajt,(a) = su(b)} to A ((a,b) being carried over a *, b) which satisfy the following

azioms for all « and B in {—,+} :

dlxifm<n

~

. dBdér =
dez if m > n

2. STk, T =Tk, t,x =2

3. if %, y is well-defined, then s,(x %, y) = spx, t,(z *, y) = t,y and for m # n,
de (x %, y) = d%x *, d%y

4. as soon as the two members of the following equality exist, then (x *, y) %, z =
Tk (Y *n 2)

5. if m # n and if the two members of the equality make sense, then (x*,y) %, (zx,w) =
(% 2) % (Y W)

6. for any x in A, there exists a natural number n such that s,x = t,x = x (the

smallest of these numbers is called the dimension of x and is denoted by dim(z)).

A globular set is a set A endowed with two families of maps (s,)n>0 and (¢.)n>0
satisfying the same axioms as above [27, 21, 3]. We call s,,(x) the n-source of x and t,,(z)
the n-target of x.

NOTATION. The category of all w-categories (with the obvious morphisms) is denoted
by wCat. The corresponding morphisms are called w-functors. The set of n-dimensional
morphisms of C is denoted by C,,. The set of morphisms of C of dimension lower or equal
than n is denoted by tr,C. The element of Cy will be sometimes called states. An initial
state (resp. final state) of C is a 0-morphism « such that a = sox (resp. a = togx) implies
T = Q.

2.4. DEFINITION. [0, 1] A cubical w-category consists of a cubical set
((Kn)nz0, 07 €)
together with two additional families of degeneracy maps called connections
'Y K, — Ky

with € {—,+}, n > 1 and 1 < i < n and a family of associative operations +; defined
on {(z,y) € Kn X Ky, 07z =07y} for 1 <j <n such that

1. 65‘1“? = Ffﬁlé?f‘ foralli < j and all o, 5 € {—,+}
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2. 00T =100 | foralli>j+1 and all o, B € {—, +}
3. 0;T; =07, =1d
4. O7TT = 05,IT = ¢;0°
5. Ty =T I if i < j
6. T;TT =T7, 0 ifi <
7.TITT =TI0 . ifi>j+1
8 TFe; = e; 15 ifi<j
9. TFe; = eie; if i = j
10. Tfe; = TF  ifi>j
. (r45y) 52 =2+ (Y +; 2)
12. 0; (z +;y) = 9, (v)
13. 0/ (z +;y) = 9f (y)

O () +-1 00 (y) if i < j
O () +; 0 (y) if i > j
15. (x+iy) 4+ (z+it) = (@45 2) +4 (y +5 1).

{61(50) +ip€i(y) ifi < j
16. 61'(.T +j y) - . .
ei(x) +5e(y) if i >
T () +j01 TE(y) if i < j
Ui(z) + T (y) if i > j

€1 J
18 Ifi=j,Ti(x+;y) = [lﬁ(g)) 6](( ))}L,HJ

14. 0f(x +;y) = {

17. Tz +;y) = {

19. Ifi=j4, T (z+;y) = { %@) e:l(( )) ] Lo

20. Tfw + 1 Tjo = ex and Tz +; 12 = 1

21. ¢0; x+ix =z +; 0 v =1

The corresponding category with the obvious morphisms is denoted by coCat.

330

Without further precisions, the word w-category is always supposed to be taken in the
sense of globular w-category. In [2], it is proved that the category of cubical w-categories

and the category of globular w-categories are equivalent.
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NoTATION. If S is a set, the free abelian group generated by S is denoted by ZS. By
definition, an element of 7ZS is a formal linear combination of elements of S.

2.5. DEFINITION. [12] Let C be an w-category. Let C,, be the set of n-dimensional mor-
phisms of C. Two n-morphisms x and y are homotopic if there exists z € ZC, 11 such that
Spnz —tpz = x —y. This property is denoted by x ~ y.

We have already observed in [12] that the corner homologies do not induce functors
from wClat to the category of abelian groups. A notion of non-contracting w-functors was
required.

2.6. DEFINITION. [12] Let f be an w-functor from C to D. The morphism f is non-

contracting if for any 1-dimensional x € C, the morphism f(x) is a 1-dimensional mor-
phism of D.

The theoretical developments of this paper and future works in progress entail the
following definitions too.

2.7. DEFINITION. Let C be an w-category. Then C is non-contracting if and only if for
any x € C of strictly positive dimension, sz and t1x are 1-dimensional (they could be a
priori 0-dimensional as well).

A justification of this definition among a lot of them is that if C is an w-category which
is not non-contracting, then there exists a morphism u of C such that dim(u) > 1 and
such that for instance sju is O-dimensional. For example consider the two-element set
{A, a} with the rules s;A = t1 A = s9A = tpA = « and $3A = tA = A. This defines an
w-category which is not non-contracting. Then A is 2-dimensional though s;A and ;A
are O-dimensional. And in this situation [J; (A) defined in Section 6.5 is not an element of
the branching nerve, and therefore for that C, the morphism CF}, (C) (see Proposition 9.4)
to CR5 (C) is not defined.

NOTATION. The category of non-contracting w-categories with the non-contracting w-
functors is denoted by wCat;.

If f is a non-contracting w-functor from C to D, then for any morphism z € C of
dimension greater than 1, f(x) is of dimension greater than one as well. This is due to
the equality f(s12) = s1.f(z).

All globular w-categories that will appear in this work will be non-contracting.

3. Reduced branching homology

3.1. THE GLOBULAR w-CATEGORY [". We need first to describe precisely the w-category
associated to the n-cube. Set n = {1,...,n} and let cub” be the set of maps from n to
{—,0,+} (or in other terms the set of words of length n in the alphabet {—,0,+}). We
say that an element x of cub™ is of dimension p if 71(0) is a set of p elements. The set
cub™ is supposed to be graded by the dimension of its elements. The set cub” is the set of
maps from the empty set to {—, 0, +} and therefore it is a singleton. Let y € cub’. Let Ty
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be the map from (cub™); to (cub")qim(y) defined as follows (with x € (cub™);) : for k € n,
x(k) # 0 implies r,(z)(k) = x(k) and if x(k) is the [-th zero of the sequence z(1), ..., z(n),
then 7, (z)(k) = y(¢). If for any ¢ between 1 and i, y(¢) # 0 implies y(¢) = (=), then we
set by(z) :=r,(x). If for any ¢ between 1 and i, y(¢) # 0 implies y(¢) = (—)“"!, then we
set e,(z) := ry(x). We have

If x is an element of cub”, let us denote by R(x) the subset of cub" consisting of
y € cub™ such that y can be obtained from z by replacing some occurrences of 0 in = by
— or +. For example, —00 + +— € R(—000 4+ —) but +000 + — ¢ R(—000 + —). If X is
a subset of cub”, then let R(X) = (J,.y R(z). Notice that R(X UY) = R(X)UR(Y).

3.2. THEOREM. There is one and only one w-category I™ such that
1. the underlying set of I™ is included in the set of subsets of cub”
2. the underlying set of I™ contains all subsets like R(x) where x runs over cub”
3. all elements of I"™ are compositions of R(x) where x runs over cub”

4. for x p-dimensional with p > 1, one has

sp-1(R(x)) = R ({by(x), dim(y) = p — 1})
tp1(R(z)) = R({ey(z),dim(y) = p — 1})

5.4f X and Y are two elements of I"™ such that t,(X) = s,(Y) for some p, then
XUuYel"and XUY = X %,Y.

Moreover, all elements X of I™ satisfy the equality X = R(X).

The elements of I™ correspond to the loop-free well-formed sub pasting schemes of the
pasting scheme cub™ [15] [9] or to the molecules of an w-complex in the sense of [25]. The
condition “X x,, Y exists if and only if X NY =1¢,X = s,Y” of [25] is not necessary here
because the situation of [25] Figure 2 cannot appear in a composable pasting scheme.

The map which sends every w-category C to N2(C), = wCat(I*,C) induces a functor
from wCat to the category of cubical sets. If z is an element of wCat(I™,C), €;(x) is the
w-functor from I"*! to C defined by €;(x)(ky...kpy1) = x(kllaknﬂ) for all ¢ between
1 and n + 1 and 9%(x) is the w-functor from I"™* to C defined by 0%(x)(ky...k,_1) =
x(ky...ki_1ak;.. .k, 1) for all i between 1 and n.

The arrow 0 for a given ¢ such that 1 < ¢ < n induces a natural transformation from
wCat(I",—) to wCat(I"',—) and therefore, by Yoneda, corresponds to an w-functor
6% from ™! to I". This functor is defined on the faces of I"™! by 6% (ky...ky—1) =
R(ky...[al;...k,—1). The notation [...]; means that the term inside the brackets is at the
i-th place.

3.3. DEFINITION. The cubical set (wCat(I*,C), 0%, €;) is called the cubical singular nerve
of the w-category C.
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3.4. REMARK. For o € {—,+}, and z € wCat(I",C), let

n

0% = Z(—l)”l@f‘x

i=1
Because of the cube axiom, one has 9% o 90“ = 0.

3.5. DEFINITION. [12] Let C be a non-contracting w-category. The set of w-functors
x € wCat(I™,C) such that for any 1-morphism u with sou = —,41, x(u) is 1-dimensional
(a priori z(u) could be 0-dimensional as well) is denoted by wCat(I™,C)~. Then

O~ (ZwCat(I*',C)7) C ZwCat(I*,C)~
by construction. We set

H_(C) = H.(ZwCat(I*,C)~,07)

*

and we call this homology theory the branching homology of C. The cycles are called the
branchings of C. The map H_ induces a functor from wCaty to Ab.

The definition of wCat(I™,C)~ is a little bit different from that of [12]. Both definitions
coincide if C is the free w-category generated by a precubical set or a globular set. This
new definition ensures that the elementary moves introduced in Section 7 are well-defined
on the branching nerve. Otherwise it is easy to find counterexample, even in the case of
a non-contracting w-category.

3.6. CONJECTURE. (About the thin elements of the branching complex) Let C be a
globular w-category which is either the free globular w-category generated by a precubical
set or the free globular w-category generated by a globular set. Let x; be elements of
wCat(I™,C)~ and let \; be natural numbers, where i runs over some set I. Suppose that
for any i, z;(0,) is of dimension strictly lower than n (one calls it a thin element). Then
> Aixi is a boundary if and only if it is a cycle.

The thin elements conjecture is not true in general. Here is a counterexample. Con-
sider an w-category C constructed by considering I? and by dividing by the relations
R(—0) = R(0—) and R(—0) %9 R(0+) = R(0—) %9 R(+0). Then the w-functor F' €
wCat(I*,C)~ induced by the identity functor from I? to itself is a thin cycle in the
branching homology. One can verify that this cycle would be a boundary if and only if
R(0+) was homotopic to R(40) in C. This observation suggests the following questions.

3.7. DEFINITION. Let C be an w-category. Then the n-th composition law is said to
be left reqular up to homotopy if and only if for any morphisms x, y and z such that
Tk Y =X %, 2, then y ~ 2.

