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A New Approach to Domain
Decomposition Methods with
Non-matching Grids

Abdellatif Agouzal and Naima Debit

1 Introduction

Attempts at solving actual problems, e.g. heterogeneous equations, have revealed
limitations of many classical domain decomposition methods. As a result, there has
been renewed interest in new and alternative approaches.

In the context of non-matching grids, to our knowledge, three approaches
are considered in literature: Mortar element methods, in primal formulation
([AMMP90],[BDM90],[BMP92]), or mized or equilibrium formulation ([Ago96]);
hybrid methods ([AT95],[RT97]); and primal-equilibrium coupling methods ([AL94al).
Mortar element type methods are based on the explicit construction of an
approximation space. The approach we present here is a conforming one, in which
no global approximation is constructed. The domain is decomposed in two block-
subdomains allowing for internal subdomain decomposition. A primal variational
formulation is used in one region, whereas an equilibrium one is used on the other. The
flexibility of the method allows for use of different discretizations on each subdomain;
of low-order type (e.g. finite element methods [Cia91]) or high-order type (e.g. spectral
element methods [CHQZ88]). We will use in this paper either finite element or spectral
element versions of the method. The solution is discontinuous on the interface, and
the matching is implicitly contained in the equations formulation.

The main characteristics of the approach we introduce can be summarized as:

e Flexibility on the choice of discretizations on each subdomain;

e No global discrete space to contruct : The global space is a product of local
ones; the solution is ”discontinuous” on the interface;

o No Lagrange multiplier is used to take into account the constraint on the
interface.

This paper describes recent advances in the development of the present approach. We
give here the main results and leave the detailed analysis for related papers.
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2 Problem Formulation

The Continuous Case

The discussion here is restricted to second-order linear partial differential equations.
We consider the solution of the Poisson equation on a domain €2 : Find u such that

Lu —Au4+u=f inQ,
u = 0 on I' =90Q.

where f € L?(Q).

Remark In all what follows, L can be replaced by Lu = —div(K grad u) +
8. grad u+ ou, provided that all corresponding problem is satisfy standard solvability
hypotheses.

We suppose (for simplicity) that Q is rectangularly decomposable, that is, there exist
rectangular subdomains 2; and - such that

Q=02UQ, Q1 NQy =0.

In the sequel, we set
Y= 691 N 692

Figure 1

S
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First, we remark that this Problem can be factored to give the coupled system :

grad u; = p; in Qq,
—divpy +u1 = f in Qq,
—AU2+U2:fin Qz,
U3 = U On %,

(751 =0 on Fl = 691/2,
U2:0 on ].-‘2:892/2,

p1.n1+%=0 on X
an

(1)
a

where Fns is the outward normal derivative, and p;.n; is the outward normal trace of
p.

In the framework of the numerical solution of (1) by finite element type or spectral
element type methods [Cia91], it is essential to work in a suitable variational context.
Otherwise stated, one has to use variational forms leading to a well-posed problem
equivalent to system (1) in a given sense.
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The weak form of (1) is given by seeking a pai (p1,us) € H(div, Q) X H%Z,O(QZ)
such that :

Vg, € H(div,Q,), / (p1-q1 + divp, divgy)dz— < q1.nq,us >x=— f divg,dz,
Q] Q1
Yuy € H%%O(Qg), { grad us. grad vy + usve }dz+ < p1.n1,v2 >x= / fuadz
QZ QZ

(2)

1
where < .,. >y is the duality pairing between the function spaces HO%O(E) and
H~2(%), and

H;j 1, () = {v € H'(92); such that v =0 on I';}.

Note that the unknowns p; and us are coupled only through the boundary integrals
appearing in (2).
One can also write the problem (2) in another useful form, namely
Find (p1,u2) € H(div, ) x Hp, ;(Q2) such that,
V(q1,v2) € H(div, ;) x H%Q,o(ﬂz),

B((p17u2);(QI7v2))=_ 0 deQ1d$+ 0 fUzd.’L' (3)

where

B((p1,u2); (q1,v2)) = le(pl-QI + divpr divgr)dz— < g1.n1,u2 >x
+  Jo,{ grad uz. grad vy + ugvp}dz+ < p.ny,ve >y

Concerning the existence and uniqueness results, we have

Theorem 2.1 There exists a unique solution (py,usz) of problem (2). Moreover,

P11 = grad ulﬂl’
Ug = U|Qg’

(4)
where u is the weak solution of the Helmholtz problem (2.1).

