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A SHEAF-THEORETIC VIEW OF LOOP SPACES

MARK W. JOHNSON

ABSTRACT. The context of enriched sheaf theory introduced in the author’s thesis
provides a convenient viewpoint for models of the stable homotopy category as well as
categories of finite loop spaces. Also, the languages of algebraic geometry and algebraic
topology have been interacting quite heavily in recent years, primarily due to the work
of Voevodsky and that of Hopkins. Thus, the language of Grothendieck topologies is
becoming a necessary tool for the algebraic topologist. The current article is intended
to give a somewhat relaxed introduction to this language of sheaves in a topological
context, using familiar examples such as n-fold loop spaces and pointed G-spaces. This
language also includes the diagram categories of spectra from [19] as well as spectra in
the sense of [17], which will be discussed in some detail.

1. Introduction

An excellent description of the formalism of enriched sheaf theory under certain technical
assumptions on the base category is given in [5]. Unfortunately, the category of topological
spaces (which will refer to compactly generated, weak Hausdorff spaces with basepoints)
does not satisfy these technical assumptions. Specifically, limits and colimits do not
interact particularly well in topological spaces. Thus, the author was forced to develop
a notion of enriched sheaves of topological spaces in [15]. The main purpose was to pin
down Peter May’s suggestion that infinite loop spaces might be viewed as something akin
to sheaves of spaces. In fact, the technical details of this statement will be one of the
main results of the current article.

Both the notion of a stack and a simplicial sheaf involve the notion of a site or a
Grothendieck topology. The importance of both stacks and simplicial sheaves alone should
justify some attempt to give a gradual introduction to the language of sheaves, intended
for topologists. Thus, using examples familiar to topologists, such as categories of n-fold
loop spaces and pointed G-spaces, the basic definitions will be discussed.

The work of [19] deals with diagram categories of spectra. However, diagram categories
will be shown to be a particularly nice type of sheaf category. Thus, their work as well
as the viewpoint of [17] is unified with that of n-fold loop spaces and pointed G-spaces in
the language of sheaf categories. Unfortunately, there seems to be significant uncertainty
about the “fancy new models” for the stable homotopy category such as symmetric or
orthogonal spectra, (see [13] or [19]). The last section of this article will address the
technical differences between these models.
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The article is organized as follows: section 2 recalls some basic information about
topological diagram categories, section 3 introduces the notions of Grothendieck topology
and Grothendieck basis with a number of motivating examples. Section 4 defines the
notion of sheaf on either a topology or a basis and culminates with the proof in our cases
that sheaves on a basis agree with sheaves on the topology generated by the basis. The
focus shifts to stable homotopy theory in section 5, where the example of spectra in the
sense of [17] is shown to be a category of sheaves in the usual category of prespectra.
Finally, in section 6 the different models for the stable homotopy category are discussed,
with a comparison of their technical properties.

2. Topological Diagrams

The language of enriched categories, while intimidating, becomes fairly familiar in topolog-
ical contexts. Essentially, the question becomes one of considering topologies on morphism
sets so that standard maps become continuous.

Once again, (pointed) topological spaces will mean τ∗, the category of compactly
generated, weak Hausdorff spaces with basepoints. This category is closed symmetric
monoidal under the compactly generated smash product.

2.1. Definition. The category C is a (pointed) topological category provided the
morphism sets are equipped with topologies which make them topological spaces such that
the composition maps C(B,C) ∧ C(A,B) → C(A,C) are continuous in these topologies.

2.2. Example.

1. The most basic example of a topological category will be the category of pointed
spaces τ∗, with the Kelley functor applied to the compact-open topologies on map-
ping spaces.

2. Any standard category may be made topological by giving the morphism spaces
discrete topologies and adding disjoint basepoints.

3. A full subcategory of a topological category remains topological, although the ques-
tion is a bit more delicate for subcategories where only a subset of maps are con-
sidered. This follows from the fact that subspaces may not be compactly generated
(see Warning 3.1).

4. The category of pointed G-spaces for a compact Lie group G, as discussed in Ex-
ample 2.8.2.

5. The category of n-fold loops spaces and n-fold loop maps, as indicated in Exam-
ple 4.5.1.

All of the examples discussed throughout this article will be (pointed) topological
categories. The general viewpoint is that τ∗ has become the “ground ring” in the algebraic
sense. Further discussion of this type of abstract viewpoint can be found in [16].
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2.3. Definition. A functor between topological categories is a topological functor
provided the induced maps of morphism spaces C(A,B) → D(F (A), F (B)) are continuous.

Similarly, natural transformations will be defined by assuming the usual commutative
squares on morphism spaces consist of continuous maps.

2.4. Warning. In general this disagrees with the usual meaning in an enriched category,
however these two notions will agree for all of the examples considered in this article.

A pair of topological functors F and G are topological adjoints provided the usual
bijection of morphism sets extends to a homeomorphism of spaces. That is, C(X,G(Y ))
must be naturally homeomorphic to D(F (X), Y ) rather than assuming a natural bijection
as would be the case for a standard adjunction. In particular, topological adjoints are
standard adjoints.

This leads one to wonder how much more structure a standard adjoint pair must
preserve in order to qualify as a topological adjoint pair. The most convenient answer is
given in section II.6 of [3] and involves so-called tensors and cotensors. The statement
is that a standard adjoint pair is a topological adjoint pair if the left adjoint preserves
tensors, or equivalently, if the right adjoint preserves cotensors.

