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SIMPLICIAL TORSORS

TIBOR BEKE

ABSTRACT. The interpretation by Duskin and Glenn of abelian sheaf cohomology as
connected components of a category of torsors is extended to homotopy classes. This is
simultaneously an extension of Verdier’s version of Čech cohomology to homotopy.

1. Introduction

Let E be a Grothendieck topos, A an abelian group object in E. Duskin [4], completed by
Glenn [8], provide a combinatorial interpretation of Hn(E, A), the nth cohomology group
of E with coefficients in A, as the set of connected components of a suitable category
of simplicial objects over K(A, n), the canonical Eilenberg-Mac Lane “space” (that is,
simplicial object in E) of degree n corresponding to A. When n = 1, it is not necessary
that A be abelian, and the formalism reduces to the well-known case of torsors, i.e.
(isomorphism classes of) principal homogeneous A-spaces. The proof of Duskin and Glenn
proceeds by showing that π0tors(K(A, n)) is a universal δ-functor, and depends both on
the additive nature of the situation and the delicate—and beautiful—geometry of torsors
over the canonical model of an Eilenberg-Mac Lane space.

This paper was inspired by the question: what do the (connected components of the)
category of torsors enumerate over a base that is not necessarily an Eilenberg-Mac Lane
space? The answer is surprisingly easy once the problem is reduced to formal homotopy
theory. Part of this ease is slight of hand, however. First of all, one needs to borrow results
from the homotopy theory of simplicial sheaves; and secondly, we dodge the combinato-
rial elaborations (and economies) on the notion of simplicial torsor over X that become
possible only when the simplicial geometry of X possesses distinguished features. These
elaborations, including the notion of K(A, n)-torsor due to Duskin, will be mentioned
only briefly in section 3.

All four ingredients of the proof of our main Thm. 1 below could have been written
down by Grothendieck’s school in the 60’s and 70’s, and indeed they nearly were. Let us
list these ingredients right away.

Proposition 1. Let M be a category with a distinguished subcategory W, which we
assume to contain all the identity morphisms of M. Write hoM for M[W−1], the category
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obtained from M by formally inverting the morphisms in W. For any objects U , X of
M, let fracW−1M(U,X) be the category whose objects are diagrams (“right fractions”) in

M of the form U
w←− C

f−→ X with w ∈ W but C, f being arbitrary, while a morphism
from U ← C1 → X to U ← C2 → X is a map C1 → C2 that makes

C1

�����
���

��

�����
���

U X

C2

��������
��������

commute. Write π0C for the class of connected components of a category C (equivalently,
the connected components of the nerve of C). There is a canonical map

π0fracW−1M(U,X)
γ−→ hoM(U,X).

This map is a bijection if the following condition is satisfied: for any fraction F := P
f−→

B
w←− Q, w ∈ W, the corresponding category of completions, compF , is non-empty and

connected. Here compF has as objects all commutative diagrams

C
g

��

u
��

Q
w

��

P
f

�� B

with u ∈ W, and a morphism between two such is an arrow C1
h−→ C2 making

C1

�����������������

h
��

�

���
��

u1

		
��

��
��

��
��

��
��

�

C2
��

u2

��

Q

w

��

P
f

�� B

commute (note u1, u2, w ∈ W). This condition is satisfied if W is closed under pullback
in M.

This variant on the classical calculus of fractions, together with K. Brown’s [3] local
homotopy theory of simplicial sheaves, is used to prove

Proposition 2. Let E be a Grothendieck topos, and let W be the class of maps in E∆op

that are weak equivalences in the local sense, i.e. that induce isomorphisms on the sheaves
of homotopy groups with arbitrary (local) basepoints. Denote by LAFib the subcategory
of W consisting of weak equivalences that are also Kan fibrations in the local, or “internal”
sense. (Morphisms in LAFib are usually called acyclic or trivial local fibrations.) Then
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the canonical π0fracLAFib−1 E∆op (U,X)
ι−→ hoE∆op (U,X) is a bijection provided U and X

are locally fibrant, i.e. satisfy Kan’s simplicial extension condition in the local sense.

The next proposition brings in the term “simplicial torsor”. It holds for a number of
variants on the definition (which will all be duly recalled in the course of the proofs). Some
of these variants make the proofs easy, others are useful for describing algebraic manipu-
lations on torsors, and some permit finitary representations of cohomology classes—and
more generally, of certain types of homotopy classes. Under any definition, one will have

Proposition 3. Write ST(X) for the category of simplicial torsors over X, and 1 for
the terminal object of E∆op

. There exists a natural commutative diagram (of sets and
mappings)

π0fracLAFib−1 E∆op (1, X)
φ

�� ��

ι



���������������
π0ST(X)

��											

hoE∆op (1, X)

and φ is a surjection.

One has instantaneously

Theorem 1. Let X be a locally fibrant simplicial object in the Grothendieck topos
E. Then there is a canonical bijection

π0ST(X) → hoE∆op (1, X)

Indeed, all arrows in Proposition 3 are bijections by Proposition 2.