Proof: First remark that the bilinear form B(.;.) is H(div, 1) x Hg 1, (Q2)-elliptic. We
prove easily the continuity of this form. So by Lax-Milgram theorem, problem (2) has
a unique solution. The second part of the theorem is obtained by a slight modification
of standard arguments.

The Approzimated Problem

For its numerical solution, the variational problem (2) must first be approximated
by a problem with a finite number of unknowns [Cia91]. In the finite element or
spectral methods context, this approximation is realized by replacing the space
H(div,Q1) x H&,Fz () by a finite dimensional space. In this method, we want to
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approximate separately the spaces H(div, ;) and H&}FZ (Q22). Therefore, we introduce
finite dimensional spaces :

Vi, C H(div, ), dim Vi, < +00

Vh2 C H%Z,O(Qz)a diIth2 < +00.
The classical conforming Galerkin approximation of (2) is
Find (pp,,un, € Vi, x Vi, such that ,
V(thavhz) € Vhl X Vh27

B((phy,uny); (Gny,vny)) = — [ f divgn,dz + [ fop,da. (5)
Q1 92

Similarly to problem (2), problem (5) has a unique solution. Moreover, it is possible
to prove the following

Theorem 2.2 Let (p1,u2) € H(div,) x Hyp, (Q2) be the solution of (2) and let
Vi, and Vy, defined as above. Problem (5) has a unique solution (pn,,un,) and there
exists a constant C which does not depend on dimensions of Vy, and V}, such that

”pl — Phy ”H(dz’v,ﬂl) + ”u2 - uhZ”LQz <
lnf(th Who )EVhy X Viy {llp1 — gn, ”H(div,(h) + |luz — vn,

|1,92}'

Proof: Follows easily from Lax-Milgram Theorem and Céa Lemma.

An Ezample of Discretization

A basic choice of V4, and V},, in the spectral methods context consists of introducing:

Vi, = RTn1(21) = Pnvi,nvi—1(€1) X Pyi—1,n1(21)
and
Vi, = Qn,(Q2) N Hy 1, (Q2).
With this choice, a consequence of (2.2) is the following
Theorem 2.3 Assume that the solution (p1,us) of problem (2) is such that, p; and

divpy belong to (H(21))? and H? () for a real number o1 > 0, and uy belongs to
H2(Q3) for a real number o2, 1 < o5. Then the following estimate holds

Ipr — Pyl H(@iv,0)  + U2 — Unsll10, < .
Ce ANT*(Ip1llor,00 + Idivpilloy0,) + Ny 7 Huzllgy0,}-

for all e > 0.

By post-processing, we can easily obtain an approximation of u;. More precisely, if we
set

upn, = Iy, —1(divpn, + f)
where I, _; is the projection operator defined from L?(£2;) onto Py, —1(f1), we have

llur = un llo,@y < CANT 7 (IIpillos, 0, + ldivprlloy,0.) + Ny 7 luzlloz0, }-

for all € > 0.
These results are illustrated in the following figure.
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Figure 2 We consider here the solution of problem (2.1) on the domain
Q = (—1,1). A spectral element discretization is used on each subdomain. The
right-hand side f is given by the exact solution ez (z,y) = sin (7z) sin (wz). We plot
in (a) the H' - error of u in Q as a function of related polynomial order; and in (b)
the L? — error of u in Qy, obtained by post-processing. The error decreases
exponentially fast as would be expected for spectral approximation of a smooth
solution.
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Figure 3 Case of the operator — div (v(.) grad ) with discontinuous coefficients.
We consider here the numerical approximation of the solution of the Helmholtz
equation —vAu(z,y) + u(z,y) = f(z,y). The domain is split into two physical

subdomains: The diffusivity parameter varies from one subdomain to other;

Vig, > Vig,: (a) A conforming spectral element method is used with degree
polynomial N = 5. Obviously, one needs more refinement to has good approximation.
However this objective is achieved in (b) with a least polynomial degree using the
spectral element version of the present approach.
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3 Extension to Other Cases

Heterogeneous Domain Decomposition

Heterogeneous domain decomposition have broad applications in engineering and in
natural science. In this section, we give an extension of our ideas to the heterogeneous
domain decomposition methods.