A topological category C is tensored over τ∗ provided there exist natural objects X ⊗
M ∈ C for each X ∈ C and M ∈ τ∗ with the property that the space C(X ⊗ M,Y ) is
naturally homeomorphic to τ∗(M, C(X,Y )) for arbitrary Y ∈ C. Another way to describe
the situation is that (X⊗?, C(X, ?)) becomes a topological adjoint pair between τ∗ and C,
which is also natural in the argument X.

There is a dual notion of cotensor, or hom object, which requires natural homeomor-
phisms τ∗(M, C(X,Y )) ≈ C(X, hom(M,Y )) for any M ∈ τ∗ and X,Y ∈ C. Notice in
particular that, for M ∈ τ∗, the functors ?⊗M and hom(M, ?) form a topological adjoint
pair between C and itself whenever C is both tensored and cotensored over τ∗.

2.5. Example.

1. The category τ∗ is tensored and cotensored over itself, where the tensor is defined as
the compactly-generated smash product and the cotensor is the compactly-generated
mapping space.

2. The category of loop spaces is cotensored over spaces, with hom(M,Y ) again defined
as the compactly-generated mapping space. This is a loop space because of the
exponential law for τ∗. In fact, this category is also tensored by later results, in a
much more complicated way.

3. The usual notion of loops on a spectrum is simply hom(S1, Y ).

Next is the main definition of this section.

2.6. Definition. Suppose C is a small topological category. Then the category of dia-
grams indexed by C will denote the category of topological functors from C to τ∗, with
topological natural transformations as morphisms.
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2.7. Remark. Small in this context refers to the object class of C being a set.

2.8. Example.

1. Choose C1 to be the category with one object, whose morphism space is S0. Then the
category of diagrams indexed by C1 is τ∗ itself. To see this, notice a topological func-
tor in this case consists of a space together with a continuous map S0 → τ∗(X,X).
However, since this must be a pointed map and functors must preserve identities
the map must be the adjoint of the identity X ∧ S0 ≈ X → X.

2. More generally, suppose G is a topological group and let G denote the category
with one object whose morphism space is G+. (Here G+ denotes G with a disjoint
basepoint added.) The composition law should be given by the group multiplication
via G+ ∧ G+ ≈ (G × G)+ → G+. Then the category of diagrams indexed by G is
the category of pointed left G-spaces. The category of diagrams indexed on the
opposite of G is the category of pointed right G-spaces.

3. Let E be the topological category whose objects are the nonnegative integers so that
E(n, n) = (Σn)+ and all other morphism spaces are the basepoint. The composition
law E(n, n) ∧ E(n, n) → E(n, n) is given by the multiplication in Σn. Then the
category of diagrams indexed by E consists of sequences of spaces {Xn} such that Xn

is a pointed Σn-space and morphisms are sequences of maps that are Σn-equivariant
at the nth entry.

4. Let A be the topological category whose objects are the nonnegative integers so
that

A(m,n) =

m−n︷ ︸︸ ︷
S1 ∧ · · · ∧ S1

with composition given by associativity, unit or zero maps (if m < n, Sm−n is a
basepoint, while S0 is intended for m=n). Then the category of diagrams indexed
on the opposite of A is called prespectra (on the canonical indexing sequence) in
[17] or often naive spectra in other sources. To see this, consider the pointed contin-

uous map

m−n︷ ︸︸ ︷
S1 ∧ · · · ∧ S1 → τ∗(Xn, Xm) which is adjoint to the usual structure map

Σm−nXn → Xm.

5. Let Σ be a topological category with objects the nonnegative integers. Clearly, there
is an action of the symmetric group Σm−n on A(m,n) by permuting smash factors.
This extends naturally to an action of the larger group Σm on (Σm)+ ∧Σm−n Sm−n.
One defines the spaces Σ(m,n) to be (Σm)+∧Σm−n Sm−n. The associativity and unit
maps which induce the composition law in A extend by naturality of these extended
actions to make Σ a small topological category. The category of diagrams indexed
on the opposite of Σ is then the “intersection” of the previous two examples. That
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is, objects of this new diagram category are prespectra such that the n-th entry has
a Σn action, while the structure maps become equivariant in an appropriate sense.
This category is called symmetric spectra and is discussed in the later portions of [13]
(the early portions are devoted to the simplicial version, which is quite similar) or
in [19]. The main technical point is that symmetric spectra form a closed symmetric
monoidal category, i.e. carry a “good” smash product on the point-set level.

6. This is the “coordinate-free” version of the previous example. Let U denote a
countable-dimensional real inner-product space. Let O denote a topological category
whose objects are the finite linear subspaces of U . Given objects V and W , define
SW−V to be the one-point compactification of W⊥V , the orthogonal complement of
V in W . Note W⊥V is defined to be empty (hence SW−V is the basepoint) if V � W
and contains only zero (hence SW−V is S0) if W = V . Clearly, the orthogonal group
O(W−V ) acts naturally on SW−V . However, as in the previous example one defines
O(W,V ) to be O(W )+ ∧O(W−V ) S

W−V with composition law given by extension of
the natural associativity, unit or zero maps SW−W ′ ∧ SW ′−V → SW−V . Thus, O
becomes a small topological category and the category of diagrams indexed on the
opposite of O is referred to as orthogonal spectra in [19]. As with symmetric spectra,
the category of orthogonal spectra carries a closed symmetric monoidal structure
(or “good” smash product). The increased complexity of the (non-finite) orthogonal
groups is justified by the coordinate-free nature of this construction as well as the
fact that stable weak equivalences will be unambiguously defined (unlike in the case
of symmetric spectra).