3.8. QUESTION. Does the thin elements conjecture hold for an w-category C such that all
composition laws *, for any n > 0 are left reqular up to homotopy ?

3.9. QUESTION. How may we characterize the w-categories for which the thin elements
conjecture holds ?
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3.10. DEFINITION. Let M, (C) C ZwCat(I",C)~ be the sub-Z-module generated by the
thin elements (M for “mince” which means “thin” in French). Set

CR, (C) = ZwCat(I",C)" /(M (C) + 0~ M, ,(C))
where M, (C) + 0~ M, ,(C) is the sub-Z-module of ZwCat(I",C)~ generated by M, (C)
and the image of M, ,(C) by 0. The differential map 0~ induces a differential map
CR,.,(C) — CR,(C)

This chain complex is called the reduced branching complex of C. The homology associated
to this chain complez is denoted by HR, (C) and is called the reduced branching homology
of C.

3.11. PROPOSITION. Conjecture 3.6 is equivalent to the following statement : if C is
the free w-category generated by a precubical set or by a globular set, then the canonical
map from the branching chain complex to the reduced branching chain complex of C is a
quasi-isomorphism.

Proor. By the following short exact sequence of chain complexes
0—=M_(C)+0 M_,(C) — ZwCat(I*,C)- —=CR,(C) —=0

the assumption H, (C) = HR, (C) for all n is equivalent to the acyclicity of the chain
complex (M 4+ 0~ M, ,07) (notice that My (C) = M, (C) = 0).

Now if Conjecture 3.6 holds, then take an element x € M, (C) + 0~ M, ,(C) which is
a cycle. Then = t; + 07ty where t; € M (C) and ¢, € M, ,,(C). Then ¢; is a cycle
in ZwCat(I",C)~ and a linear combination of thin elements. Therefore t; is a cycle in
ZwCat(I", tr,_1C)~. By Conjecture 3.6, t; = 0"tz where t3 € ZwCat(I"" tr, C)".
Therefore t; € 07 M, ,(C). Conversely, suppose that the sub-complex generated by the
thin elements is acyclic. Take a cycle t of ZwCat(I™,C)~ which is a linear combination
of thin elements. Then ¢ is a cycle of M, (C) + 0~ M, ,(C), therefore there exists ¢; €
Mn_+1(c> and ty € Mn_+2(c) such that ¢t = 87<t1 + 8’752) = 8’751. [ ]

3.12. DEFINITION. Let x and y be two elements of ZwCat(I",C)~. Then x and y are
T-equivalent (T for thin) if the corresponding elements in the reduced branching complex
are equal, that means if v —y € M, (C)+0~ M, ,(C). This defines an equivalence relation
on ZwCat(I"™,C)~ indeed.

4. Matrix notation for higher dimensional composition in the cubical sin-
gular nerve
There exists on the cubical nerve wCat(I*,C) of an w-category C a structure of cubical
w-categories [12] by setting
Uo(z)(ky .. kn) = x(ky ... max(ki, kiv1) - kn)
CH(x)(ky .. ky) = x(ky ... min(ky, kig1) - k)
with the order — < 0 < + and with the proposition-definition :
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4.1. PROPOSITION. [12] Let C be a globular w-category. For any strictly positive natural
number n and any j between 1 and n, there exists one and only one natural map +; from

the set of pairs (x,y) of NO(C)n x NP(C), such that 9 (x) = 9; (x) to the set NP(C),,
which satisfies the following properties :
05 (z +jy) = 0; (z)
oF (@ +5y) = O (x)
. O () +5-1 07 (y) if i < j
Oz +;y) = o N .
0 (x) +; 07 (y) if i > j
Moreover, these operations induce a structure of cubical w-category on ND(C).
The sum (z +;y) +; (2 +:t) = (x +; 2) +; (y +; t) if there exists will be denoted by
1
r z .
{ y 1 ] L]
and using this notation, one can write
o Ifi=j I (x+;y) = l T
! Iy (x)
o
+
Tf(z) el) |
The matrix notation can be generalized to any composition like
(CL11 +z Ce +7, aln) +j e +j (a'ml +z e +z amn)

whenever the sources and targets of the a;; match up in an obvious sense (this is not
necessarily true). In that case, the above expression is equal by the interchange law to

(an +j —|—J aml) +7, +2 (aln +J+] amn)

- +
o If2 :j7 F:r(x —|—j y) — |i 6](1') F] (y

and we can denote the common value by

Am1 ... Amn J

ti

a1 ... QAip
In such a matrix, an element like €;z is denoted by Z. An element like €;x is denoted
by I'l. In a situation where i = j + 1, an element like I'; (z) is denoted by 71 and an

element like I'J () is denoted by L. An element like €;e;2 = €j41€;x is denoted by O.
With ¢ = j 4+ 1, we can verify some of the above formulae :

TR R R =

101
e R B R Y
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4.2. DEFINITION. [6/[1] A n-shell in the cubical singular nerve is a family of 2(n + 1)
elements x7 of wCat(I",C) such that 8?955 = 8?_195? forl<i<j<n+1anda,fpe

{_7 +}'
4.3. DEFINITION. The n-shell (z) is fillable if

1. the sets {a:g*)i, 1<i<n+1} and {xl(-f)m, 1 < i < n+ 1} have each one exactly
one non-thin element and if the other ones are thin.

yirtt

2. if xl(o_)io are these two non-thin elements then there exists w € C such
(=)t

that s,(u) = 2 (0,) and t,,(u) = ;) (0y,).

10

and xgl_

The following proposition is an analogue of [1] Proposition 2.7.3.

4.4. PROPOSITION. [12] Let (xF) be a fillable n-shell with u as above. Then there exists
one and only one element x of wCat(I"™ C) such that x(0,41) = u, and for 1 <i < n+1,
and o € {—,+} such that 0%z = x5

Proposition 4.4 has a very important consequence concerning the use of the above
notations. In dimension 2, an expression A like (for example)

L 1 011 011
Z ¢ Z y Z L2
O L 1L —
is necessarily equal to
1
r oy
2
{II L}L

because the labels of the interior are the same (A(00) = (z+42y)(00)) and because the shells
of 1-faces are equal (9 A =0y, 0y A= 0z +,0{y, 0, A=0;x, Of A =07y +10y) :
the dark lines represent degenerate elements which are like mirrors reflecting rays of light.
This is a fundamental phenomenon to understand some of the calculations of this work.
Notice that A # x 42 y because 0] A # 01 (z +2 y).

All calculations involving these matrix notations are justified because the Dawson-Paré
condition holds in 2-categories due to the existence of connections (see [11] and [7]). The
Dawson-Paré condition stands as follows : suppose that a square o has a decomposition
of one edge a as a = a; +1 as. Then « has a compatible composition o = aq +; o, i.€.
such that «; has edge a; for j = 1,2. This condition can be understood as a coherence
condition which ensures that all “compatible” tilings represent the same object.

Let us mention that these special 2-dimensional notations for connections and degen-
eracies first appeared in [8] and in [23].
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5. Relation between the simplicial nerve and the branching nerve
5.1. PROPOSITION. [12] Let C be an w-category and o € {—,+}. We set

N (C) = wCat(I",C)~

n

and for alln >0 and all 0 <1 < n,
95 : Ny (C) —=N,,_,(C)

is the arrow 0, and

€ N, (C) —= N (€)

n

is the arrow I'; ;. We obtain in this way a simplicial set
(N (C), 0;, )

called the branching simplicial nerve of C. The non normalized complex associated to it
gives exactly the branching homology of C (in degree greater than or equal to 1). The map
N~ induces a functor from wCat, to the category Sets™” of simplicial sets.

THE GLOBULAR w-CATEGORY A". Now let us recall the construction of the w-category
called by Street the n-th oriental [26]. We use actually the construction appearing in [17].
Let O™ be the set of strictly increasing sequences of elements of {0,1,...,n}. A sequence
of length p + 1 will be of dimension p. If o0 = {0y < ... < 0,} is a p-cell of O", then we
set ;0 ={09 < ... <0, <...<oy}. If o0isan element of O", let R(0) be the subset of
O™ consisting of elements 7 obtained from ¢ by removing some elements of the sequence
o and let R(3) = |, 5, R(0). Notice that R(XUT) = R(X) U R(T).

5.2. THEOREM. There is one and only one w-category A™ such that
1. the underlying set of A™ is included in the set of subsets of O™
2. the underlying set of A™ contains all subsets like R(c) where o runs over O™

3. all elements of A" are compositions of R(c) where o runs over O™

4. for o p-dimensional with p > 1, one has
sp—1(R(0)) = R ({0;0,7 is even})
ty-1(R(0)) = R({0)0.] is odd})

5. 4f X and T are two elements of A™ such that t,(3X) = s,(T") for some p, then
YUT e A" and XUT =X %, T.

Moreover, all elements ¥ of A™ satisfy the equality ¥ = R(X).

If C is an w-category and if x € wCat(A™,C), then consider the labeling of the faces
of respectively A" and A"~! defined by :
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o c;(x)(op<...<0)=zx(0g<...<op1<op—1<...<0,—1)if op_1; < i and
o > 1.

e (0g<..<op1<i<opn—1<...<o,—1)ifoy 1 <i,0, =1dand op41 >i+1.
e 1(0g<...<0p1<i<0po—1<...<o0,—1)ifoy1 <i,0, =iand x4 =i+1.

and
Oi(x)(og<...<0s)=x(0g < ... <01 <op+1<...<o0s+1)

where oy, ...,0, > 1 and op_1 < i.
It turns out that €;(z) € wCat(A™™ C) and 9;(z) € wCat(A"1 C). See [19, 28] for
further information about simplicial sets. One has :

5.3. DEFINITION. [26] The simplicial set (WCat(A"™,C), 0;, €;) is called the simplicial ner-
ve N(C) of the globular w-category C. The corresponding homology is denoted by H,(C).

5.4. DEFINITION. LetC be a non-contracting w-category. By definition, C is of length at
most 1 if and only if for any morphisms x and y of C such that x oy exists, then either
x ory is 0-dimensional.

5.5. THEOREM. Let C be an w-category of length at most 1. Denote by PC the unique
w-category such that its set of n-morphisms is exactly the set of (n+1)-morphisms of C for
any n = 0 with an obvious definition of the source and target maps and of the composition
laws. Then one has the isomorphisms H,(PC) = H, ,(C) forn > 1.

PRrROOF. We give only a sketch of proof. By definition, H, (C) = H,(N~(C)) for n >
1. Because of the hypothesis on C, every element x of wCat(I""* C)~ is determined
by the values of the x(k;...k,y1) where ky...k,y1 runs over the set of words on the
alphabet {0, —}. It turns out that there is a bijective correspondence between O™ and
the word of length n + 1 on the alphabet {0,—} : if 0y < ... < 0, is an element of
O", the associated word of length n + 1 is the word my ...m,, such that m,, = 0 and if

Jj ¢ {oo,...,0p}, then m; = —. It is then straightforward to check that the simplicial
structure of N7(C) is exactly the same as the simplicial structure of wCat(A*,PC) in
strictly positive dimension !. [

The above proof together with Proposition 5.1 gives a new proof of the fact that if
x € wCat(A™,C), the labelings 9;(z) and ¢;(x) above defined yield w-functors from A"™~!
(resp. A1) to C.