As an example, we consider the coupling between elliptic diffusion equations and
hyperbolic convection (transport) ([AL94b],[AD96]). The idea of this procedure is
that in convection-diffusion problems where the convection is dominant, the diffusion
terms play a role only in the vicinity of boundary or internal layers. From the physical
information, these regions can be detected a priori, it is logical to suppose that
only there the complete equations have to be solved, whereas elsewhere the reduced
equations can serve as a correct model. Here, we consider the following problem.

8. grad u; +u; = f1 in Qq,
—AUZ + uo = fz in Qg,
U1 = Uz, ON 3,

% + ,B.nlul =0on E,
8n2

up =0onTI7,
us = 0 on I's,

where
Fl_ = {SE' c ].-‘1;,8.”1 < 0}

and

B € Whtee(Q).

we assume that
B(x)mni(z) <0 ae zeX , divB=0.

Using similar arguments as in [AL94b], we can state that this problem has a unique
solution.
First, as in the elliptic case, we transform (6) into an equivalent problem

8. grad u; +wu; = f1 in Qq,
p2 = grad us in s,
—d’L"Upz + ug = fg in QQ,

U1 = U2 On E,

pa.nz + B.ngu; =0 on X,

up =0onTI7,

us = 0 on I'y

(7)

Let us now set 7, a regular triangulation of the domain §; with triangular (d = 2)
or tetrahedral (d = 3) finite elements whose diameters are less or equal to h, and let
k and N be positive integers. We define the finite dimensional spaces V}, and Vi by

Vi = {Uh S Co(ﬁl);VT € ﬁ,vh‘T S Pk(T)},
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and
VN = RTN ().

The discrete problem is now

Find (up,pn) € Vi X Vv, such that

Vgn € Vi, / (pv-gn + divpy divgn)dz— < qn.n2,up >05= —/ f divgndz,
Q2 QZ

Yo € Vi, Z (8. grad up, + up)(vy, + dhB. grad vy)dz —I—/ |B.n1|upvrdo

TER T z

+/pN.n2vhda+/ |B.n1|upvpdo = Z /(hﬁ grad vy, + vp,) fdz.
p> Iy T

TeTh

(8)

where § is a stabilization parameter.

We have the following

Theorem 3.1 The problem (8) has a unique solution (up,py) € Vi X Viyv. Moreover
if the solution (uy,p>) of problem (6) is such that, p» and divps belong to (H2(Q2))¢
and H?2(Qs), respectively, for a real number o2 > 0, and uy belongs to H* (Q) for a
real number o1, 1 < o1 < k + 1, then the following estimate holds

1
Ip2 = pNllErain,es)  + llus = unllo,, +h2[|5 grad (us —un)llo, <
Ce {N_U2+E(I|p2”02,92 + ||divp2||02,92) + horts I|u1”61,91}'

for all e > 0.

Partial Differential Equations in Nonstationary Invariant Geometries

The so-called sliding schemes have been already presented in either a finite difference,
[Gil88, Rai87], or mortar element framework [Ana91]. Sample candidate applications
include rotating machinery and turbomachinery.