Given a topological functor F : C → D, precomposition defines a topological functor
from the category of diagrams indexed on D to that indexed on C. In fact, this precom-
position functor will have both a left and a right topological adjoint by the usual Kan
extension formulae.

For each nonnegative integer n, there is an obvious topological functor from C1 (of
Example 1) to A (of Example 4) sending the unique object of C1 to n and acting as the
identity on morphism spaces. The comments above imply that precomposition by this
functor will have both a left and a right topological adjoint. However, consideration of
Examples 1 and 4 implies this precomposition functor is isomorphic to the evaluation at
the nth entry of a prespectrum. Hence, one has both left and right topological adjoints
to evaluation, which implies both limits and colimits are defined entrywise in prespectra.
This case is general in the sense that left and right adjoints to evaluation can be produced
in this manner for any diagram category.

In fact, one can describe these adjoints for the current situation, while they can become
quite complicated for larger indexing categories. The left adjoint to evaluation at n is
usually labeled the nth desuspension of a space. The kth entry of Ln(X) is Σk−nX, where
negative suspensions indicate a basepoint. The right adjoint is less well-known, primarily
because it yields stably trivial objects. Given M ∈ τ∗, define a diagram Rn(M) indexed
on the opposite of A with the kth entry of Rn(M) defined as Ωn−kM (which should be
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taken to mean a basepoint when k > n). This is clearly natural and yields the expected
right adjoint to evaluation at n without much difficulty.

In the case of Example 5, the entries of Ln(M) look like (Σk)+∧Σk−n
Sk−n∧M . An entry

of Rn(M) is given by (map(Sk−n,map((Σn)+, X)))Σk−n , or the space of Σk−n-equivariant
maps from Sk−n to the cofree pointed Σn-space on M . A similar modification involving
orthogonal rather than symmetric groups yields formulae for the adjoints in the case of
Example 6. One should notice that even the nth space of Rn(M) is not M , but rather the
cofree space associated to M , map((Σn)+,M). Only the zeroth entry yields a standard
loop space on M , namely ΩnM .

By now the reader will have noticed that Examples 2.8.4,5 and 6 were all described as
categories of diagrams indexed on the opposite of a certain category. This is in line with
the following definition.

2.9. Definition. Suppose C is a small topological category. Then the category of (en-
riched) presheaves on C is the category of diagrams indexed on the opposite of C.

Thus, from the examples above, presheaves on A yields the category of prespectra,
presheaves on Σ yields the category of symmetric spectra, presheaves on O yields the
category of orthogonal spectra and presheaves on G yields the category of pointed right
G-spaces.

Clearly, for Z ∈ C the formula HZ(Y ) = C(Y, Z) defines a diagram HZ or C(?, Z)
indexed on the opposite of C, hence a presheaf. Presheaves of the form C(?, Z) are com-
monly referred to as representable presheaves. In fact, the Yoneda embedding which sends
Z to C(?, Z) is an equivalence of C with the full subcategory of representable presheaves.
This equivalence follows from the fact that naturality implies any morphism is completely
determined by where it sends the identity map on the target object. (The reason for
defining presheaves in terms of diagrams indexed on an opposite category is to make this
a covariant equivalence.)

3. Grothendieck Topologies and Bases

Unfortunately, the definition of a Grothendieck topology is quite daunting to many, pri-
marily because of the generality inherent in the definition. A series of examples will be
discussed to motivate the definitions. A Grothendieck topology may be viewed as a possi-
ble answer to the question, “which subobjects of a representable presheaf might be viewed
as ‘filling up’ the representable in some natural sense ?” The reader should keep in mind
that the motivation is closely tied to the notion of sheaves to be introduced in the next
section.

The approach to Grothendieck topologies taken here, following [4], will depend upon
the notion of a subobject of a presheaf. Ordinarily, category theorists define subobjects
as (isomorphism classes of) monomorphisms into a fixed object.

However, it is more natural in topological situations to consider subsets equipped with
the subspace topology.
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3.1. Warning. Recall that the naive subspace topology may not be compactly gener-
ated, hence “the subspace topology” refers to applying the Kelley functor k to this naive
construction. If the naive subspace is closed, for example, the functor k is not required.

Thus, a subobject of a presheaf X will consist of another presheaf Y together with
a morphism of presheaves Y → X so that each evaluation functor sends this morphism
to the inclusion of a subspace (in this compactly generated sense). Thus, for example,
taking Y to be X with finer topologies on the entries in such a way that Y remains a
presheaf would NOT yield a subobject of X in this sense. However, it should be clear
that the constant diagram on the basepoint is a subobject of every presheaf.

Because the axioms are often confusing at first glance, the reader should keep in
mind that they bear some resemblance to familiar properties of open covers in basic
topology. The first axiom is essentially the statement that the identity map is an open
cover, the second that restriction to a subspace preserves open covers, and the third
reflects transitivity of open covers. (See [2] for a different version of a Grothendieck
topology which reflects this analogy more closely.)

A sieve refers to a subobject of a representable functor in a presheaf category. Suppose
r : R → C(?, C) is a sieve and D ∈ C. Then a point x ∈ RD gives a point r(x) ∈ C(D,C),
hence a corresponding morphism xr : D → C.