Notice that the above proof also shows that H,(PC) = H," ,(C) where H} is the
merging homology functor ? This means that for an w-category of length at most 1,
H, ,(C) = H ,(C) for any n > 1. In general, this isomorphism is false as shown by

IThe latter point is actually detailed in [13].

2Like the branching nerve, the definition of the merging nerve needs to be slightly change, with respect
to the definition given in [12]. The correct definition is : an w-functor z from I™ to a non-contracting
w-category C belongs to wCat(I™,C)" if and only if for any 1-morphism v of I" such that to(y) = R(+n),
then z(7) is a 1-dimensional morphism of C.
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MERGING

BRANCHING

Figure 4: A case where branching and merging homologies are not equal in dimension 2

Figure 4. The precubical set we are considering in this figure is the complement of the
depicted obstacle. Its branching homology is Z & Z in dimension two, and its merging
homology is Z in the same dimension.

The result H,(PC) = H,,,(C) = H,",(C) for C of length at most one and for n > 1
also suggests that the program of constructing the analogue in the computer-scientific
framework of usual homotopy invariants is complete for this kind of w-categories. The
simplicial set N(PC) together with the graph obtained by considering the 1-category
generated by the 1-morphisms of C up to homotopy contain indeed all the information
about the topology of the underlying automaton. Intuitively the simplicial set N (PC)
is an orthogonal section of the automaton. Theorem 5.5 suggests that non-contracting
w-categories of length at most one play a particular role in this theory. This idea will be
deepened in future works.

5.6. COROLLARY. With the same notation, if PC is the free globular w-category generated
by a composable pasting scheme in the sense of [15], then H, ,(C) vanishes for n > 1.

PrOOF. By [25] Corollary 4.17 or by [17] Theorem 2.2, the simplicial nerve of the w-
category of any composable pasting scheme is contractible. [

5.7. COROLLARY. Let 2, be the free w-category generated by a p-morphism. For any
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p=>landanyn>1, H; (2,) =0.

PRrROOF. It is obvious for n = 1 and for n > 2, H, (2,) = H,_1(P2,). But P2, = 2, 4,
therefore it suffices to notice that the (p — 1)-simplex is contractible. n

5.8. COROLLARY. For any n > 1, let G,(A, B) be the w-category generated by two n-
morphisms A and B satisfying s,—1(A) = s,—1(B) and t,—1(A) = t,—1(B). Then

H (G,(A,B)) =0

p

forO<p<mnorp>n and
Hy (Gn(A, B)) = H, (Gn(4, B)) = Z.

PRroor. It suffices to calculate the simplicial homology of a simplicial set homotopic to
a (n — 1)-sphere. -

Let S be a composable pasting scheme (see [15] for the definition and [17] for addi-
tional explanations). A reasonable conjecture is that the branching homology of the free
w-category Cat(S) generated by any composable pasting scheme S vanishes in strictly
positive dimension. By Conjecture 5.10, it would suffice for a given composable pasting
scheme S to calculate the branching homology of the bilocalization Cat(S)[I, F| of Cat(S)
with respect to its initial state I and its final state F, that is the sub-w-category of Cat(5)
which consists of the p-morphisms x with p > 1 such that sqz € I and tgx € F and of the
O0-morphism I and F'. The question of the calculation of

H, 1 (Cat(S)[I, F) = Hy(PCat(S)[1, F])

for p > 1 seems to be related to the existence of what Kapranov and Voevodsky call the
derived pasting scheme of a composable pasting scheme [17]. It is in general not true
that PCat(S)[I, F] (denoted by QCat(S) in their article) is the free w-category generated
by a composable pasting scheme. But we may wonder whether there is a “free cover” of
QCat(S) by some Cat(T) for some composable pasting scheme 7. This T" would be the
derived pasting scheme of S.

As for the n-cube I™, its derived pasting scheme is the composable pasting scheme
generated by the permutohedron [20, 4, 18]. Therefore one has

5.9. PROPOSITION. Denote by I"[—,, +,] the bilocalization of I"™ with respect to its initial
state —, and its final state +,, Then for all p > 1, H (I"[—,, +x]) = 0.

PROOF. It is clear that Hy (I"[—y,+,]) = 0. For p > 2, H (I"[—,, +,]) = H, (")
by Theorem 5.5. But /" is the free w-category generated by the permutohedron, and
with Corollary 5.6, one gets H, (I"[—,,+,]) = 0 for p > 2. =
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By filtrating the 1-morphisms of I™ by their length, it is possible to construct a spectral
sequence abutting to the branching homology of I". More precisely a 1-morphism z is
of length ((x) if x = R(x1) %o ... %o R(zyy)) where z1,..., 2y € (cub™);. Now let
FowCat(I*,I™)~ be the subset of x € wCat([*,1")~ such that for any k; ...k, € (cub™);
such that + € {kq,...,k.}, €(z (k1 ... ko)) < p. Then one gets a filtration on the branching
complex of I™ such that

F L ZwCat(I*,I")” C FyZwCat(I*,I")” C ... C FZwCat(I*,1")"
with
F \ZwCat(I*,I")” = 0
FoZwCat(I*,I")” = ZwCat(I*, I"(—pn,+n))”
F,ZwCat(I*,I")” ZwCat(I*, 1")".
One has B}, = Hy((F,ZwCat(I*,I")” /F,_1 ZwCat(I*,I")") = H,

p+q
tion 5.9, By, = 0 if ¢ # 0 and Ey = Z.
The above spectral sequence probably plays a role in the following conjecture :

(I"™). By Proposi-

5.10. CONJECTURE. Let C be a finite w-category (that is such that the underlying set is
finite). Let I be the set of initial states of C and let F' be the set of final states of C (then
Hy(C) = H, (C[I,F)) =ZF). If for any n > 0, H, (C[I, F]) = 0, then for any n > 0,
H (C)=0.

By [17], QA™ = [""! therefore the vanishing of the branching homology of I"~! in
strictly positive dimension and Conjecture 5.10 would enable to establish that H (A") =

0 for p > 0 and for any n.

6. About folding operators

The aim of this section is to introduce an analogue in our framework of the usual folding
operators in cubical w-categories. First we show how to recover the usual folding operators
in our context.

The notations Oy or Oy (resp. [y or ;) correspond to the canonical map from C
to wCat(I° C) (resp. from tr1C to wCat(I',C)). Now let us recall the construction of the
operators [, of [12].

6.1. PROPOSITION. [12] Let C be an w-category and let n > 1. There exists one and
only one natural map O, from tr,,C to wCat(I™,C) such that the following azioms hold :

1. one has evo,0,, = Idy, . where evy, (x) = x(0,) is the label of the interior of x.

2.ifn>3and 1 <i<n—2, then 070, =T, ,0 O, |5, 1.

3. ifn>2andn—1<1i < n, then0; [, = D;_ldfl__); and 00, = €, 107 |0, 1s,_1.

Moreover for 1 <i < n, we have 050 s, = 00 t, and if x is of dimension greater or
equal than 1, then O, (z) € wCat(I™,C)~.
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6.2. THE USUAL FOLDING OPERATORS. One defines a natural map [, from C, to
wCat(I™,C) by induction on n > 2 as follows (compare with Proposition 6.1).

6.3. PROPOSITION. For any natural number n greater or equal than 2, there exists a
unique natural map O, from C,, to wCat(I",C) such that

1. the equality O,(x)(0,) = = holds.
2. one has 070, = Dn_ldﬁj_)f‘ for a = =+.
3. for 1 <i < n, one has 070, = €05 {U,—155-1.

Moreover for 1 < i < n, we have aiiDnsnu = aiiDntnu for any (n + 1)-morphism w.
PRrROOF. The induction equations define a fillable (n — 1)-shell (see Proposition 4.4). =

6.4. PROPOSITION. Foralln > 0, the evaluation map evy, : x — x(0,) fromwCat(I",C)
to C induces a bijection from YN'B(C),, to tr,C where ~y is the functor defined in [1].

PrOOF. Obvious for n = 0 and n = 1. Recall that v is defined by
(VG)n = {2 € G, 077 € e{_lGn,j for 1<j<na=0,1}

Let us suppose that n > 2 and let us proceed by induction on n. Since evy, [, (u) = u by
the previous proposition, then the evaluation map ev from yA(C),, to tr,C is surjective.
Now let us prove that » € YNZ(C), and y € YN(C),, and z(0,) = y(0,) = u imply
x =y. Since x and y are in YN(C),,, then one sees immediately that the four elements
Oz and 0y are in YA'U(C),_1. Since all other 9%z and 0%y are thin, then 9; 2(0, ;) =
07 y(0,-1) = sp_qu and 0] x(0,_1) = 0{y(0,_1) = t,_1u. By induction hypothesis,
Ofr = 0y = O, 1(sp1u) and 0z = 0y = O, 1(t,_1u). By hypothesis, one can
set 83‘% = ej_.lx?‘ and 0%y = ej_ly})‘ for 2 < j < n. And one gets 2§ = (8{“)9'_18;.% =
(0F)x = (07)'y = y§. Therefore 0fx = dfy for all @ € {—,+} and all j € [1,...,n]. By
Proposition 4.4, one gets x = y. [

The above proof shows also that the map which associates to any cube x of the cubical
singular nerve of C the cube Ogim(z)(2(0gim(z))) is exactly the usual folding operator as
exposed in [1].

Unfortunately, these important operators are not internal to the branching complex,
due to the fact that an n-cube x of the cubical singular nerve is in the branching complex
if and only for any 1-morphism « of I™ starting from the initial state —, of the n-cube,
x(7y) is 1-dimensional (see Definition 3.5). But for example (O, (x(0,)))(—... — 0) is
0-dimensional.

6.5. THE NEGATIVE FOLDING OPERATORS. The idea of the negative folding operator

® is to “concentrate” a n-cube x of the cubical singular nerve of an w-category C to the

faces 9,,_1(0,-1) and 6, (0,_1). Hence the following definition.
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6.6. DEFINITION. Set ®_(x) = O (x(0,)). This operator is called the n-dimensional
negative folding operator.

It is clear that x € wCat(I™,C)~ implies ®,, (z) € wCat(I",C)~. Therefore & yields
a map from wCat(I™,C)~ to itself.

Since 0, 0 = D;_ldfl__)lnil and 0, 0, = D;_ld;‘_)f, the effect of O (x(0,,)) is indeed
to concentrate the faces of the n-cube x on the faces §, ,(0,-1) and §, (0,-1). All the
(n — 1)-cubes 0¢0;, (z) for (i,a) ¢ {(n — 1,—),(n,—)} are thin. Of course there is not
only one way of concentrating the faces of « on d,_,(0,-;1) and ¢, (0,—1). But in some
way, they are all equivalent in the branching complex (Corollary 8.4). We could decide
also to concentrate the n-cubes for n > 2 on the faces d§; (0,-1) and 04 (0,-1), or more
generally to concentrate the n-cubes on the faces 6,,,(0,-1) and 6, (0,-1) where p(n)
and ¢(n) would be integers of opposite parity for all n > 2. Let us end this section by
explaining precisely the structure of all these choices.