To recover the relation to abelian cohomology, recall

Proposition 4. Let A be an abelian group object in E, n ∈ N, and write K(A, n)
for a simplicial Eilenberg-Mac Lane object of degree n corresponding to A. Then there is
a canonical isomorphism hoE∆op (1, K(A, n)) → Hn(E, A). When n = 1, A need not be
abelian, and the isomorphism still holds between non-abelian cohomology in degree 1 and
homotopy classes in hoE∆op .

Proof. Without loss of generality, we may assume K(A, n) to be the canonical model of
an Eilenberg-Mac Lane space: the simplicial abelian object that is the “denormalization”
of the chain complex consisting of A alone in degree n. Then one has a chain of adjunctions
(n � 0, D being the derived category of abelian objects in E)

RnΓ(A) ∼= Extn
Ab(E)(Z, A) ∼= D(Z, A[n]) ∼= hoAb(E)∆

op (Z, K(A, n)) ∼= hoE∆op (1, K(A, n))

between the Quillen model categories of N-indexed chain complexes of abelian group
objects, resp. simplicial abelian group objects resp. simplicial objects in the topos E. See
Jardine [9] for more details, and Jardine [11] for the statement on non-abelian H1.
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The homotopical approach of the present paper is quite robust, allowing one to ex-
periment with combinatorial expressions for other global homotopy sets (or groups). The
argument has a “modular” structure: each of the last three propositions enjoys its own
natural level of generality in abstract homotopy, not being limited to simplicial objects.
For example, the reason for breaking Prop. 3 off of Prop. 2 in the above manner is that
Prop. 2 is a local argument, while Prop. 3 needs a bit of set theory. It is essentially
equivalent to constructing enough fibrant objects in a Quillen model category.

The next section contains the proofs; they are brief, given some background in simpli-
cial and/or axiomatic homotopy theory. (Prehistory and elaborations are also provided.)
We then digress on variants such as hypercovers and Čech cohomology, but full discussion
of these requires a separate paper. The last section is concerned purely with calculi of
fractions and their role in computing homotopy classes.

2. Proofs

Proof of Proposition 1. Let us denote by ho the localization functor M ho−→ hoM :=
M[W−1]. This functor induces the map (of classes, in general1) π0fracW−1M(U,X)

γ−→
hoM(U,X) by sending a representative U

w←− C
f−→ X of a connected component to

U
(how1)−1

−−−−−→ C
hof−→ X; this is well-defined, since if the left-hand diagram commutes, so

does the one on the right:

C1

c

��

f1

�����
���w1

�����
���

C1 hof1

�����
���

hoc

��

U X


 γ �� U

(how1)−1 ��������

(how2)−1 �����
���

X

C2
f2

��������w2

��������
C2

hof2

��������

To prove that π0fracW−1M(U,X)
γ−→ hoM(U,X) is a bijection when M, W satisfy

the condition of the proposition, i.e. the category of completions of every left fraction
is non-empty and connected, we will explicitly define a category W−1M with connected
components of right fractions as hom-sets, together with a functor M → W−1M, and
prove it has the universal property required of hoM. Let W−1M have the same objects
as M, and let the hom-set W−1M(U,X) be π0fracW−1M(U,X). To compose morphisms
U � X and X � Y , select representatives of the components and fill in the inner diamond
below (possible by the assumption that comp is non-empty):

C
��

∼




C1

���
��

�∼
����

��
C2

���
��

�∼










U X Y

1We work freely with classes, including categories that are not locally small, i.e. may possess a proper
class of arrows between two objects, since both localized categories and categories of fractions may be
such. The desired conclusion is an equivalence between two (locally not necessarily small) categories.
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where the tilde indicates morphisms belonging to W. The composition is the connected
component of the leg-wise composed U

∼←− C → Y . This obviously depends only on
the component of C in compC1→X

∼←−C2
, which is unique, and an easy verification shows

that it only depends on the connected component of the representatives U
∼←− C1 → X,

X
∼←− C2 → Y . Associativity, units2 and the universal property follow as for the Gabriel–

Zisman calculus.
To verify the last sentence of the claim, note that if W is closed in M under pullback,

then each of the categories compF , where F is some left fraction P
f−→ B

w←− Q, has a
terminal object; a fortiori it is non-empty and connected.

2.1. Remark. See section 4 for a discussion of other calculi of fractions, including a
beautiful two-sided variant and its homotopical extension, both due to Dwyer and Kan.

Proof of Proposition 2. Denote by E∆op

F the full subcategory of E∆op
whose objects

are locally fibrant, and write LAFibF for the class LAFib ∩E∆op

F (“local acyclic fibrations
between locally fibrant objects”). The inclusion (E∆op

F , LAFibF ) ↪→ (E∆op
, W) induces a

functor E∆op

F [LAFib−1
F ] → E∆op

[W−1] =: hoE∆op , and a theorem of K. Brown [3] asserts
that this is an equivalence of categories.