3.2. Definition. Suppose C is a small topological category. Then a Grothendieck
topology on C is the choice, for every object C ∈ C of a family �(C) of sieves in C(?, C)
(often called the covering sieves) which satisfy the following axioms:

• each C(?, C) is in �(C) for C ∈ C;

• given a covering sieve r : R → C(?, C) and a morphism f ∈ C(D,C), the sieve
f−1(R) must cover C(?, D), where f−1(R) is defined by pulling back R over the
morphism f ;

f−1(R)

��

�� R

��

C(?, D)
f∗

�� C(?, C)

• suppose s : S → C(?, C) is a covering sieve, and r : R → C(?, C) is a sieve such
that f−1(R) covers C(?, D) for each morphism f of the form xs, corresponding to
x ∈ SD. Then the sieve R must be a covering sieve in C(?, C) as well.

As usual, there is also a notion of basis for a Grothendieck topology. In fact, the most
natural description of the example of spectra in this framework is as a category of sheaves
on a basis (see Corollary 5.2). The examples will be discussed after the definition of a
basis.
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In order to define a basis, one needs appropriate notions of image of a morphism of
presheaves and union of such images. Since morphisms are actually natural transforma-
tions, the image of a natural transformation may be defined entrywise and will remain a
presheaf.

For a union of images, simply take the subspace topology on the underlying set images,
equipped with the “structure maps” of the target object.

3.3. Definition. An (enriched) Grothendieck basis on C will consist of a family of
sieves satisfying the following axioms:

• each identity 1 : C(?, C) → C(?, C) is a basis cover;

• given a basis cover s : S → C(?, C) and a morphism g : D → C, there exists some
basis cover r : R → C(?, D) which is a subobject of g−1(S), i.e. which factors through
g−1(S) → C(?, D);

R

��

g−1(S)

��

�� S

��

C(?, D) g∗
�� C(?, C)

• suppose s : S → C(?, C) is a basis cover and {Rx → C(?, Dx)} is a family of basis
covers indexed over elements x ∈ SDx. Then the union of their images

⋃
x∈S xs(Rx)

must be a basis cover of C(?, C).

The topology associated to a basis will consist of the sieves r : R → C(?, C) which
factor some inclusion of a basis cover. The following shows this process actually yields a
Grothendieck topology.

3.4. Proposition. Any basis induces a Grothendieck topology, with R → C(?, C) a cover
in the topology precisely when there is an element of the basis R′ such that R′ is a subobject
of R.

Proof. Since pullbacks preserve subobjects by definition, the first two axioms for a
Grothendieck topology are obvious from those for a basis. It is not immediately obvious
how to apply the third axiom for a basis in order to verify that for a topology. Thus,
given a covering sieve S from the topology and an arbitrary sieve R → C(?, C), choose a
subobject S ′ of S which is a basis cover. Given any morphism f : D → C of the form
xs, one assumes that f−1(R) is a cover of D. Hence, there exists a covering sieve in the
basis, Sx, which is a subobject of f−1(R). Now, the third axiom for the basis implies⋃

x∈S′ f(Sx) is a cover of C. However, since the topology on R is inherited from C(?, C),
the union

⋃
x∈S′ f(Sx) is a subobject of R by construction. This implies R is a cover in

the topology by definition.
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3.5. Example.

1. The category C1 from Example 2.8.1 supports only two topologies. The first consists
of both the basepoint and the identity as covers. The second consists of only the
identity as a cover. These examples are completely general and play the role of
the discrete and indiscrete topologies. By declaring every sieve to be a cover, the
axioms are clearly satisfied for an arbitrary indexing category. Later, it will become
clear that the only sheaf on this topology is the basepoint. Similarly, declaring only
isomorphisms to be covering sieves one exhibits a topology on an arbitrary indexing
category. Here the condition of being a sheaf will become vacuous, so that presheaf
categories will be examples of sheaf categories using this indiscrete topology.

2. Let An denote the category with two objects 0 and n, and morphism spaces given
by An(n, 0) = Sn, An(0, n) the basepoint and S0 as endomorphism spaces, with
topological unit maps for composition. This is a small topological category, hence
yields a topological presheaf category Pn. By analogy with Example 2.8.4, this
category Pn consists of pairs of spaces X0 and Xn together with a continuous map
ΣnX0 → Xn. One may form a basis for a topology here in a manner quite similar to
the previous example. The symbol S−n will denote the representable on the object
n, i.e. the object written Σn∗ → S0. Similarly, S−0 will denote the representable
on the object 0, i.e. the object written ΣnS0 → Sn (where the map is the expected
isomorphism). In line with later notation, S−n ⊗ Sn corresponds to the object
Σn∗ → Sn. There is an obvious inclusion of S−n ⊗Sn as a subobject of ΣnS0 → Sn

which will be indicated as in : S−n⊗Sn → S−0 (the subspace is clearly closed). The
claim is that in together with the identities form a basis for a topology. As before, the
first axiom is trivial. For the second axiom, one must consider several cases of pulling
back over different morphisms. In any case, pulling back a monomorphism over the
zero map will yield an isomorphism, which is a cover by assumption. Pulling back
over identities is clearly going to yield nothing new, hence one need only consider
pulling back over some non-zero morphism S−n → S−0. Notice the 0 entry of the
preimage f−1(S−n ⊗ Sn) is the basepoint in any case, as a subobject of (S−n)0 = ∗.
Since in is an isomorphism at entry n, the n entry of the preimage will be isomorphic
to the n entry of S−n which is simply S0. In other words, f−1(S−n ⊗ Sn) ≈ S−n

which is a cover by assumption.