For the sake of simplicity, the method is presented for the following model problem:

ot

{@—Au — f  inQx]0,T]
u(.,,t=0) = wuy in§

where Q = Q(t) is a nonstationary domain, f is a given force that may depend on
time, and wug is a given initial condition. It is obvious that we are not interested
here in numerical simulation of physical situation, in that problem (3) does not take
into account the equation of motion of the fluid medium. Our intent is to present the
formulation of sliding interfaces problem that couples primal and equilibrium variables.
We shall also focus our presentation on the simple case where (t) is decomposed into
two subdomains, one sliding with respect to the other along an interface I'(¢):

Q1) = UL,
L) = N,
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Figure 4 One dimensional example: The domain 2 = (—1.,1.)? is split into two
physical subdomains. A spectral method is used to discretize the elliptic equation on
Q; = (—1.,0.), while a stabilized finite element method is used for the hyperbolic
equation on Q2 = (0.,1.). B is constant and the right-hand side f2 on 2 is
piecewise-constant. (a) The solution is discontinuous on the interface, and the non
physical oscillations on the hyperbolic domain do not affect the elliptic domain. The
continuity of the fluxes could also be illustrated. (b) A best approximation can be
recovered on the hyperbolic solution using an adaptive finite element method based
on a posteriori error estimates established for this one-dimensional problem.
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as illustrated in Figure 5, where I'(¢) is a segment.

The basic formulation is of spectral element type, but the methodology we introduce
is appropriate to finite elements as well. We just point out the fact that since no
matching conditions are imposed on the meshes, in case of complicated geometry, one
does not have to exhibit C°° mappings to use isoparametric elements. This method
could then be a tool for analysing fluid flows in truly complex moving geometries,
where the moving interfaces are in general curvilinear.

The scheme presented here is locally conservative, and the aliasing errors induced by
numerical quadrature have no effect on the stability. This remark is mainly of interest
for the implementation issue.

This variational method also preserves element-based locality, and the flexibility is
evident in the treatment of mesh refinement or moving boundary problems by sliding
meshes that do not introduce any mesh distortion or expensive interpolation.

Let us denote by V the velocity of Q5(t) and suppose it constant in time. We
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introduce the Lagrangian variable X in Q(¢) by

{6—X(:c,t;7') = V(X(z,t;1)
X(z,t;71) = =

Problem (3) is then expressed as,

Ou(X(z,t;7),1)]

9y O
Vz € Qy, 6—1:(x,t) —  Au(z,t) = f(a,1).

Vz € Qa(t), — Au(X (z,t;7),t) — V.Vu(X (2,8 7),t) = f(z,1),

In practice, we can also perform internal decompositions of ; and Q5(¢). We can

Figure 6 Plot of discretization error ||u — un||z1 as a function of polynomial order
for the diffusion equation on the domain given by Figure 5. The exact solution is
given by u(z,y,t) = exp(—2w>t)sin (r) sin (y). The simulation is carried out to a

final time Ty = .05, with At insuring stability.
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choose any temporal discretization. For sake of simplicity, we deal here with a simple
implicit scheme for the treatment of diffusion term, and an explicit (for example
Adams-Bashforth) for the convection term. With the superscript ™ referring to the
time " = n At, and u™ denoting u(t",.), the semi-discrete problem states now as

Vo € Qu(t™h), u™t — Ayt = At o 4ot 4 AH(V.V),
Vz € Q, u™t — Au™t = At pn

The functional framework introduced in the previous section completes the
discretization.
The proposed scheme for the approximation of problem (3) in the case of a first
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order time discretization reads now as follows

Find pyt' € RTn, (1), ujt' € Qn, (57, ufit!|oo,\rner =0 such that
Vg"t' € RTy, (),

(PR g™ + AtV V") de — At/ N g nuttdl =
Q1 r»
- le (At.f™+ + uf ) V.g"t da
Vot € Qu, (251, v agu et = 0,

At /Q Vuitt. votlde + /Q utt " de + At /1“ N PRyt dl =
2 2 "
Ja, (At + uf, + At (V.VuR,))v" ! da.

From the analysis of the previous section, we deduce that this discretization
generates a unique sequence (u%;), of solutions.

The analysis of the discrete problem and stability analysis of this scheme give that
the error in (u,p) is bounded by a temporal error of the scheme order and spatial
errors as in the Helmholtz equation. The related details of approximation results are
left to a forthcoming report.
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