Acyclic local fibrations are preserved by pullbacks. This is classical for Set∆op

; it
follows e.g. from the fact that acyclic fibrations of simplicial sets can be defined by a
lifting condition. But that implies the same for E∆op

, E being any cocomplete topos, since
the property of being a local acyclic fibration is geometric—it can be defined by (countably
many) geometric sentences (of countable length, in fact). LAFibF is also preserved by
pullbacks in E∆op

F , since the total space of a local fibration is locally fibrant if the base is
so. From Prop. 1 it follows that the canonical

π0fracLAFib−1
F E∆op

F
(U,X) → E∆op

F [LAFib−1
F ](U,X)

is a bijection for arbitrary locally fibrant U , X. But for such U , X, fracLAFib−1
F E∆op

F
(U,X)

is of course the same as fracLAFib−1 E∆op (U,X).

2.2. Remark. Ken Brown established his theorem in his axiomatic setting of a “category
of fibrant objects”; see also Jardine [9]. Curiously, this is the only place in the argument
where a concept of homotopy is needed other than the one hiding in π0 of a category:
either simplicial homotopy of simplicial sheaves or the Quillen–Brown notion of “right
homotopy” via path objects.

Proof of Proposition 3. We begin with one of several approaches to simplicial
torsors.

2.3. Definition. Let X be any simplicial object in E. A simplicial torsor over X is a

local fibration C
f−→ X where C is “of the weak homotopy type of the point”, meaning

that the canonical C → 1 belongs to W. Maps of torsors are simplicial maps over X, i.e.
ST(X) is a full subcategory of E∆op

/X.

2It is here that we use the assumption that W contains all the identity morphisms of M.
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Thus ST(X) can be thought of as a full subcategory of fracW−1E∆op (1, X), and in the
diagram

π0fracLAFib−1 E∆op (1, X)
φ

�� ��

ι



���������������
π0ST(X)

γ
��											

hoE∆op (1, X)

γ is just the restriction of π0fracW−1M(1, X)
γ−→ hoM(1, X) defined as in Prop. 1:

1
w←− C

f−→ X is sent to 1
(how1)−1

−−−−−→ C
hof−→ X. We still have to define φ.

Historical background. Return for a moment to SSet , the category of simplicial sets.
The class F of Kan fibrations and A of acyclic cofibrations (i.e. monomorphisms that
are also weak equivalences, the “anodyne extensions” of Gabriel–Zisman) form a weak
factorization system in the following sense: in any commutative square

• ��
��

a
��

•
f

����• ��

��

•
with a ∈ A and f ∈ F , a diagonal lift exists that makes both triangles commute (we say
that “f has the right lifting property against a” or “a has the left lifting property against
f”); moreover, A is exactly the class of maps having the left lifting property w.r.t. every
element of F , and dually for F against A; and finally any simplicial map can be factored
(not uniquely) as an acyclic cofibration followed by a Kan fibration.

These facts form part of Quillen’s axioms for a “closed homotopy model category”.
(The full set of Quillen’s axioms prescribes two weak factorization systems, 〈acyclic cofi-
brations, fibrations〉 and 〈cofibrations, acyclic fibrations〉, interacting in suitable ways.)
Note that both acyclic monomorphisms and Kan fibrations can be defined by sentences of
geometric logic. When interpreted in the intrinsic (i.e. local) sense in the topos E∆op

, they
single out the following two classes of maps: those monomorphisms that are also local
weak equivalences (let us continue to call them acyclic monos) resp. the local fibrations.
It is no longer the case that acyclic monos and local fibrations form a weak factorization
system. However, it was the great insight of Joyal [13] that the class of maps that do
have the right lifting property against all acyclic monos will make up a weak factorization
system with them—and in fact will satisfy the rest of Quillen’s axioms. This class, char-
acterized now solely by a lifting property, turns out to be a subclass of local fibrations.
Its members are often called global fibrations.

Seemingly the only way to prove these claims is to reduce their local parts to the
case of E = Set , and use somewhat involved transfinite combinatorics for the global
ones. Joyal’s original proof, dating from the early 80’s [13], was never published, but see
Jardine [10], [12] for careful expositions. Beke [2] shows just how automatic the reduction
to Set can be made for other homotopy model categories too. All that is needed for our
present purposes, however, is an easy
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2.4. Lemma. For any Grothendieck topos E, there exists a set A of acyclic monos in
E∆op

such that any map having the right lifting property against all members of A must
be a local fibration.