Finally, for the covering sieve S in the third axiom notice that the only choices are
S−n ⊗ Sn or S−0 over S−0 and S−n over S−n. From the existence of identity maps,
it should be clear that the axiom is always satisfied for all S but S−n ⊗ Sn → S−0.
In this case, choose R → S−0 a sieve such that f−1(R) covers S−n for f = xs and
x ∈ Sn. Since in is an isomorphism at entry n, this implies Rn ≈ (S−0)n (the only
cover of S−n is an isomorphism). However, this implies R ≈ S−n ⊗ Sn or R ≈ S−0

since these are the only such sieves. In particular, R is a covering sieve by definition,
which verifies the third axiom.
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4. Sheaves on a Site or a Basis

Let C denote a small topological category, together with a Grothendieck topology � on
C, where P is the presheaf category indexed on C. The pair (C,�) is referred to as a
Grothendieck site.

4.1. Definition. Suppose (C,�) is a Grothendieck site.

• A presheaf Y ∈ P will be called a sheaf on this site provided each precomposi-
tion P(r, Y ) : P(C(?, C), Y ) → P(R, Y ) by a covering sieve r : R → C(?, C) is a
homeomorphism.

• A separated presheaf on a site indicates P(r, Y ) is a monomorphism for each
covering sieve R.

• The topology � will be called a subcanonical topology provided each representable
presheaf C(?, C) is a sheaf on this site.

One should keep in mind that the nature of monomorphisms implies that the class of
separated presheaves on a site will be closed under subobjects.

Now suppose B is a basis for a topology on P. The obvious variations of the previous
definitions, considering only basis covers yield notions of sheaves on a basis, etc.

4.2. Definition. A subcategory is called:

• reflective provided there exists a left adjoint to the inclusion of the subcategory,
and the left adjoint is called the reflector.

• strongly reflective if the reflector preserves monomorphisms between sieves.

The following result is highly suggestive of the relation of sheaf categories to localiza-
tions.

4.3. Lemma. Suppose the subcategory of sheaves on a basis is reflective. Then the re-
flector sends each inclusion of a covering sieve in the basis r′ : R′ → C(?, C) to an
isomorphism.

Proof. Naturality of the reflector yields the following commutative diagram of isomor-
phisms.

P(C(?, C), Y )

≈
��

(r′)∗
�� P(R′, Y )

≈
��

S(S(C(?, C)), Y )
S(r′)∗

�� S(S(R′), Y )

Hence, the morphism S(r′) induces an isomorphism under precomposition against every
object in the subcategory. It is a brief exercise in diagram chasing to see S(r′) must then
be an isomorphism of sheaves.
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In order to avoid the technically difficult construction of the associated sheaf functor
(see [15]), the following is phrased conditionally. The usual role of the associated sheaf
functor is to be the strong reflector for the category of sheaves.

4.4. Proposition. Suppose the subcategory of sheaves on a basis B is strongly reflective.
Then it agrees with the category of sheaves on the topology generated by the basis.

Proof. It should be clear that any sheaf on the topology generated by a basis must be
a sheaf on the basis by definition. Since both subcategories are full, it suffices to show
any sheaf on the basis is a sheaf in the topology. Thus, suppose Y is a sheaf on the basis
while r : R → C(?, C) is the inclusion of a cover in the topology generated by the basis. If
the reflector S applied to r is an isomorphism, then the following diagram implies P(r, Y )
is an isomorphism.

P(C(?, C), Y )

≈
��

r∗ �� P(R, Y )

≈
��

S(S(C(?, C)), Y )
S(r)∗

�� S(S(R), Y )

However, by assumption there exists a commutative diagram

R′

��

r′

����
��

��
��

�

R �� C(?, C)

of subobjects where r′ : R′ → C(?, C) is a cover in the basis. Applying S to this diagram
then yields a factorization of an isomorphism as two monomorphisms (by the assumption
of a strong reflector), which must then be isomorphisms for formal reasons.

In fact, the associated sheaf functor often allows one to recover the topology as those
r : R → C(?, C) with S(r) an isomorphism, see [5], [18] (or [15]) for details.

4.5. Example.

1. Consider the category Pn together with the basis for a topology introduced in Ex-
ample 3.5.2. By construction the diagram

Pn(S−0, Y )

≈
��

i∗n �� Pn(S−n ⊗ Sn, Y )

≈
��

Y0
�� ΩnYn

commutes, where the bottom map is adjoint to ΣnY0 → Yn. Since both vertical
maps are homeomorphisms, requiring Y to be a sheaf in the topology discussed in
Example 3.5.2 is equivalent to demanding that Y0 is homeomorphic to ΩnYn via the
adjoint structure map. Hence, the category of sheaves on this basis is equivalent to
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the category of n-fold loop spaces. Notice Proposition 4.4 then implies the category
of sheaves on the topology generated by this basis is another description of n-fold
loop spaces. (The strong reflector is given by the functor sending ΣnX0 → Xn to
Σn(ΩnXn) → Xn.)