In an w-category, recall that d = s,, df = t, and by convention, let d = df = Id.
All the usual axioms of globular w-categories remain true with this convention and the
partial order n < w for any natural number n.

If z is an element of an w-category C, we denote by (x) the w-category generated by
z. The underlying set of (z) is {s,z,t,z,n € N}. We denote by 2,, any w-category freely
generated by one n-dimensional element.

Let R(ky...k,) € I™ a face. Denote by evy, x, the natural transformation from
wCat(I™,—) to tr, which maps f to f(R(k;...ky)).

6.7. DEFINITION. Let n € N. Recall that tr, is the forgetful functor from w-categories
to sets which associates to any w-category its set of morphisms of dimension lower or
equal than n and let 1,, be the inclusion functor from tr,_, to tr,. We call cubification of
dimension n, or n-cubification a natural transformation O from tr, to wCat(I™, —). If
moreover, evy, J = Id, we say that the cubification is thick.

We see immediately that O, O, (and O} of [12]) are examples of thick n-cubifica-
tions. By Yoneda the set of n-cubifications is in bijection with the set of w-functors from
I™ to 2,,. So for a given n, there is a finite number of n-cubifications.

6.8. PROPOSITION. Let f be a natural transformation from tr,, to tr, with m,n € NU
{w}. Then there exists p < m and o € {—,+} such that f = df. And necessarily,
p < Inf(m,n).

PROOF. Denote by

<A>=2, — 5 <B>=2,

the w-functor which corresponds to f by Yoneda. Then g(A) = d;(B) for some p and
some «. And necessarily, p < min(m,n) (where the notation min means the smallest
element). =

6.9. COROLLARY. Let ] be a n-cubification with n > 1 a natural number. Then for any
i with 1 <4 < n, 07 0s, = 0F0t,,.
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Proor. We have
aiiDsna:(ll codlner) = eyt Osn ()

But evy,.. [4],..1,_,[ is a natural transformation from tr, to tr,_;. By Proposition 6.8, we
get
8;t|:|8nl‘<l1 ce ln—l) = evll...[i]i...ln_lljtn(x) = @iDtnx(ll . ln—l)

We arrive at a theorem which explains the structure of all cubifications :

6.10. THEOREM. Let O be a thick n-cubification and let f be an w-functor from 1"+ to
I such that f(R(0,11)) = R(0,). Denote by f* the corresponding natural transformation
from wCat(I", =) to wCat(I"™, —). Then there exists one and only one thick (n + 1)-
cubification denoted by f*.00 such that for 1 <i<n+1,

(F*Dinss = 0

where 1,41 1S the canonical natural transformation from tr, to tr ..

PrRoOOF. One has

or(f.0) = ax(f.0yd
02 (f* OYipyrd)
= o Od;

Therefore if x € C,,1; for some w-category C, then of(f*.0)x = af‘f*[]d%_)ix for 1 <i <
n + 1 and we obtain a fillable n-shell in the sense of Proposition 4.4. [

6.11. COROLLARY. Letu be an w-functor from I™ to 2,, which maps R(0,,) to the unique
n-morphism of 2, (we will say that u is thick because the corresponding cubification is
also thick). Let f be an w-functor from I to I"™ which maps R(0,41) to R(0,). Then
there exists one and only one thick w-functor v from 1" to 2,1 such that the following
diagram commutes :

A —— 2n+1

|

the arrow from 2,1 to 2, being the unique w-functor which sends the (n+ 1)-cell of 2,41
to the n-cell of 2,.

If O is a n-cubification and f; thick w-functors from I"**! to I"* for 0 < i <
p then we can denote without ambiguity by f,.fp—1..... fo.OO the (n + p)-cubification
Jp-(fo—1-(....fo.00)). Let us denote by Oy the unique 0-cubification. We have the following
formulas :
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6.12. PROPOSITION. Let x € C be a p-dimensional morphism with p > 1 and let n > p.
Then

Lpe=1,_,...1, Uz
(by convention, the above formula is tautological for n = p)

PROOF. We are going to show the formula by induction on n. The case n = p is trivial.

Ifi <n—1,then 070, 2 =T, 00,z =0T,T,_,.. L, 0,z And if ¢ > n, then
OOy =0,2=0,T,T, ,..T,0x
and
Of 0, v = e,0;n0 x =0, T, ..., 0 .
So the labelings O, , ;2 and T, ... I, 0 x of I"*! are the same ones. ]

6.13. PROPOSITION. Forn =1, we have U] = €.y and

PROOF. It is an immediate consequence of Proposition 6.12 and of the uniqueness of
Theorem 6.10. n

The converse of Theorem 6.10 is true. That is :

6.14. PROPOSITION. Let v be a thick w-functor from I to 2,.1. Then there exists
an w-functor f such that for any thick w-functor u from I"™ to 2, the following diagram
commutes :

v
In—l—l — 2n+1

|

m— 2,
PROOF. Set v(R(ky...kny1)) = dz:i:ﬂi (A) where (A) = 2,41 and set (B) = 2,. By
hypothesis, the equality f(0,41) = R(0,) holds and let

Flky o kngr) = dnr i (R(0,,))

Mky. ki1

Take any thick w-functor u from I"™ to 2,,. Then

wo f(R(kr . knsr)) = uldnyl 0 (R(0,))) = dug) 0 u(R(0,))

My kg1 Tkq . Ry
. dﬂckl...kn+1 (B)
Mkq.kpt1

By Proposition 4.4, it is clear that f induces an w-functor. n
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Here is an example of cubification : if the following picture depicts the 3-cube,

] Py
UGN
AUV
we can represent a 3-cubification [J by indexing each face kjkoks by the corresponding

value of evy,k,k,[ iz which is equal to s; or ¢4 for some d between 0 and 2. So let us take
O as follows :

=

to to to
_—— s = —
tIT;Rtl t,T\Rh tT) tIT(\)RtO t,T;)
| so\\|1 t1\| | t0\| to
S,T;)‘\ IT\ IT\Rtl tIT\\fz tIT(\)
| s

NN AN

We see that 0; Uiz = T'.0; and that 95 Uiz = 'y .0;.

Now let us come back to our choice. It is not completely arbitrary anyway because the
operator [ satisfies the following important property : if u is a n-morphism with n > 2,
then [0 (u) is a simplicial homotopy within the branching nerve between O~ | (s,_1u)
and O, (t,—qu). Moreover, the family of cubifications (O, ),>¢ is the only family of
cubifications which satisfies this property because it is equivalent to defining a n-shell for
all n. However most of the results of the sequel can be probably adapted to any family of
n~-cubification, provided that they yield internal operations on the branching nerve (see
Conjecture 7.7 and 7.8).

6.15. CHARACTERIZATION OF THE NEGATIVE FOLDING OPERATORS. Now here is a
useful property of the folding operators :

6.16. THEOREM. Let C be an w-category. Let x be an element of NJ(C). Then the
following two conditions are equivalent :

1. the equality x = ®, (x) holds

2. for 1 <i < n, one has 07 x € Im(e}™"), and for 1 <i < n—2, one has 0; v €
Im(T, _,...T7).

Proor. If z = &, (z), then x = OO0, (2(0,)) and by construction of (I,
OO (2(0,) =T, ... Ty O7d ) 2(0,)

forany 1 <7< n—2and 8i+ x is O-dimensional for any 1 < i < n. For n equal to 0, 1 or
2, the converse is obvious. Suppose the converse proved for n — 1 > 2 and let us prove it
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by induction for n > 3. By hypothesis, as soon as + € {ky,...,k,}, then x(ky...k,) is
0-dimensional. For 1 <7 < n — 3, one has
0,0, v = 0, ,0;x
= 0, I, ,...I;Y; for some Y; € N7(C)
— F,;_3 [ F;K
and
Oy Oy 1z = 0, 50 x
= 0,0, ,...1Y
— FT_L—S . e FZ_YZ
therefore 8 _,z and 0, x satisfy the induction hypothesis. So 9, ,z = &, ,(0,_,z) and
o x = (0, x). Since the 0; x are thin (n — 1)-cubes for all between 1 and n — 2,
then d,g ) l(x(On)) = 07 ,2(0,_1) and d'7) (z(0,)) = a—x( n_1). Therefore 0,z
O (d2) (2(0,))) and 92 = O, (d2 (2(0,))). For 1 <i < n— 2, one has
= 0, ...0,_x

= ()
= O (d7(2(0,)))

therefore an easy calculation shows that x = [0, (x(0,,)).

6.17. COROLLARY. The folding operator ®_ is idempotent.

The end of this section is devoted to the description of ®, and ®;. Since 0, 0, = ;54

and 0y O, = Uty then one has for any w-functor z from I? to C
®; (z) = [ A D]Lz

If x is an w-functor from I® to C, then

_ i1l
55(2(000)) = { al?’_"’” gf_m } £, 2(00)

because the 2-source of R(000) in I? looks like

)
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and

. |
£2(2(000)) = [ g;ﬁ 8;: } t.2 (00)

because the 2-target of R(000) in I* looks like

R(+00) il
[ R(0—0) R(00+) ]

So by convention, an element = of wCat(I3,C) will be represented as follows

A|B| G |D
C|=|F|F

where A=0;x, B=0)z,C=0;x, D=0z, E=0,r, F =0z and z(000) = G3.
With this convention, I';y for y € wCat(I%C) is equal to

11| y(00) |11
y| = |y |1

One has 0705 = 7070y s, 05 05 = Ogty, 0505 = Oy 89, 005 = 0505 = 0505 =
05 to by definition of U3 . Therefore

0f @5 (x) = Oyto(G)

xr =

0y ©3(r) = Oyta(G)
95 5 (z) = Oys(G)
and
1
_ _ | A B
OEdy (r) = T700; {L C}L,z
—_ 1 00 )
_—ae | 11O 0
=170 A B — 7 t,2
L C 7 11

[ T7(0yC +1 05 C +, 05 B) in the negative case
N ['7 070 B in the positive case

So if z is the above w-functor from I? to C, then

1
I

400

oG

—N 1
E

J1ron

M > _JIl
= J 0|0

B
C

O
0O |0
3 L

3Beware of the fact that A,... F are elements of the cubical singular nerve whereas G is an element
of the w-category we are considering.
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7. Elementary moves in the cubical singular nerve

In this section, the folding operators &, are decomposed in elementary moves. First of
all, here is a definition.

7.1. DEFINITION. The elementary moves in the n-cube are one of the following operators
(with1 <i<n—1andz € wCat(I",C)) :

7
1. "prx = ;']Lm

o1
2. Yt L}Lm

Il
L 1 1

1
3. Myyr=[x 7]ttt

I
4. h@bfx:[l_ a:“_,iﬂ

NOTATION. One sets 0; = “4;,, “¢;". This operator plays a central réle in the sequel.
Proposition 7.2 expresses the elementary moves using the notation of the previous
paragraph (only the operators used in the sequel are calculated).