Proof. Choose a small site (C, J) of definition for E, and write O for the set of objects
of C (thought of as a discrete category). Consider the sequence of adjunctions

E = Sh(C, J)
�

�
i

Pre(C)
LK

�
r

Pre(O)

where the first one is the inclusion of sheaves into presheaves, and the second one is the
restriction functor (induced by the inclusion O ↪→ C) and its left adjoint LK , which is a
left Kan extension. Let I be the set of morphisms in Pre(O)∆op

= SSetO that belong, at
every object of O, to some fixed generating set of acyclic cofibrations for SSet (e.g. the
inclusion of (n, k)-horns in the n-simplex, 0 � k � n + 1, all 0 < n). Set A = �(LK(I)),
the image of this set under the composite �◦LK . From the explicit description of LK , one
sees that LK(I) is made up of local acyclic monos, and these are preserved by the inverse
image part of any geometric morphism, in particular, by sheafification �.

If f ∈ E∆op
has the right lifting property against all members of A then, by adjunction,

r(i(f)) has the right lifting property against all members of I in Pre(O)∆op
= SSetO. By

the way I was chosen, that amounts to r(i(f)) being a Kan fibration in SSet at every
object of O. By the definition of local properties in a presheaf topos, that means i(f)
is a local fibration in Pre(C)∆op

. Since sheafification preserves local fibrations as well,
�(i(f)) ∼= f must be a local fibration in E∆op

.

2.5. Corollary. E∆op
possesses a weak factorization system (A,F) such that A is a

subclass of W, and F is a subclass of local fibrations.

Indeed, for any locally presentable category K and set of morphisms A, the class
of “A-cofibrations”, that is, the saturation of A under arbitrary pushouts, transfinite
compositions and retracts, together with “A-fibrations”, that is, the class of morphisms
with the right lifting property against members of A, will form a weak factorization system.
(This is the “small object argument”; weaker properties of K than local presentability
suffice to establish it. See [2] for details.) Apply the small object argument to K = E∆op

and the set A found in 2.4.

We are now in a position to define φ. Fix any weak factorization system (A,F) as in

2.5. Given a connected component of fracLAFib−1 E∆op
F

(1, X), pick an object 1
w←− C

f−→ X
from it, and factor f as pa with a ∈ A, p ∈ F . From the diagram

1 C
w��

�� a
��

��
��

f
�� X

C̃
∼

��������������� p

�� ������

one sees that the map marked ∼ is a weak equivalence, so 1
∼←− C̃

p−→ X is a simplicial
torsor. The value of φ is the connected component of ST(X) containing 1

∼←− C̃
p−→ X.
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Two different factorizations p1a1, p2a2 of the same f will lead to the same value:

C̃1

∼

����������������������
p1

�� ��
��

��
��

�

1 C∼�� f ��
��

a2

��
��

��
��

�

��
a1

���������
X

C̃2

p2

�� ���������∼

����������������������

��

since the dotted filler exists by the lifting property.
The value of φ does not depend on the initial choice of representative from the given

connected component of fracLAFib−1 E∆op
F

(1, X) either: given 1
w1←− C1

f1−→ X and 1
w1←−

C1
f1−→ X that are “adjacent” via c,

C2
�� ��

w2

�����������
f2

���������������������� C̃2
p2

�� �����������

1 X

C1
��

a1

��

w1

�����������
f1

����������������������

c

��

C̃1

�� �����������

��

the existence of the dotted lift shows that the respective factorizations will belong to the
same connected component of ST(X). Finally, using a factorization of f again one shows

that every connected component of ST(X) contains a torsor C
p−→ X with p ∈ F , and

this implies that φ is onto.

2.6. Remark. The terminal object 1 may seem to play a tautologous role, but I prefer to
keep it in the notation as a reminder that the argument in fact concerns the representation
of global homotopy classes hoE∆op (U,X) by connected components of an indexing category.
The source U cannot be arbitrary, however. See section 4 for details.

3. Theme and variations

The reader has no doubt observed that in constructing the mapping φ of Prop. 3, one

never used that the structure map w of the initially given fraction 1
w←− C

f−→ X was
a local fibration (in addition to being a weak equivalence). Indeed, there are various
combinations of features that one can put on these structure maps.

3.1. Notation. We will define four full subcategories of fracW−1E∆op (1, X), in addition
to ST(X).

• Let STJ(X) contain those fractions 1
w←− C

f−→ X where f is a global fibration
in the sense of Joyal, i.e. has the right lifting property with respect to all acyclic
monomorphisms.
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• Let STF(X) contain the fractions 1
w←− C

f−→ X with f ∈ F , where F is a subclass
of local fibrations that arises via Cor. 2.5 to Lemma 2.4.

• Let STV (X) contain the fractions with w an acyclic local fibration, f arbitrary.

• Write STW (X) for fracW−1E∆op (1, X) itself.