2. There is a somewhat more natural variation on the previous example which is closer
to Example 2.8.4. Thus, let An

0 consist of the full subcategory of A whose objects
are the nonnegative integers between 0 and n (inclusive). This may be equipped
with a basis for a topology consisting of all inclusions S−k ⊗ Sk−m → S−m with
n ≥ k ≥ m ≥ 0. (The case n = ∞ will be proven below for the interested reader.)
As in the previous example, the category of sheaves on this basis is equivalent to
the category of n-fold loop spaces as well as being strongly reflective. Consider
the functor which takes an arbitrary presheaf Y to the diagram whose kth entry is
Ωn−kYn. This construction clearly yields a sheaf and a simple exercise verifies the
universal property of a reflector, hence Proposition 4.4 applies.

Combining the previous two examples, one can see that more than one site may be used
to model the same category of sheaves up to topological equivalence. This suggests that
one attempt to find presheaf categories which are closer to a given category of sheaves.
Since colimits in the category of sheaves are formed by applying an associated sheaf
functor to the colimit in a presheaf category, one would like to minimize the damage done
by this associated sheaf functor in order to produce tractable models for such colimits.

The technique is based on a relatively simple idea. Given a sheaf category S described
in terms of a site (C,�), form a new indexing category E which consists of the full
subcategory of “representable sheaves”, i.e. the associated sheaves of any representable
functors in the presheaf category. Thus, the objects of E are in 1-1 correspondence with
the objects of C, but the morphism spaces of E are, in general, richer than those of C. In
particular, there is a natural inclusion functor J : E → S which may be used to construct
an (topological) adjoint pair between PE and S. The left adjoint L : PE → S will be
defined as the left (topological) Kan extension of J over the Yoneda embedding E → PE .
The right adjoint is then given by precomposition with J , i.e. R(X)E = S(J(E), X) for
each X ∈ S and E ∈ E . Notice, this is completely analogous to the construction of
the geometric realization/singular set pair between simplicial sets and spaces, hence L is
generally called the realization functor and R its associated singular functor.

In fact, the functor R is an equivalence onto its image, because every element of S is an
(indexed) colimit of elements in the image of the functor J . The question then becomes
one of constructing a Grothendieck topology for PE where the image of R is the category
of sheaves on this topology. This construction is possible by exploiting the fact that RL
is left adjoint to the inclusion of the image of R. In line with the comment following
Proposition 4.4, this adjunction usually allows one to build a topology consisting of those
inclusions r : R → E(?, E) which are sent to an isomorphism by RL.
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4.6. Example.

1. Consider the category of n-fold loop spaces as described in Example 4.5.1 above.
This approach suggests defining a new indexing category En with 0 and n as objects,
and morphism spaces given as in Example 3.5.2 other than the fact that En(0, 0)
should be the space of topological endomorphisms of Sn rather than simply S0.
Hence the objects of PEn will be those elements X of Pn which, in addition, have
a natural action of this endomorphism space (considered as a pointed topological
monoid) on X0. Notice the inclusion will not be full, since all morphisms in PEn

must satisfy an additional equivariance condition. As expected from the discussion
above, this diagram category more nearly approximates n-fold loop spaces than the
category Pn.

2. Similarly, one can improve upon the indexing category considered in Example 4.5.2
in this manner. The resulting diagram category consists of elements of the former
diagram category which support an action of the topological endomorphisms of Sn−k

on the k-th entry, as well as various additional structure maps. For example, there
must be a structure map ΩnΣn−kXk → X0 which would correspond to Ωn on the
usual structure map Σn−kXk → Xn when X0 ≈ ΩnXn. Once again, the inclusion
will not be a full functor as more equivariance conditions are imposed in the new
category.

These examples are suggestive of the usual practice of imposing an action of the
endomorphisms operad in the study of infinite loop spaces.

5. Spectra as Sheaves

The motivating example for the author’s work in the first chapter of [15] is summarized
in the following few results.

5.1. Lemma. On the category PA, the collection of morphisms S−k ⊗Sk−m → S−m with
k ≥ m ≥ 0 form a basis for a topology.

Proof. First, the case k = m is included to ensure that each identity is a basis cover.
For the second axiom, choose any morphism f : S−l → S−m and consider the preimage
f−1(S−k ⊗ Sk−m). If f is the zero map, the fact that S−k ⊗ Sk−m → S−m is a monomor-
phism implies this preimage is isomorphic to S−l itself. However, each non-zero f is itself
a monomorphism. This implies that for entries below k, the preimage is the basepoint.
Since the inclusion S−k⊗Sk−m → S−m is an isomorphism for entries greater than or equal
to k, the preimage will also be isomorphic to S−l for entries greater than or equal to k.
Because the structure maps (and topologies since all inclusions are closed embeddings)
are inherited as a subobject of S−l, this uniquely determines the preimage as S−k ⊗ Sk−l

for k > l or S−l itself if k ≤ l. In either case, the preimage is also a basis element.
The third axiom is accessible primarily because the composition law in the category

A consists of isomorphisms. Hence, every morphism S−l → S−m factors through each
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intermediate S−j for l ≥ j ≥ m. Also, the entries of any S−k ⊗Sk−m consist of either the
zero map or all possible maps. Thus, taking the union of all possible images of a family
of S−j ⊗ Sj−l will yield some S−k ⊗ Sk−m sitting inside S−m.

5.2. Corollary. The category of spectra (on the canonical indexing category, in the
sense of [17]) is the category of sheaves on the basis given by Lemma 5.1, as well as being
strongly reflective.