7.2. PROPOSITION. Let

A|/B| G |D
E

= Cl =

be an element of wCat(I®,C). Then one has

I
A B
G| D
Vol
=] L |O| — [ E | F
1| L
- A B D
= G
iy = C L
L| [z EF
A B | 7
Yya = 7 i D
C E|F =
ST I
Y= A B G D 7
1 —
C E|F
A I
iz = 31O
C E | F 7
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e [ATB Z 16 [ D T
Ya = C A= FF -
A B | Z 7

Q_x:LC — G | D
1 1 |=| FE | F
N | L =

PROOF. One has “¢;fz = T'/0; x +; x. Therefore

Ypir =07 0 x

oy
oF
0y
05
Oy

So one has

" (z) = O x
Yir =070+, 05
Vi =07 x +1 0w

v = 05T 0w+, Ofx

Pl =

A
L

B
C

And
oy
9y
J5
oF
0y
Oy

Consequently one has

Vi =T70; 052+, 0y x
Yihy = €205 Oy

Yy T = €905 T +9 O3 T
Vi =T70] 052+, 0] x

vwgrm:@;x

Yy =0y x +9 0

A

g =

B
C
L

One has “¢; x =z +; ['; 9] x. Therefore
Yy w =0y x +1 07 T304«
Yy =0 x +1 07T 05 x

o
or
Oy
0y
0y
0y

"y = Oya

Yihy T = €204 Oy x

Sliw)

L o

Yy w = O3 T +9 OF x
Yihy = 05 T+ €205 Oy x

350
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So
N A B :| G l—l)
=
c |\ [ E|F
And
oy e =0a
of "z =600z
Oy "tiw =05+, 0fx
OF i x = 0fx +,60{ 0] x
Oy "Wy =052+, 170;0z
OF "Yix=0fwx+, 7050z
therefore
o 1 (N G [
Yvyjr=| A | B N D | 7
C E | F

One has "7 x = x +5 705 . Then

or My = 07w+ 0F

O "pya = 0fx

8 "pyx =0y

o "Mprx = 0y 0F x

Oy "Mprx =050+, 070,05«

Of My =05x +, 170505«

So

A 7 Il I

Mpra = B i D
C E | F

One has "y x = x +3 T 0F . Therefore

o
or
Oy
0y
05
05

"pyr =0T e+, T7 0 0w
Mpgx = 0fx 4o T7 005
Mpgx = Oy 49 OF
My w = OF & +9 €205 05 x

"y w =0y

Mpgx = 0§ T505 v = €204 0F x

351
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SO

"y =

Now let us calculate 6; . One has

7.3. PROPOSITION. The following equalities hold (with o € {—,+}) :

o v,/ — vwz_—lajalf.]<2
%G " _{ by 0% if >4 1

Al B G D 1
C 7 |= EF F _
:vwg'uwfx
I
”wi 0|6 D
2 — | F
I
I
A B | Z 7
L C _ G D
9= E -
[ [ _

¢ hwf — h¢;1851 ij <1
i Vi MprO% if > i+ 1

an 0,105 if j <i
ajei_{ 0; 05 ij>2+2
e F 0., ifj <1
Oty = { ;-’zfj>z—|—2
O T = o

o Yy = 610,-* o7
a@'—+1 = ai_Jrl +i a:r
ai—:—l Y = ai—:-l

O "7 =07 +i0f,

o My~ = oF
az_+1 h¢_ = az_—i-l
Z+1 hw - 6la+az+—i-1

0; 0; =T;0;0;
070, = "y of

352

The following proposition describes some of the commutation relations satisfied by the
previous operators, the differential maps and the connection maps.

W

S Ot

= =~~~ —~ —~
_ O oo

—_
w ©
~— — Y ~—— ~— ~— ~—

A~~~ /N A/~
—_
\)

[a—
s
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8@19; = az‘jrl (15)

8;:192_ = €i+18£182-_ +; Ei+18£18£1 (16)
o-., OFf !

O .0, = { l’_” étl } t,i+1 (17)

8;;291_ = U@ZJ?@;Q (18)

0;T; =T, (19)

(20)

HZF;H = F;+1

PrOOF. Equalities (1), (2), (3) and (4) are obvious. Equalities from (5) to (12) are
immediate consequences of the definitions. With Proposition 7.2, one sees that

Or by =T70y0;
06y = "y of

8y 07 = 85
007 = €205 07 +1 €205 05
- 1
T o
% b, _l L 6‘{%2

050y = "¢y 05

For a given z, the above equalities are equalities in the free cubical w-category gener-
ated by x. Therefore, they depend only on the relative position of the indices 1, 2 and 3
with respect to one another. Therefore, we can replace each index 1 by ¢, each index 2 by
t 4+ 1 and each index 3 by 7 4+ 2 to obtain the required formulae.

In the same way, it suffices to prove the last two formulae in lower dimension and for

7 = 1. One has

and

0, x

0- 11| 2(00) |11
1 x| — | x| "1
101 — 1
L =z Z | z(00) ] 11
T =z | 1
Il [ L _
I'yx
x| Z|2(00)| 7
0] —
et €T _
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x _ — O
. L O |«(00)| 7
1| = |z - —
I I
= [y

7.4. THEOREM. Set "W, = %4 ... "y and "V, = M ... "Mpr. Then forn > 2
and 1 <1< n, one has

OF ("wy M) (W, M) =0

7

PROOF. It is obvious for n = 2. We are going to make an induction on n. Let n > 2 and
1 <7< n. Then

( D) (M )
= 1 (8+) ( n h\ll_)
? <a+)n lv\p 1€1a+8+ h\I}f
PO U, (@0 0 ) Mo,

€

()
e o o) "
= o)

The equality
OF (VU ML) L (O, M) = (0 M

makes sense if x is a (n + 1)-cube. And in this case, €}(9])"*! "~z is 0-dimensional
and e(9;)" Mo = 7(9))" M a. This equality holds in the free cubical w-category
generated by x, and therefore

e () M = e (o)

Now suppose that ¢ =n + 1. Then

Ot ("W M) (M, )

= ("W M) (O M ) (T, M)

= ("W M) (N h\If; DG RTC AT o

= ("W M) (P ) Y %A%‘ T

= ("0 M) (P ) Y, 1en8:8:+1(hw M)

= ("W M) (O M) e (M hw;>6:+1

= (”\I}l_ h\I’1_> ‘-(U\I/;A h\I/T_L 1) U €n€n10, fla:( (O h¢1_>a:{+1
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Uy h‘I’I) S (U‘Ij;—l h\Ij;—l) v\pﬁ—lenﬁnfla;—l(hw;—Q e hqbf)a;ra;rﬂ

(

(..)

= (YU M) L (W M) Y e a0 O
(

n
€1)™ (0 )" for the same reason as above
u

WHY DOES THE PROOF OF THEOREM 7.4 WORK. The principle of the proof of Theo-
rem 7.4 is the following observation (see in [2]): let fi,..., f, be n operators such that
(the product notation means the composition)

1. for any 4, one has f;f; = f; (the operators f; are idempotent)
3. fifir1fi = fix1fifira for any i

Then the operator F' = fi(faf1) ... (fafa1... f1) satisfies f;F = F for any i. This means
that F' enables to apply all f; a maximal number of times. It turns out that the operators
”wii and hwf satisfy the above relations :

7.5. PROPOSITION. The operators ‘v and hwf are idempotent. Moreover for any
i>21and any j > 1, with |i — j| = 2, the following equalities hold :

i Ml = Ml g for a € {—,+} (21)
i P = P Y for o € {—, +} (22)
" Y=Y h¢?+1 fora e {—,+} (23)
WU MU = U P U fora € {o,h} anda € {—,+}  (24)

ProOOF. Equalities 21 and 22 are obvious.

For the sequel, one can suppose a = —. In the cubical singular nerve of an w-category,
two elements A and B of the same dimension n are equal if and only if A(0,) = B(0,)
and for 1 <k <nand o € {—,+}, one has df A = Iy B.

Now we want to prove Equality 23. Since (Y¢2x)(0,) = (")¢)(0,) = x(0,), then
hape | Vpa = U@ M2 for any @ of dimension n (P,) is equivalent to df "¢, Ve =
0) v Mg for 1 < k < noand B € {—,+}(Er,). Proposition 7.3 implies that
P,y = Ey, for k <iork>i+2 Forke{ii+1,i+ 2}, proving Equality Ej, is
equivalent to proving it for the case ¢ = 1 and to replacing each index 1 by ¢, each index
2 in by 7+ 1 and each index 3 by i+ 2. And in the case i = 1, the equality is a calculation
in the free cubical w-category generated by x. So we can suppose that z is of dimension
as low as possible. In our case, this equality makes sense if z is 3-dimensional. Therefore
it suffices to verify Equality 23 in dimension 3 for ¢ = 1. And one has

_ v, |A|B| G |D
"y " C|l=|E|F
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7 [ 1 G I

=Myl A | B .| D7
C E F

T IIIE a [ O

= A B — D 7
—

C 1 E F -
_Uw,AB: ¢ [ D7
R C 0 |l=| E F |

A|lB| G | D
v, — h . —
= Y C|=|E|F

In the same way, to prove Equality 24, it suffices to prove it for ¢ = 1 and in the
3-dimensional case. And one has

v v —v. A Bl G |D
%%% O:>EF
U_U_—I Il a Il
= "y "y A B _.| D7
C E a
1
101 O e ¥
E | F =
—_ 1 ] g
805 lelafe
A B — | =] I O 0O
5 D 1 0
E Fr
and
v — v, AIB| G |D
¢2¢1¢2 C:>EF
- 2 1
c | E




Theory and Applications of Categories, Vol. 8, No. 12 357

—_ O [
101 O a [
=" A B | Z | 1|00
1 D 1 0
C E F —
—_ 1 O g
JaleleSTa
A B — |= | I O 0
5 D 10
E F Z
In the same way, one can verify that
A|B| G |D
hy)— h,— h, —
¢2 1#1 ¢2 Cl= | E|F
A/B| G |D
_ hy— hy— h—
- @91 % % Cl= | E|F
A 7 0 0
_ I O 0| G| D 10O
B Z O |=| E F 1 |0
c 7l

7.6. THEOREM. For anyn > 2, ® is a composition of “v;, ", and 0; .
PROOF. It is easy to see that ®; = ¢y My = M)y Y. Now we suppose that n > 3.
Set OF 2 =0, ...0,, .
We are going to prove that
¢, = 03736, .. 01 (MU MU (T, M)
by verifying that the second member satisfies the characterization of Theorem 6.16. Let

r € wCat(I",C)~. Theorem 7.4 implies that for 1 < i < n, the dimension of

OF ("W M) (Y, M, )

(2

is zero (or equivalently that it belongs to the image of ¢/~!). With Proposition 7.3, one
gets

orer—z2er—z . er(wy M) .. (", MUy e Im(e) )
for 1 < i < n. It remains to prove that for 1 <k <n — 2,

o er2er 2. e tycIm, ,...T})
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for any y € wCat(I",C)~. One has

0,0 30n 2. .. .01 %y

= (0173, 01 *) 0,00 %z with z = O 2. @12y

= (00750, 7°) 11,0, 0, 0331 %

=T, , (et er) o er 2,

The operators "1, ")F and 6; for 1 <i < n — 1 and ®; induce natural transfor-
mations of set-valued functors from wC’at(I " ) to itself.