For a locally fibrant X, one has full inclusions

STJ(X) ↪→ STF(X) ↪→ ST(X) ↪→ STV (X) ↪→ STW (X) (∗)

3.2. Proposition. Passing to connected components, (∗) becomes a string of bijections

π0STJ(X) = π0STF(X) = π0ST(X) = π0STV (X) = π0STW (X) = hoE∆op (1, X)

Indeed, the map π0STJ(X)
γJ−→ hoE∆op (1, X) that is the restriction of the γ of Prop. 1

factors through all the inclusions. Use now Joyal’s theorem that 〈acyclic monomorphisms,
global fibrations〉 is a weak factorization system in E∆op

and the argument of Prop. 3 to
show that γJ is a bijection. The existence of 〈weak equivalence, global fibration〉 resp.
〈weak equivalence, F〉 resp. 〈weak equivalence, local fibration〉 factorizations—even in
the absence of global lifting properties—show that the induced intermediate maps on
connected components are surjective, establishing the proposition.

3.3. Remark. The superscript V stands for Verdier; see below. The letter W is in defer-
ence to Wraith [16] who, in joint work with Joyal, introduced the category STW (X) (more
precisely, its classifying topos) and observed that connected components of STW (K(A, n))
biject with Hn(E, A) for a constant abelian group A. See also Joyal–Wraith [14]. In the
non-abelian case, Prop. 3.2 does not seem to have been observed before.

The next page is a rapid survey of ideas that will be explored elsewhere.

3.4. Hypercovers. A hypercover of a topos E is usually understood to be a simplicial
object C in E that is locally fibrant and acyclic, i.e. such that the canonical C → 1
is both a local fibration and a local weak equivalence (see Moerdijk [15]), or sometimes
a simplicial object that is merely acyclic (see K. Brown [3]), or sometimes as a C of
the above types considered as an object in the category denoted π below, which is the
quotient of E∆op

by simplicial homotopy; see Jardine [9]. Verdier’s original definition in the
Appendix to SGA4 Exposé V (where he ascribes the idea of hypercovers to P. Cartier) is
more restrictive, and makes use of a site of definition of E. He also introduces truncated
variants of hypercovers, however, that provide a beautiful interpolation between Čech
cohomology and what is known as Čech-Verdier cohomology.

Write π for the category obtained from E∆op
by quotienting the hom-sets by the equiv-

alence relation generated by simplicial homotopy (the constant 1-simplex ∆[1] playing the
role of the interval). Write HC for the opposite of the diagram that is the image in π
of hypercovers of E (up to equivalence, it doesn’t matter which definition one chooses).
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HC is a large, filtered diagram that possesses (non-canonically in E) small cofinal sub-
diagrams. The homotopical version of Verdier cohomology can then be phrased as the
existence of canonical bijections between colim

C∈HC
π(C,X), STV (X) and hoE∆op (1, X) for any

locally fibrant X.

3.5. Combinatorial torsors. Under specializing X to be the nerve of a group G,
none of the torsors listed in Prop. 3.2 bears the vaguest resemblance to principal homo-
geneous G-objects. Indeed, any simplicial torsor over X possesses countably many inde-
pendent pieces of structural data (the objects of n-simplices and the face and degeneracy
maps) subject to infinitely many constraints (local acyclicity and fibrancy for the local
torsors, and lifting properties for the global ones). This is very different from the notion of
“principal homogeneous G-space”, which is just a G-object subject to two diagrammatic
constraints. Nonetheless, these more rigid and constrained torsors form full subcategories
of the simplicial ones. They can be introduced only for bases X that enjoy distinguished
simplicial geometries: for example, X that is n-coskeletal, or an n-hypergroupoid in the
sense of Duskin, or an Eilenberg-Mac Lane object. Over an n-coskeletal X, one can talk of

simplicial torsors C
f−→ X such that the map f is n-coskeletal, or over an n-hypergroupoid

X one can restrict to simplicial torsors C
f−→ X such that f is an exact fibration above

dimension n, and over Eilenberg-Mac Lane objects Duskin has defined K(A, n)-torsors.
These varieties are determined by a finite number of simplicial levels and structure maps.
Once one has carved out a subcategory of combinatorial torsors STC(X) ↪→ ST(X), the
goal is to verify that the inclusion induces a bijection on π0. This is easiest shown with the
help of a “π0-deformation retraction” of ST(X) to STC(X). That is, one finds a functor

ST(X)
R−→ STC(X) and a natural transformation Φ of zig-zags of fixed shape (say, of

length three, for illustration) Φ(T ) = T ← • → • ← R(T ) linking the torsors T and
R(T ) in ST(X). The existence of such a zig-zag, starting with an arbitrary T ∈ ST(X),
shows π0STC(X) → π0ST(X) onto. If Φ is functorial and has the property that Φ(T )
is a zig-zag of combinatorial torsors for any T ∈ STC(X), then π0STC(X) → π0ST(X)
is into. (Note that the simplest example of such (R, Φ) is a functorial factorization of
simplicial torsors by combinatorial ones.) If the species of torsors considered are definable
in geometric logic, so they have classifying topoi, then the data (R, Φ) amount to precisely
the same as a “natural homotopy inverse” in the sense of Joyal and Wraith [14] to the
geometric morphism B[STC ] ↪→ B[ST] induced by the fact that combinatorial torsors form
a quotient theory of simplicial ones.