Proof. As in Example 4.5.1, considering diagrams of the form

Pn(S−n, Y )

≈
��

i∗n �� Pn(S−k ⊗ Sk−n, Y )

≈
��

Yn
�� Ωk−nYk

implies the sheaf condition is equivalent to saying each adjoint structure map is a home-
omorphism. The fact that the category of spectra is strongly reflective is the focus of the
first section of the appendix to [17].

5.3. Definition. A cofinal sieve will refer to a sieve r : R → S−n such that each
evaluation rj is an isomorphism for some choice of k and all j ≥ k.

(Compare this with the definition of cofinal given in [1].) The term cofinal topology
was suggested by R. Bruner.

5.4. Theorem. The collection of cofinal sieves form a Grothendieck topology on PA, the
cofinal topology. Furthermore, the category of spectra (on the canonical indexing sequence)
is equivalent to the category of sheaves on the cofinal topology.

Proof. The previous corollary reduces the proof of the theorem to the identification of
the cofinal sieves as those sieves containing an element of the basis from Lemma 5.1.

Since the inclusion ikn : S−k ⊗ Sk−n → S−n is an isomorphism above entry k and the
inclusion of a basepoint below, any cofinal sieve contains some S−k ⊗ Sk−n by definition.

Conversely, suppose a sieve r : R → S−n contains some S−k ⊗ Sk−n. Then evaluation
at each entry j ≥ k leads to a factorization of an isomorphism as a pair of monomorphisms
(S−k ⊗ Sk−n)j → Rj → S−n

j . However, this implies both maps are actually homeomor-
phisms, hence rj is a homeomorphism for all j ≥ k as desired.

6. Building the Stable Homotopy Category

The reader will notice that all of the current topological models for the stable homotopy
category, with the exception of the S-modules of [7], have been placed in the framework
of enriched sheaf categories. As presheaf (or diagram) categories, prespectra, symmetric
and orthogonal spectra are all categories of sheaves on “indiscrete” topologies. However,
some form of localization is required in order to produce a model for the stable category
from any of these as a starting point. The category of spectra has just been exhibited
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as a proper sheaf category, or categorical localization of prespectra. A similar homotopy-
theoretic localization of prespectra also yields the stable category (see Theorem 6.8 below),
in a manner more familiar to students of Adams’s model from [1]. Analogous homotopy-
theoretic localizations of symmetric and orthogonal spectra produce models for the stable
category. However, this structure on orthogonal spectra may be produced more easily
by direct comparison with the stable structure on prespectra, as in Theorem 6.10 below.
The intent of this section is to contrast the technical properties of these models.

The language of homotopy theory used here will be that of Quillen’s homotopical
algebra [20]. Those unfamiliar with this language may want to glance at the recent books
[9] or [11]. For full details of the existence of the model structures described below see a
more general case in [12] or [14] or the author’s original viewpoint in [15].

Recall that a model structure consists of choosing three classes of maps: weak equiv-
alences, cofibrations and fibrations, which must satisfy a series of axioms generalizing
standard notions such as the homotopy extension property. The following definition de-
scribes one standard method of building new model categories from old ones, originally
due to Quillen.

6.1. Definition. Suppose C is a model category while L : C → D and R : D → C form
an adjoint pair. Then the model structure is said to lift over the adjoint pair provided
D is a model category with a morphism h ∈ D a weak equivalence or fibration precisely
when R(h) ∈ C is a weak equivalence or fibration, respectively.

6.2. Remark.

1. In practice, this technique is usually applied to cofibrantly generated model cate-
gories. Then an additional condition is that the generating cells in D are the set of
morphisms L(g) with g a generating cell in C.

2. The generalization of this technique to include a set of adjoint pairs is described in
[14] and implies the existence of the strict structures described below.

6.3. Example.

1. The usual model structure on pointed spaces is lifted from unpointed spaces in
this sense, where the adjoint pair is adding a disjoint basepoint or forgetting the
basepoint. This explains why basepoints other than the fixed basepoint must be
considered in defining a weak homotopy equivalence of pointed spaces.

2. The usual structure on spaces may be lifted to G-spaces via the free functor/forgetful
functor pair. However, this is generally not an important structure there, as it
essentially ignores the orbit data. The usual structure on G-spaces comes from a
similar trick involving a set of adjoint pairs, or lifting a set of times and intersecting
the various structures. See [14] for details of this approach.

One useful point about lifting model structures is that it simplifies the question of
whether the adjoint pair is a Quillen equivalence. This is exploited in the proof of Theo-
rem 6.10 below.
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6.4. Definition. Suppose C and D are both model categories with (L,R) an adjoint pair
and L : C → D.

1. The pair is called a (strong) Quillen pair if L preserves cofibrations and R preserves
fibrations.

2. A Quillen pair is called a Quillen equivalence if for each cofibrant X ∈ C and
fibrant Y ∈ D the morphism L(X) → Y is a weak equivalence in D precisely when
its adjoint map X → R(Y ) is a weak equivalence in C.

6.5. Remark. The condition of being a Quillen pair is sufficient to imply the adjunction
descends to an adjunction on the associated homotopy categories. A Quillen pair descends
to an adjoint equivalence of homotopy categories if and only if it is a Quillen equivalence.

The following is generally referred to as the “strict structure”, in line with the notation
of [6]. The adjectives in the statement are technically important but the casual reader
may want to disregard them.