7.7. CONJECTURE. Let f be an w-functor from I™ to itself such that f(0,) = 0, and
such that the corresponding natural transformation from wCat(I™, —) to itself induces a

natural transformation ®~ from wCat(I", —)~ to itself. Then ®~ is a composition of
Vb, b and 07 for 1 <i<n—1.

7.8. CONJECTURE. Let ® be a natural transformation from wCat(I™, —) to itself such
that the corresponding functor (®)* from I™ to itself satisfies ($)*(0,) = 0,. Then ® is a
composition of “F and M) for 1<i<n—1.

By Yoneda, the operators ¢ and " for 1 <i < n — 1 induce w-functors from I™
to itself denoted by (“¢)* and (")*. The dual conJecture is then

7.9. CONJECTURE. Let f be an w-functor from I™ to itself such that f(0,) = 0,. Then
f is a composition of (“¢F)* and ("F)*.

8. Comparison of x and & (x) in the reduced branching complex
This section is devoted to proving that for any z € wCat(I",C)~, z and ¥, (x) are T-
equivalent.

8.1. PROPOSITION. For anyi > 1 and anyn > 2, if v € wCat(I",C)~, then "; (x)
and x are T-equivalent.

PRrOOF. First let us make the proof for ©+ = 1 and n = 2. Let us consider the following
w-functor from I to C :

z

2(00) [ 1
e T —I

Yy =

1na

Then Oy, = ™y (x) — z +t; where t; is a thin element. Therefore x and "7 (z)
are T-equivalent.
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We claim that the above construction is sufficient to prove that x and "7 (x) are T-
equivalent for any x € wCat(I"™,C)~ and for any n > 2. The labeled 3-cube y; is actually
a certain thin 3-dimensional element of the cubical w-category N'Z(C) and it corresponds
to the filling of a thin 2-shell. So

_ — = T T
y1 = filaz, ez, e3z, Ty, Ty x, T2, T x)

where f; is a function which only uses the operators +;, +2, and +3. In this particular
case, fi; could be of course calculated. But it will not be always possible in the sequel to
make such a calculation : this is the reason why no explicit formula is used here. And
one has 9, fi(x) = x, 95 fi(x) = ™)y () and all other 2-faces 0% f1(z) are (necessarily)
thin 2-faces. The equalities 05 fi(z) = z and 95 fi(x) = "7 (x) do not depend on
the dimension of x. Therefore for any x € wCat(I",C)~ and for any n > 2, one gets
O~y = ™y (z) — 2 +t where t is a linear combination of thin elements.

Now we want to explain that the above construction is also sufficient to prove that x
and ") (x) are T-equivalent for any i > 1 and any x € wCat(I",C)~ and for any n > 2.
The equalities 9; f1(z) = x and 95 fi(x) = ")y (x) do not depend on the absolute values
1, 2 3. But only on the relative values 1 =3 —-2,2=3—1and 3 =3 —0. So let us
introduce a labeled (n + 1)-cube y; = fi(z) by replacing in f; any index 1 in by i, any
index 2 by i + 1 and any index 3 by ¢ + 2. Then one gets a thin (n + 1)-cube y; = fi(x)
such that 9., fi(z) = z and 0;,, f;(x) = "¢; (x).

If the reader does not like this proof and prefers explicit calculations, it suffices to
notice that y; = "¢y T';z by Proposition 7.2. Set y; = "; I';, z. Then

0 (yi) =Y (=1 My T705a + (1) (I 05 2 +i €107, 2) +

j<i
(=)™ = Mra)+ Y (DT T 0 e
J>i+2
and one completes the proof by an easy induction on the dimension of z(0,). [

8.2. PROPOSITION. For any i > 1 and any n > 2, if x € wCat(I",C)~, then “¢; (x)
and x are T-equivalent.

PrROOF. It suffices to make the proof for i = 1 and n = 2. And to consider the following
thin 3-cube

1 E: (00) [ 7
N €T —I
x
Notice that the above 3-cube is exactly "1, '] x by Proposition 7.2. n

8.3. PROPOSITION. For anyi > 1 and anyn > 3, if x € wCat(I",C)~, then 0; (x) and
x are T-equivalent.
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PRrooF. It suffices to make the proof for i =1 and n = 3. Set

|A|B| G |D
Tl | =[E[F
One has already seen that
A B | Z i
0 — L ¢ | Z |G| D
1= 1 |=—=| E | F —
I | L _—

It suffices to construct a thin 4-cube y such that d;y = = and 0,y = 6; . If the
4-cube is conventionally represented by Figure 5, the thin labeled 4-cube of Figure 6 with
0040 +— (05 Oy & +1 85 95 x)(0) meets the requirement. The latter labeled 4-cube can be
defined as the unique thin 4-cube w(z) which fills the 3-shell defined by

Oyw(x)=T50] x
Oy w(x) =0 ()
Oyw(xr) =1
LA i 1
Orw(s I';05x €205 t 3

T D D070 4, e D005 Ty oy

8.4. COROLLARY. For any n > 2, for any v € wCat(I",C)~, x and ®, (z) are T-
equivalent and @, is the identity map on the reduced branching complex.

We have proved that for any x € wCat(I",C)~, there exists t; € M, and ty € M,
such that & (x) —x = t; + 0~ ta. The proofs of this section use only calculations in the
free cubical w-category generated by x. This means that ¢; and t5 can be formulated in
terms of expressions in the same cubical w-category. And so this means that t; and ¢,
are linear combinations of expressions which use only x as variable and the operators 6;'[,
F;t, ¢; and +;. With Theorem 7.6 which allows to consider @ like an operator defined
in any cubical w-category, one sees that Corollary 8.4 does make sense in an appropriate
cubical setting. Moreover the terms t; and ¢, being elements of the free cubical w-category

generated by x, then ¢; and ¢, depend in a functorial way on .
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++00
+0— 0] +00+
0—0+ |00+ +
+0-0 +00— [ +0+0
0——0]00—+]0+0+ +—00
—00+ 0——0[0-0+
OO—OW WO—OO
++00 +0+0
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Figure 5: 2 -categorical representation of the 4 -cube
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Figure 6: A labeled 4-cube
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9. Folding operations and composition maps
9.1. THEOREM. Let x and y be two n-morphisms of C with n > 2.

1. if x%,_1y exists, then O (x*,_1y)—0O (x) =0 (y) is a boundary in the normalized
chain complex of the branching simplicial nerve of C. Moreover, O (x *,_1y) is T-
equivalent to O, (x) + 0O (y).

2. f 1 <p<n—2, then O, (x %, y) is T-equivalent to O, (x) + O, ().

PROOF. Let us denote by P(h) the following property :

“for any n > 2 and with p = n—h > 1, for any n-morphisms x and y of any w-category
C such that 2%,y exists, there exists a thin n-cube A7 (z,y) and a thin (n+1)-cube B} (z,y)
which lie in the cubical singular nerve of the free globular w-category generated by = and
y, and even in its branching nerve, such that

O, (zxpy) =0, (x) + 0, (y) + A5 (z,y) + 0~ B, (z,y)

in the normalized branching complex (i.e. the equality holds modulo degenerate elements
of the branching simplicial nerve) and such that for any (n + 1)-morphisms u and v,
Ag(s‘nu, snv) = AP (tnu, tyv).”

Since

0™ (Oy (@ %01 y) — O (2) — 07 ()

=01 (sn12) — O, (ta-1y)

—0 1 (8nm12) + 0, (te1w) — O,y (Snm1y) + 0 (fa-1y)
=0, (th1w) =0, (Sp-1y) = 0

in the normalized chain complex of the branching simplicial nerve, then O (x %, y) —
O (z) — O, (y) is a cycle in the branching homology of the free globular w-category D
generated by two n-morphisms such that ¢, _1x = s,_1y. The w-category D is of length at
most one and non-contracting. Therefore its branching nerve coincides with the simplicial
nerve of PD, the latter being the globular w-category freely generated by the composable
pasting scheme whose total composition is X %, o Y where X and Y are two (n — 1)-
dimensional cells. Therefore this simplicial nerve is contractible. Consequently there
exists B _,(x,y) lying in the cubical singular nerve of D (and also in its branching nerve)
such that

O, (@1 y) =0, (2) =0, (y) = 0" B, _4(2,9).

n n
The (n+1)-cube B"_;(z,y) is necessarily thin because there is no morphism of dimension
n+ 1in D. By setting A” ,(z,y) = 0, we obtain P(1). We are going to prove P(h) by

n

induction on h. Suppose P(h) proved for h > 1. Then

0~ (O, (z #p-n1y) — O, (2) = 05 (y) = By (a1, $0-1y)
+Bg:i,1(tn—lw7 tn—ly))
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= (D;(sn_lx $n b1 Sn1y) — O (sp17) — O (s,21y) — 0~ B4 _ (8017, sn_ly))
- (Dr_;, (tn1® *p—p-1 tn1y) — O, (tpo1w) — O, (tno1y) — a_BZ:ill—l(tn—IL tn—ly))

= AZ:}Z_I(sn,lx, Spn-1Y) — AZ:}Z_l(tn,lx, t,—1y) by induction hypothesis

= 0 again by induction hypothesis

Therefore we can set A” , |(x,y) = BZ:}L_I(sn_lx, Sp—1Y) — BZ:}L_I(tn_la:, tn—1y) and we
have

Al (spu, spv) — An L (thu, thv)
= Bl (Sn-1Sat, Sn-15,0) — BIT) 1 (fao180U, tyo15,0)
— B} (Su1tatty S 1tn0) + BETE (byatntt, ty_1t,0)

= 0
because of the globular equations. So we get a thin n-cube A?_, ,(z,y) such that

O, (x*n-nay) — 0, (2) =0, (y) — Ap 1 (7, 9)

is a cycle in the normalized chain complex associated to the branching simplicial nerve
of C. This cycle lies in the branching nerve of the free w-category generated by two n-
morphisms x and y such that ¢, ,_ 12 = s,_,_1y. This w-category is of length at most one
and non-contracting. Therefore its branching nerve is isomorphic to the simplicial nerve
of the globular w-category freely generated by the composable pasting scheme whose total
composition is X *,_5_o Y where X and Y are two (n — 1)-dimensional cells. Therefore

it is contractible. Therefore there exists B , (x,y) such that

O, (z*p-n1y) — 0, (x) =0, (y) — Ay _p_1(2,y) =0 B, _1(z,y).