3.6. Algebraic operations on torsors. All five types of torsors considered in
Prop. 3.2 are preserved by products, giving rise to functors ST(X)×ST(Y ) → ST(X×Y ).
These pass to maps π0ST(X)×π0ST(Y ) → π0ST(X ×Y ). When X is an (abelian) group
or monoid in E∆op

, they give the algebraic structure on homotopy classes. It is also pos-
sible to describe the effect of changing the base topos. Verdier, Wraith and simplicial
torsors are of a local nature, thus preserved by inverse image parts of geometric mor-
phisms. For clarity, write STE(X) for the category of simplicial torsors in E∆op

over X.
If E, F are topoi and E × F stands for their product in the category of Grothendieck
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topoi and geometric morphisms, with pri (i = 1, 2) being the projections to the factors,
then there is a functor STE(X) × STF(Y ) → STE×F(pr∗1(X) × pr∗2(Y )) that can be used
to construct the external product in cohomology.

4. Calculus of zig-zags and fractions

Let now M be any category with a distinguished subcategory W, which we will assume
to contain all identity morphisms of M. Maps in W will be referred to as weak equiva-
lences, and we’ll still write hoM for M[W−1]. Dwyer–Kan [5], [6] provide a substantial
generalization of the Gabriel–Zisman [7] theory of localizations of categories, a key aspect
being that hoM is now viewed as a category enriched over SSet via “homotopical function
complexes”. We will ignore here (for the time being) the higher-dimensional simplices,
concentrating on the dimension 0 part, i.e. on the morphisms of hoM. We begin with a
symmetrized version of fractions due to Dwyer and Kan.

4.1. Definition. For objects U,X of M, let zig(U,X) be the category whose objects

are zig-zags of length 3, U
w1←− C

f−→ F
w2←− X where w1, w2 are weak equivalences;

C,F, f are arbitrary. Let a morphism from U ← C1 → F1 ← X to U ← C2 → F2 ← X
be maps C1 → C2, F1 → F2 that make

C1
��

�����
���

��

F1

��

U X

��������

�����
���

C2
��

��������
F2

commute.

The localization functor M ho−→ hoM induces a map (of classes, in general)

π0zig(U,X)
γ−→ hoM(U,X)

by sending a representative U
w1←− C

f−→ F
w2←− X of a connected component to

U
(how1)−1

−−−−−→ C
hof−→ F

(how2)−1

−−−−−→ X; this is well-defined, since if the left-hand diagram
commutes, so does the one on the right:

C1

c

��

f1
��

w1

�����
���

F1

f

��

C1
hof1

��

hoc

��

F1 (how2)−1

�����
���

hof

��

U X

w2
��������

u2�����
���



 γ �� U

(how1)−1 ��������

(hou1)−1 �����
���

X

C2 f2

��
u1

��������
F2 C2 hof2

�� F2
(hou2)−1

��������
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4.2. Theorem. (Dwyer–Kan) Let M, W form part of a Quillen model category. The

mapping π0zig(U,X)
γ−→ hoM(U,X) is a bijection (of sets) for any U,X ∈ M.

For a Quillen model category with functorial factorizations of maps into an (acyclic)
cofibration followed by an acyclic fibration (resp. fibration), the proof is sketched in
Dwyer–Kan [5]. For the general case, see Dwyer–Kan [6].

Rather than some kind of generalized torsor, it is useful to think of a short zig-zag as
if it were a map from a cofibrant approximation to U to a fibrant approximation to X,
thus an approximation to a class in ho(U,X) in Quillen’s sense. The remarkable feature of
this case of the “hammock localization” is that no explicit preferred class of (co)fibrations
enters, though the existence of some such is needed in the proof—to define composition
of zig-zags, in fact, whence it is easy to prove that zig has the requisite universal property.

The category of right fractions fracW−1M(U,X), as well as fracMW−1(U,X), the cat-
egory of left fractions, are full subcategories of zig(U,X). They consist of the zig-zags
for which w2 resp. w1 is the identity. What is still open, I believe, is the deceptively
simple-looking

4.3. Problem. Find sufficient and necessary conditions on the pair (M, W) for

π0zig(U,X)
γ−→ hoM(U,X)

resp.

π0fracW−1M(U,X)
γ−→ hoM(U,X)

resp.

π0fracMW−1(U,X)
γ−→ hoM(U,X)

to be bijections for arbitrary U , X.

Let us now give a name to the condition introduced in Prop. 2. Both for variety and
for the sake of applications, we treat its category-theoretic dual here.

4.4. Definition. Given a diagram F := U
w←− C

f−→ X, w ∈ W, let the corresponding
category of amalgamations, amalF , have as objects all commutative diagrams

C
f

��

w
��

X
u

��

U g
�� F

with u ∈ W, a morphism between two such being an arrow F1
h−→ F2 that makes

C
f

��

w

��

X

u1

��
u2

		
��

��
��

��
��

��
��

U
g1

��

g2
����������������� F1

h
��

�

��
��

�

F2
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commute (note u1, u2, w ∈ W). Say that (M, W) possess a connected calculus of left
fractions if for any fraction F , amalF is non-empty and connected.