6.6. Proposition. The categories of prespectra, symmetric spectra and orthogonal spec-
tra each carry a cofibrantly generated, proper, topological model structure with fibrations
and weak equivalences defined entrywise.

The following is essentially a corollary, because the structure on prespectra is trans-
ported to the subcategory of spectra by lifting over the associated spectrum functor (and
its right adjoint, the inclusion of spectra in prespectra).

6.7. Corollary. The category of spectra carries a cofibrantly generated, topological
model structure with fibrations and weak equivalences defined entrywise.

There are two key technical elements, both due to Lewis in [17]. First, cofibrations
in spectra will be entrywise closed embeddings. Second, sequential colimits over entry-
wise closed embeddings between spectra do not require an application of the associated
spectrum functor. Thus, the small object argument may be applied, despite the fact that
evaluations do not preserve colimits, in general.

This is the first example so far of a model for the stable homotopy category. Thus, a
categorical localization of the category of prespectra yields such a model and one is lead
to wonder if a homotopical localization might yield a model as well.

Consider the map f in PA which is defined as the coproduct of all morphisms S−k ∧
Sk−n → S−n with k ≥ n. There is a general approach to inverting a map in the homotopy
category of a model category, commonly called a localization of the model category. (See
[10].)

6.8. Theorem. The f -localization of the strict structure on prespectra is Quillen equiv-
alent to the structure on spectra given by Corollary 6.7. Furthermore, the f -localization
of the strict structure yields the same homotopy theory as Adams’s model for the stable
homotopy category.
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The key point in the proof of this theorem is that the associated spectrum functor
acts as an f -local replacement functor, at least for cofibrant prespectra. (See Lemma
4.3.5 in [15].) The comparison with Adams’s model then follows almost immediately from
Theorem III.3.4 in [1].

There are natural forgetful functors from orthogonal to symmetric spectra and from
symmetric spectra to prespectra. Each of these may be written as an enriched precom-
position, hence has both left and right adjoints via Kan extensions, which are topological
functors. In particular, there are L : PA → PΣ and L′ : PA → PO each left adjoint to
a forgetful functor, which preserve the entrywise smash product with a space (or tensor)
and preserve representable functors.

The following is phrased differently than the approach in [13], but is essentially equiv-
alent.

6.9. Theorem. The functor L together with the forgetful functor forms a (topological)
Quillen equivalence between the f -localization of the strict structure on prespectra and the
L(f)-localization of the strict structure on symmetric spectra.

Unfortunately, the L(f)-local equivalences are not determined by the usual stable
homotopy groups, unless the objects in question are L(f)-local. There was originally
much confusion about the definition of stable weak equivalences in symmetric spectra,
which seems relatively straightforward from this description. A functorial way of dealing
with the difference between stable weak equivalences and maps between symmetric spectra
inducing isomorphisms on stable homotopy groups has been introduced in [22].

By contrast, the situation in orthogonal spectra is simpler, primarily because a local
replacement operation is not necessary.

6.10. Theorem. The f -localization of the strict structure on prespectra lifts over the
adjoint pair consisting of L′ and the forgetful functor to yield a Quillen equivalent (topo-
logical) structure on orthogonal spectra.

The key difference between L and L′ stems from the fact that the connectivity of
orthogonal groups remains constant, while that of symmetric groups increases in n. (Both
of these left adjoints are built from free functors, whose connectivity depends on that of
the group involved.) Hence, one may verify directly that L′(f) is a stable homotopy
equivalence as a map of prespectra (see [19]) and the rest follows formally. (See [15].)

In particular, it is true that a morphism g of orthogonal spectra is an L′(f)-local
equivalence precisely when g is a stable homotopy equivalence (considered as a morphism
of prespectra). This is one of the technical advantages of orthogonal spectra, which
justifies the added complexity of dealing with the compact topological groups OV rather
than the finite groups Σn.

The category of prespectra plays a pivotal role as the intermediate model that all the
other models may be compared with. In fact, this is not a surprise from the viewpoint of
[16], where prespectra is shown to be initial among stable topological model categories,
in a certain sense. The Bousfield-Friedlander category has been shown to satisfy a similar
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property by [21] as a key step along the way to their classification of simplicial models for
the stable homotopy category.

The category of spectra is quite useful because stable homotopy equivalences and
entrywise weak equivalences coincide. It is often quite useful to have all objects fibrant,
which is also the case for spectra. For example, much of the recent work on multiplicative
stable homotopy by Goerss and Hopkins [8] has been done in this framework.

Symmetric spectra is the simplest model which carries a symmetric monoidal structure
reflecting the smash product in the stable homotopy category, as described by Boardman.
This yields point-set models for constructions such as THH and function spectra. The
hard question in this category is to determine whether a morphism is a stable weak
equivalence.

Finally, orthogonal spectra also carries a symmetric monoidal structure reflecting the
smash product in the stable homotopy category, as described by Boardman. The difficulty
of determining stable weak equivalences is avoided, since they are precisely the stable
homotopy equivalences in the usual sense. However, the indexing category is somewhat
more intimidating. Fortunately, most formulae seem to be determined in symmetric
spectra and then translated into the appropriate orthogonal analog.

Thus, the symmetric spectra continue to play a vital role in the discussion of orthogonal
spectra, just as prespectra are technically vital to understand point-set constructions in
spectra.
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