The cube B!, _;(z,y) is necessarily thin because there is no morphism of dimension n+1
in the cubical sub-w-category generated by z and y. And P(h + 1) is proved. m

It turns out that the (n + 1)-cube B ,(z,y) can be explicitly calculated. One can
easily verify that

_\h
B" (z,y); =T, T .. .[;0.d "«
for 1 < h < n — 2 (observe that in this case, dﬁl_)hx = dg_)hy),

BZ—l(xa 9)5—1 =U,y
By i(x,y), =0, (x*,-1y)
BZ—l(mj y);-i-l = |:|T_Lx

and for all ¢ between 1 and n + 1,
By (z,y)f =0, tox

is a solution. It suffices to prove that (B" | (z,%)F)i<icns1 is a thin n-shell.
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9.2. THEOREM. Let C be a non-contracting w-category. Let x and y be two elements of
wCat(I",C) such that x+;y exists for some j between 1 and n and such that dim(x(0,)) >
1, dim(y(0,)) = 1 and dim((x +;y)(0,)) = 1. Then @, (x +;y) is T-equivalent to ®, ()
or ©, (y) or to @, (x) + @, (y). If = is itself in the branching complex, then ®, (x +;y) is
T-equivalent to x.

REMARK. The hypotheses about the dimension of z(0,), y(0,) and (z +; y)(0,) are
only to ensure that @, (z), ®, (y) and ®, (z +, y) are in the branching nerve. The
hypothesis about the dimension of (z +; y)(0,) is necessary because we do not assume
that 1-morphisms in non-contracting w-categories are not invertible. In dimension 1, the
case x(0) %o y(0) = (z +1 y)(0) € Cy may happen.

PROOF. By definition, one has @, (z +; y) = O, ((z +; y)(0,)). If C was equal to the
globular sub-w-category generated by

X ={alky.. kn) k1. k€ cub™t O{y(ky.. ko) k.. Ky € cub™

then x +; y still would exist in the cubical singular nerve. Therefore, (x +; y)(0,)
can be written as an expression using only the composition laws %, of C and the vari-
ables of X and moreover, the variables z(0,) and y(0,) can appear at most once. By
Theorem 9.1, O ((z +; v)(0,,)) is therefore T-equivalent to O (x(0,)), O, (y(0,)) or
O (2(0,)) + O (4(0,)):

Now suppose that = € wCat(I",C)~. Let z = I';x 4 ¢j11y € wCat(I"*',C)~. Then
0;z=w,0;,2=1x+;yand 8;;12 = y. Since z is a thin element, then all other faces 8,:52
are thin (this can be verified directly by easy calculations). Therefore 9~z is T-equivalent
to £(zr +; y — x). As illustration, let us notice that for j = 1 and n = 2, z is equal to

|y| (x—h:yg(OO) 'y'

9.3. THEOREM. Let xz and y be two morphisms of a non-contracting w-category C such
that x xq y exists such that x and x xqy are of dimension lower than n and of dimension
strictly greater than 0. Then O, (z %o y) is T-equivalent to O (x).

PROOF. We need, only for this proof, the operator (J} introduced in [12]. One has
00, (x) = ¢ 'Do(to)

and
0y 01 (y) = €1 'Do(s0y)-

Therefore OO, (x) +; OF (y) exists and is T-equivalent to O (z) by Theorem 9.2. If we
work in the w-category generated by x and y, then OO (x) +; Of (y) is a well-defined
element of the branching simplicial nerve of D. And D is the free w-category generated
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by a composable pasting scheme whose total composition is x %y y. Since union means
composition in such a w-category, then necessarily (O (z) +1 O (y)) (0,) = @ *¢ y. Since
®. is the identity map on the reduced branching complex, then O (z) +1 O (y) is T-
equivalent to O (z o y). (]

The preceding formulae suggest another way of defining the reduced branching homol-
ogy.
9.4. PROPOSITION. Set

CF (C)=ZC,/{x*oy =2, 21 y=2+Y,...,T*, 1y =2 +y mod Ztr, 1C}.

Then sp—1 — t,—1 from CF, (C) to CF,_{(C) for n = 2 and sy from CF (C) to CFy (C)
induce a differential map 9; on the N-graded group CF_ (C) and the chain complex one gets
is called the formal branching complex. The associated homology is denoted by HF, (C)
and is called the formal branching homology.

Proor. Obvious. =

A relation like = *q y =  mod Ztr,_1C means that if x is for example a p-morphism
for p < n and y a n-morphism such that x %q y exists, then in CF,; (C), x %oy = 0.

9.5. PROPOSITION. LetC be a non-contracting w-category. The linear map U1 from ZC,,
to CR;, (C) induces a surjective morphism of chain complexes and therefore a morphism
from HE(C) to HR, (C).

PROOF. One has in the reduced branching complex 00, (z*oy) = O, (z) and OO (x*,y—z—
y) = 0 therefore U, induces a linear map from CF, (C) to CR, (C). And U, _,(9; (7)) =
O, _1(Sn—1—tn—1)(x) = 00O, (z). Since ¢, is the identity map on CR;, (C), then CR, (C)
is generated by the [ (z) where x runs over C,. Therefore the induced morphism of
chain complexes is surjective. [

9.6. QUESTION. When is the preceding map a quasi-isomorphism ¢

The meaning of the results of this section is that one homology class in branching
homology corresponds really to one branching area. Here are some simple examples to
understand this fact.

Figure 1 represents a 1-dimensional branching area. This branching area corresponds
to one element in the reduced branching homology, that is

Oy (u) — Oy (w) = Oy (ugv) — Oy (w) = Oy (u) — Oy (w %0 ) = Oy (ux v) — Oy (w %0 x)

in homology. In fact, it even corresponds to one cycle in the reduced branching complex.
The reason why it is more appropriate to work anyway with cycles modulo boundaries,
and not only with cycles modulo boundaries of thin elements is illustrated in Figure 7.
The two cycles O (u) — O; (v) and 0y (u) — Oy (w) are in the same homology class as soon
as u is homotopic to v.

These observations can be generalized in higher dimension but they are more difficult
to draw. If u is a n-morphism, then, by definition of (I, 0. (u) is an homotopy between
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Figure 7: Another 1-dimensional branching area

O,_18n—1uw and 0, _;t,_ju in the branching simplicial nerve. Figure 8 is an analogue
of Figure 1 in dimension 2. Figure 8 represents a 2-dimensional branching area. In
the branching complex, it corresponds to the cycles (A) — (F) + (I), (A, B,C,D) —
(E,F,G,H)+ (I, J,K,L), (A)— (F,H)+ (I, K), etc. In the reduced branching complex,
there are even more possible cycles which correspond to this branching area. For example
(A,D)—(E,F)+(1,J,K,L), (A)—(FE, F)+(1, J), etc. Inthe branching homology, all these
cycles are equivalent and therefore there is really one homology class which corresponds
to one branching area. Or in other terms, the homology class does not depend on a
cubification of the HDA.

10. Folding operations and differential map

Now we explore the relations between the folding operators and the differential map of
the branching complex.

10.1. PROPOSITION. Let x be an element of wCat(I"™,C)~. Then

n

O (301 = ta-1)(2(04)) = 0,1 (07) (0a1) = Y (9, 2)(00m1)

p=1
in CR,_,(C).

PROOF. Since @, induces the identity map on CR; (C), then &, 0~ = 0~ ¢, = 0~.
Therefore

0,1 (072)(0p 1) = @, 1072 = 0"z = 070, (2(0n)) = L,y (sn1 = tna) (2(0n)).

10.2. PROPOSITION. [In the reduced branching homology of a given w-category C, one
has

1. if x € wCat(I1?,C)~, then 07 (s;2(00)) = Oy 2(—0) and 07 (t,2(00)) = Oy z(0—)
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Figure 8: A 2-dimensional branching area

2. if v € wCat(I?,C)~, then
05 (s22:(000)) = O3 2(—00) + 05 2(—0—)
005 (t22(000)) = O5 (0 — 0).
PROOF. One has
Oy (s12(00)) = Oy (s1(2(=0) %0 #(0+))) = Oy 2(—=0)
and
Oy (212(00)) = Oy (s1(2(0—) % 2(+0))) = Oy z(0-).
Now suppose that z € wCat(I3,C)~. Then
35 (s22(000))
= 0y ((2(=00) %0 2(0 4 +)) 1 (2(=0=) %0 2(0 + 0)) 1 (2(00—) %o 2(+ +0))))
= 05 (2(=00) #o (0 + +)) + Oy (z(—0—) 0 2(0 + 0)) + Oy (x(00—) *o z(+ + 0))
So [0 (s2x(000)) = 05 (x(—00)) + O (x(00—)).
In the same way, one has
05 (t22:(000))
05 ((x(= = 0) % (00+)) *1 (2(0 — 0) *¢ x(+0+)) *; (2(0 — =) *¢ x(+00))))
O, (2(= = 0) %o 2(004)) + By (2(0 — 0) o 2(+0+)) + 0y (2(0 — —) %o 2(+00))
Py



Theory and Applications of Categories, Vol. 8, No. 12 369

The preceding propositions can be in fact generalized as follows :

10.3. THEOREM. Let x be an element of wCat(I"™,C)~ with n > 2. Then in the reduced
branching complex, one has

L1 (8n-12(0 Z 01 (92511 2) (05-1))
1<2i+1<n

L1 (tn-12(0 Z 01 ((92;2)(0—1))
1<2i<n

PROOF. For all n, we have seen that @, induces the identity map on the reduced branch-
ing complex. Therefore for all x € wCat(1",C)~, &, 10" x = 0~ P, x. The latter equality
can be translated into

Z P, 1 (05 417) — Z D, 1 (0yx) = 0, _y8n12(0,) — O,y tno12(0y).

1€2i+1<n 1€2i<n

If the above equality was in ZwCat(I""!,C)~, the proof would be complete. Unfor-
tunately, we are working in the reduced branching chain complex, and so there exists
ty € M | and t, € M such that, in ZwCat(I",C)~

1<2i+1<n 1<2i<n

Set to = > ,c; ATy where T; are thin elements of wCat(I",C)~. Each T; corresponds
to a thin (n — 1)-cube in the free cubical w-category generated by the n-cube x which will
be denoted in the same way (see the last paragraph of Section 8). One can suppose that
each T;(0,,) is (n — 1)-dimensional. In the free cubical w-category generated by z, either

T; is in the cubical w-category generated by the 01-(_)im for 1 <7 < n (let us denote this

fact by T; < s,-12(0,)), or T; is in the cubical w-category generated by the 8§7)i+1x for
1 <i < n (let us denote this fact by T; < t,_12(0,,)). Therefore one has

lo = Z AT + Z AT

1€l T; <8pn—12(0y) 1€l T <tn—12(0p)
and
8*252 -
> (—=1)7N0; T+ > (1IN0 T
(&S -LE < Sn—lx(on) (S I,,I'Z < Sn—lx(on)
1<j<n,8j_Ti thin 1<j<n,8j_Ti non-thin
+ > (17N T + > (=17 FNO; T,
(S ]aT; < tn—lx(on) (XS I)E < tn—lm(on)

1 <j <n,0;T; thin 1 < j <n,0; T; non-thin
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Because of the freeness of ZwCat(I"™!,C)~, one gets

Y 0 (Ohw) = O ysuaz(0,) + > (=17 N0; T,
IS i € 1,T; < sp12(0p)
1 < j < n,0; T; non-thin
> 0, (05w) = Oty 12(0,) — > (=1 'X0; T
Isisn i € 1,T; < ty12(0,)
1 < j < n,0; T; non-thin
—t = > (=105 T + > (1Y TNO; T
(S I7T‘z < Sn—lx(on) (S ]77—11 < tn—lx(on)
1 <j < n,0;T; thin 1 <j <n,0;T; thin
n

11. Some consequences for the reduced branching homology

The following result generalizes the invariance result of [12] for the branching homology
theory.