An argument mirroring Prop. 1 shows

4.5. Proposition. If (M, W) possess a connected calculus of left fractions, then the

localization map π0fracMW−1(U,X)
γ−→ hoM(U,X) is a bijection for arbitrary U , X.

The Gabriel–Zisman axioms for a left calculus of fractions state that amalF is non-

empty, and for every commutative diagram in M of the form • u−→ •
f

⇒
g
• with u ∈ W,

there exists v ∈ W making •
f

⇒
g
• v−→ • commute. Manipulations with fractions that are

tedious to typeset but easy to perform establish

4.6. Proposition. If (M, W) satisfy the Gabriel–Zisman axioms for a left calculus of
fractions, then each amalF is a filtered category. A fortiori it is non-empty and connected,
i.e. (M, W) possess a connected calculus of left fractions.

4.7. Remark. Dually to the last observation in Prop. 1, if the class W is closed under
pushout in M, then each amalF has an initial object and is therefore non-empty and
connected. Such (M, W) are typical examples of connected but not Gabriel–Zisman
calculi.

4.8. Applications of the connected calculus. The goal is to show that the con-
nected calculus provides a sufficient but not necessary condition for the localization map
from fractions to homotopy classes to be bijective. En route, however, we find a “frac-
tional” expression for global homotopy classes that is valid between arbitrary simplicial
objects in a topos. (The categories considered from here on will all be locally small.)

An argument dual to Prop. 2 in the Quillen-axiomatic setting establishes

4.9. Proposition. Let M be a Quillen model category, and AcCof the subcategory of
acyclic cofibrations. Then π0fracMAcCof−1(U,X)

γ−→ hoM(U,X) is a bijection if both U
and X are cofibrant.

Analogously to the case of Wraith’s torsors STW , it is possible to “clear the cofibrations
from the denominators”.

4.10. Proposition. In a Quillen model category M, the localization map

π0fracMW−1(U,X)
ι−→ hoE∆op (U,X)

is a bijection provided U , X are cofibrant.

Consider the commutative diagram of sets and mappings

π0fracMAcCof−1(U,X)
φ

�� ��

ι

����������������
π0fracMW−1(U,X)

���������������

hoM(U,X)
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where φ is now induced by the inclusion fracMAcCof−1(U,X) ↪→ fracMW−1(U,X). It is
enough to show φ surjective. Take any U → C

w−→ X with w ∈ W, and factor it as a
cofibration c followed by an acyclic fibration f :

C̃

f

����

U

��

�����
���

X

c
��������

w�����
���

C

The 2-of-3 property of weak equivalences forces c to be an acyclic cofibration, and the
dotted lift exists since U was assumed cofibrant. This shows that all connected compo-
nents of fracMW−1(U,X) are hit by φ.

Since the default Quillen model structure on simplicial objects in a topos has all objects
cofibrant, one obtains

4.11. Corollary. The localization map π0fracE∆op
W−1(U,X) → hoE∆op (U,X) is a bijec-

tion for any U,X.

It is not the case, however, that (E∆op
, W) satisfies even a connected calculus of left

fractions. I am indebted to Phil Hirschhorn for an explicit example of a fraction F =

C
w←− A

f−→ B in (SSet , W) such that amalF is empty.

4.12. Example. (Phil Hirschhorn) Let A be the union of two 1-simplices, named a1

and a2, with their endpoints identified so that the realization is homeomorphic to a circle.
Let B be a 1-simplex named b with its endpoints identified so that its realization is
homeomorphic to a circle; and let C be a 1-simplex c with its endpoints identified so that
its realization is homeomorphic to a circle.

Let the map f collapse a2 to the vertex of B, with a1 going to b. This is a weak
equivalence (although it doesn’t have to be to make F a valid fraction). Let the map w
collapse a1 to the vertex of C, with a2 going to c. This map too is a weak equivalence.

Suppose there was a way to amalgamate the diagram to a square using some simplicial
set D. Since A → B and A → C are weak equivalences, and B → D is to be a weak
equivalence, therefore so would C → D have to be.

However, if the diagram is to commute on the nose (i.e. not just up to homotopy),
then the 1-simplex c of C must go to a single vertex of D, which means that the induced
homomorphism on the fundamental group is trivial.

4.13. Remark. Let M be a Quillen model category with all objects cofibrant. It is

easy to show that for any fraction F = C
w←− A

f−→ B, any two objects of amalF will be
connected by a zig-zag of length three. (The argument doesn’t even need w ∈ W.) So the
real obstruction is amalF being empty.