11.1. PROPOSITION. Let f and g be two non-contracting w-functors from C to D satis-
fying the following conditions :

e for any 0-morphism x, f(x) = g(x)

e for any n-morphism z, f(x) and g(x) are two homotopic morphisms (and so of the
same dimension).

Then for any n > 0, HRE(f) = HR=(g).
PRrOOF. Consider the case of the reduced branching homology. Let x € CR;, (C). If
dim(f(2(0n))) = dim(g(x(0,)) < n,

then f(x) and g(x) are two thin elements of wCat(I™,C)~. Therefore f(z) = g(x) in the
reduced branching complex of D. Now suppose that

dim(f(x(0n))) = dim(g(x(0n))) = n.

By hypothesis, there exists z € D, ; such that f(z(0,)) — g(x(0,)) = (s, — t,)(2).
Therefore in the reduced branching complex, one ha; )

0-0,,1(2). So f(x) — g(x) is a boundary. =

»n —~



Theory and Applications of Categories, Vol. 8, No. 12 371

We end up this section with another invariance result for the reduced branching ho-
mology and with some results related to Question 9.6.

11.2. THEOREM. LetC and D be two w-categories. Let f and g be two non 1-contracting
w-functors from C to D which coincide for the 0-morphisms and such that for any n > 1,
there exists a linear map h, from CF, (C) to CF, (D) such that for any x € CF, (C),
hn-1(Sn—1—tn-1)+ (s$n—tn)hn(x) = f(x) —g(x). Then HR, (f) = HR,, (g) for anyn > 0.

PROOF. Set h,x =0, 1h,(2(0,)) for any v € wCat(1",C)~. Itis clear that h, (M, (C)) =
{0} in CR,, (D). Now suppose that = 0~y for some y € M, (C).

We already mentioned that I"[—,, +,] is the free w-category generated by a compos-
able pasting scheme in the proof of Corollary 5.9. It turns out that s,(R(0,41)) and
tn(R(0,41)) belong to I"[—,, +,] and it is possible thereby to use the explicit combinato-
rial description of [18].

Set I = {1,2,...,n} equipped with the total order 1 < 2 < ... < n. Let C(I,k) (or
C(n, k)) be the set of all subsets of I of cardinality k. Let P an arbitrary subset of C(I, k).
There is a lexicographical order on C(I, k) usually defined as follows : if J = (ji,..., k)
with j; < ... < gy and J" = (j1,...,7,) with ji < ... < ji, then J < J' means that
either j; < ji, or j; = jj and jo < jb, etc. If K € C(I,k+ 1), a K-packet is a set like
P(K)={J,JeC(,k),J C K}. If K = (i1,...,ig+1) With ¢; < i;41, then P(K) consists
of the sets K = K — {i,} fora=1,...,k+ 1. We have lexicographically

Kz < Kj <...<Kj.

n
k
is JioJ; for i < j. A total order is called admissible by Manin and Schechtman if on
each packet it induces either a lexicographical order or the inverse lexicographical order.
The set of admissible orders of C(I,k) is denoted by A(I,k) (or A(n,k)). Two total
orders o and o’ of A(I, k) are called elementary equivalent if they differ by an interchange
of two neighbours which do not belong to a common packet. The quotient of A(I,k)
by this equivalence relation is denoted by B(I,k) (or B(n,k)). Suppose that for some
K € C(I,k + 1), the members of the packet P(K) form a chain with respect to an
admissible order o of A(I, k), i.e. any element of C(I, k) lying between two elements of
P(K) belongs to P(K). Define px (o) the admissible order in which this chain is reversed
while all the rest elements conserve their positions. Then pg (o) is still an admissible order
and pg passes to the quotient B(/, k). The lemma on page 300 claims that A(n,n—1) =
B(n,n—1)={Ks...K;,K;... K3} where K = (1,...,n). And the poset B(n,n —2) is
described by the following picture :

A total order ¢ on C(I,k) will be denoted by ¢ = JiJy...Jy for N = , that
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Tmin

PK; &
1171(71/7\1 l lpKé

| =
N

Tmax

It turns out that in the picture B(n,n — 2), the vertices are exactly the (n — 2)-
morphisms of I"[—,, +,] and the arrows are exactly the (n — 1)-morphisms of I"[—,, +,].
This explicit description shows therefore that s,(R(0,4+1)) is equal to a composition
X1 *p—1 ... *¥y,_1 Xp41 where the only morphism of dimension n contained in Xj is

R((SJ(-_)J(O,Z)). And the same description shows that ¢, (R(0,+1)) is equal to a composi-
tion Y41 *,-1 ... *,—1 Y7 Where the only morphism of dimension n contained in Y; is

R(5§-—)j+1(0n)). And one has

50 (Y(0n11)) = Y(5n(Ony1)) = y(X1) *p1 - Fn1 Y(Xnga)
tn(Y(Ont1)) = Y(tn(0ni1)) = y(Yar1) *n-1 -+ *n1 y(Y1)

Since y is thin, s, (y(0541)) = ta(y(0ny1)). Since h,, is a map from CF, (C) to CF, (D),

then
n+1 n+1

Y ha(y(Xp) = Y haly(¥y)

in CF, (D).

Since I is the free w-category generated by the pasting scheme cub then for any
p between 1 and n + 1, X, is a composition of R(6577(0,)) with other R(ky ... kpy1) of
dimension strictly lower than n. Suppose that p is odd. There exists XI(,I) and X]gl)’ such
that X, = Xlgl) *iy XI(,l)’ for some 0 < 4, < n —2. If 7, > 0, then only one of the X(l)
or X" is of dimension n therefore y(X,) = y(XIgl)) or y(X,) = y(X ). If i, = 0, then
since 59X, = s X3 = sOR((Sé_)p(()n)) then in this case X" is n-dimensional and X’](gl)
is of dimension strictly lower than n. Therefore in this case h,(y(X,)) = hn(y(ngl))).
By repeating as many times as necessary the process, the number of cells R(k; ...k,)
included in y(X,) decreases. And we obtain

ha(y(Xp)) = ha(y(857" (00))) = ha((9, ) (0n)).

Now suppose that p is even. Since R(—,) = so(X,) # SOR(él(;_)p(On)), then necessarily
at one step of the process, we have i, = 0. Take the last h such that 7, = 0. Then

bn+1
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ho(y(X,)) = hn(y(X;() )) and X(h = X(hH) X(h+1). Since sz( ) sz(hH) #
SQR((SI(;_)Z)(O )), then for this A, XY s of dlmensmn strictly lower than n and X"
is of dimension n. Therefore h,,(y(X,)) = 0.

In the same way, h,(y(Y,)) = 0 if p is odd and

h(y(Y)) = By (857" (00))) = (9, 9)(00))

if p is even. So

n+1

hy () = O 1 ha(2(00) = Y (=177 0,10 (8, )(05)) = 0

p=1
in CR, (D) by Theorem 9.1. Therefore h, induces a linear map from CR, (C) to
CR,, (D) still denoted by h,,. Take x € wCat(I",C)~. Then in CR, (D), one has
0" hy, (x) +h,_10 ()
=0 0, 1hn(2(0,)) + h,_,0” @, (x) since @, is the identity map

)
=0, (sn —ta)h (Ji(on)) +h,_ 18 O, 2(0,,) by definition of &
=0, (80— ta) ha(2(0,)) + hy 01 (80-12(0,) — t-12(0,))
=0, (sn — tn)hn(2(0,)) + O, hp—1(8n—12(0n) — tn—12(0,)) by definition of h,;
=0 (f(x)(0,) — g(x)(0,)) by hypothesis on h,
=&, (f(x) — g(x)) by definition of &,

P
= f(z) — g(x) since @ is the identity map
]

The proof of Theorem 11.2 provides another way of proving Theorem 10.3 and also
establishes that Theorem 10.3 is still true for the formal branching homology.

11.3. PROPOSITION. Let p > 1 and let 2, be the w-category generated by a p-morphism
A. Then HF, (2,) = HR,, (2 )—Oforn>0andHF (2,) = HR; (2,) = Z.

PROOF. The assertions concerning the formal branching homology are obvious. Since
the negative folding operator induces the identity on the reduced branching complex,
then CR,, (2,) is equal to 0 for n > p and is generated by 0O, (s,A) and O, (¢,A) for
0 < n < p. The point is to prove that there is no relations between [ (s,A) and
O, (t,A) for 1 < n < p, that is CR,, (2,) = 20, (s,A) & 20O, (t,A) = CF,; (2,). Suppose
that there exists a linear combination of thin n-cubes ¢; and a linear combination of thin
(n 4 1)-cubes t5 such that for some integers A and p,

AL (50 A) + p0; (tnA) =ty + 0ty

in C;,(2,). Then s,t2(0,41) = tnt2(0,41) and so 07ty is necessarily a linear combination
of thin n-cube therefore A = = 0.

Another possible proof of this proposition is to use Theorem 11.2 and to use the
homotopy equivalence of [12] Proposition 8.5 between 2, and 2;. n
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homotopic p-morphisms A and B. Then HF, <A, B)) = HR, (G,(A,B)) =0 for 0 <
n <p and HF; (G,(A, B)) = HR; (G,(A, B)) = HF (G <A B)) = HR, (G,(A, B)).

p

11.4. PROPOSITION. Letp > 1 and let G,(A, B) be the w- category generated by two non-
. (G

PRrROOF. Analogous to the previous proof. [
11.5. PROPOSITION. Letn > 0. HFy (I") = 7Z and for p > 0, HE - (I") = 0.

ProoOF. We know that

CF, (I") = & Z0, (R(ky ... ky)).

R(k1..k,) of dimension p

And the differential maps is also completely known. In the formal branching complex,
one has

OO (Rkr . k) = > (—17 10 (Rlkr .. [, - Kn))

1<i<p

where k,,,...,k,, are the 0’s appearing in the word k;...k, with n; < ... < mn,. It
follows that this chain complex can be split depending on the position and the number of
the +’s, and that these positions and numbers are not modified by the differential maps.
If the number of the + signs is IV, we are reduced to calculating the simplicial homology
of the (n — N)-simplex which is known to vanish in dimension strictly greater than 0. m

As for the calculation of HR, (I™), the point is to prove as above for 2, and G,(4, B)
that there is no additional relations between the (I (R(k1 . . . k,,)) in the reduced branching
complex. Unfortunately, for a thin (n 4 1)-cube ¢y of the branching nerve of I, 7ty is
not necessarily a linear combination of thin n-cube. For example if ¢ and b are two 1-
morphisms of 1" such that axyb exists, then let t5 the thin 2-cube such that 0] to = [y (ax*q
b), Oty = Ty (teb), Oy ta = Uy (a) and 9f ty = [01(b). Then 0ty = Ty (a *¢ b) — Oy (a).
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