4.14. Remark. Dwyer–Kan [5] introduce conditions under the names of left resp. right
resp. two-sided homotopy calculus of fractions that imply that the localization maps from
the corresponding categories of fractions are bijections. (They obtain conclusions actually
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stronger than that sought by Problem 4.3, namely weak equivalences between homotopy
function complexes in their sense.) These calculi are based on (M, W) alone (without
reference to Quillen model categories), but their definitions seem hard to check in practice.
Dwyer and Kan state, however, that (for a homotopy calculus of left fractions, to take
an example) it suffices that W satisfies the 2-of-3 property, and functorial completions of
fractions to commutative squares exist; or that W is closed under pushout. The notion
of connected calculus of fractions (which probably exists in the literature already, though
it was suggested to me only implicitly by Wraith’s papers and the hypercovers of Verdier
and K. Brown) must be closely connected. It is probably just the π0 level of a more
powerful notion. One could demand, for example, that the nerve of amalF have the
weak homotopy type of a point for any fraction F , and see what this implies about the
localization functors enriched simplicially.

In the direction of weakening the connected calculus of fractions, one could also con-
sider an up-to-homotopy version, where the squares (amalgams) are only required to
commute in a category gotten from M by quotienting out an equivalence relation (“ele-
mentary homotopies”) on the hom-sets. This presumes that cylinder or path objects exist,
so there’s more of a homotopy model structure on M than just the bare subcategory of
weak equivalences.

4.15. Remark. Quillen’s axioms are self-dual, but it is far from the case that the known
homotopy model structures on E∆op

are symmetric. Under Joyal’s definitions, every object
is cofibrant, and the class of acyclic cofibrations is definable in geometric logic (a fortiori,
is of local nature) while neither of these holds for global fibrations. So it is natural to ask,
dually to Cor. 4.11,

4.16. Question. What is the largest subcategory of E∆op
restricted to which the local-

ization map π0fracW−1E∆op (U,X)
γ−→ hoE∆op (U,X) is a bijection?

By the usual factorization arguments, γ is bijective when (i) U is locally and X globally
fibrant, and also when (ii) U is the terminal object and X is locally fibrant. It would
be very pleasing if the answer turned out to be the class of locally fibrant objects, which
are “malleable” and can be constructed by explicit finitary means—rather unlike globally
fibrant ones. Note that a Quillen model category, by default, only comes equipped with
one notion of fibrancy, and the fact that the axioms are typically proved with the help of
a functorial but transfinite factorization construction (the small object argument) means
that fibrant replacement is uniform, but uniformly inefficient; it is as if in the toolbox of
group cohomology, only the bar resolution existed. Abelian sheaf cohomology is largely
made computable by flabby and soft resolutions, and more generally by acyclic models,
for which no clear analogue is known in non-abelian Quillen model categories over sheaves.
See Beke [1] for further results on the curious indeterminacy in the choice of fibrations
for a fixed category of models and subcategory of weak equivalences.

4.17. How long a zig-zag?. π0C is the collapse of the class of objects of C under an
equivalence relation that is describable (a priori) only as the saturation of the relation
“there is a morphism between”. Effective use of this notion would be quite hopeless if
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there was no upper bound on the length of iterations, or length of zig-zags, needed to
connect two objects that are in the same component of C. It is a well-known feature of
Yoneda’s Ext theory that if two n-fold extensions are connected by a zig-zag “ladder” of
extensions, then they are connected by a two-tier one. The thesis of Glenn [8] contains a
purely simplicial proof of this—in fact, an extension to simplicial n-hypergroupoids in an
arbitrary exact category. As a coda, let us point out that the existence of short bridges
is a purely formal consequence of the axioms of the connected calculus, and “one third”
of Quillen’s 2-of-3 axiom for weak equivalences.

4.18. Proposition. Let M be a category with subcategory W. Suppose that

(i) for any right fraction F , amalF is non-empty

(ii) if the composite • f−→ • g−→ • ∈ W and f ∈ W, then g ∈ W.

(a) Then if two fractions belong to the same connected component of fracMW−1(U,X),
then they are already connected by a zig-zag of shape • → • ← •.
(b) Suppose, in addition, that all amalF are connected, i.e. that (M, W) possess a con-
nected calculus of left fractions. Then any two objects of any amalF are already connected
by a zig-zag of shape • → • ← •.

Proof. (a) Let the original fractions be U → C1
w1←− X and U → C2

w2←− X, and
suppose they are connected by a zig-zag of shape • ← • → • in fracMW−1(U,X), the
fraction mapping to both being U → C ← X:

A C1
��

U

���������

��														
��

���������������� C

���������

����
��

��
�

X

w1

����������������
��

w2
����������������

C2

�������

����

����

By condition (ii), C → C1 ∈ W. By condition (i), there is an amalgamation of C2 ←
C → C1 to an A such that C2 → A ∈ W. So the composite A ← C2 ← X ∈ W, and
the fraction U → A ← X receives maps from both of the original ones. The claim now
follows by iteratively reducing the length of the zig-zag that is assumed to connect the
two objects of fracMW−1(U,X).

The proof of (b) is similar.
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