95

A Quasi-Exact Interface Condition
for Implicit Multiblock Euler and
Navier-Stokes Calculations

Guy De Spiegeleer and Alain Lerat

1 Introduction

In most domain decomposition methods for Computational Fluid Dynamics, the
interface conditions are treated explicitly. When using implicit schemes, this causes
stability or efficiency limitations (see [Rai86, Jen94]). For implicit schemes leading to
the solution of block-tridiagonal linear systems, one can use the parallel factorisation
technique developed in [Wan81] or in [Bru91l]. However, this technique needs the
sequential computation of a reduced system, which slightly degrades the parallelisation
rate of the algorithm.

In this paper, we introduce a completely parallelizable algorithm which yields
accurate interface conditions at a quite low cost. It is deduced from the Schwarz
alternating method with a fictitious overlapping mesh [Lio88]. We transform this
algorithm into another much more efficient one since the latter is equivalent to a
one-block overlapping Schwarz algorithm. It allows a strict parallelization because all
computations are done independently in each block. Communications are limited to
neighbouring blocks. The efficiency of the multiblock implicit solver is assessed by
numerical calculations of inviscid and viscous compressible flows around a NACA0012
airfoil.

2 Numerical Scheme

We consider the one-dimensional conservation law system :
we + fr =0, zeQCR (2.1)

where w(z,t) € R™ denotes the vector of conservative variables and f is the flux
vector. The flux Jacobian matrix A = df /dw has real eigenvalues and a complete set
of eigenvectors.

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org

810 GUY DE SPIEGELEER AND ALAIN LERAT

Figure 1 Multiblock mesh and ghost-cells definition.

Jp1 Jpan bt Jpu
I N o a1
Q Q
S N Pt] Ghostcells
ipt Qp ipm Jp Jpnt

Implicit Single-Block Scheme

The numerical solution is denoted by w} ~ w (jéx,nAt), for j € Jo = {jo,---,Jo},
At and dz are respectively the time-step and the space-increment, o = At/dz. System
(2.1) is approximated by a three-point implicit scheme which involves two time levels.
The explicit stage reads :

Awi™ = —o [h (wj1,w;) — h(wj, wi-1)], j € Jo

where h is the numerical flux associated with f. Note that without significant change,
the explicit stage could involve more than three points. The linear implicit stage is
given by :

nj_ij_l + ngAw] + n;—ij—i-l = Aw;w, 1€ Do (22)
where Aw; = w?"'l — wj. The m X m matrix blocks n;, ng and nj‘ depend on wj_,,

wj and w},,. The single-block computation of the implicit stage consists in solving
the (Jo — jo + 1) x (Jo — jo + 1) block-tridiagonal matrix No = [n] ,n$,n}], with the
Thomas algorithm. Here the vector values Aw;,—1 and Awgj,41 are assumed to be
null for convenience.

Implicit Multiblock Scheme

The computational domain Q is partitioned into P blocks Qp, p € {1,...,P}. The
block €, is composed of adjacent mesh-cells ¢, j € Jp = {Jjp,...,Jp}. A fictitious
overlapping is introduced so that the ghost-cells ¢;,_1 and c;,1 respectively overlap
the interior cells ¢;,_, and ¢;,,, (see Fig. 1).

In order to ensure the solution uniqueness, we need interface conditions at the
ghost-cells ¢j,—1 and c;,+1. The definition of the exact explicit interface condition
easily comes from the identification of the multiblock computation using ghost-cells
with the equivalent single-block computation. At j = j, we have for the single-block
computation :

Aw;:p =-0 [h (wjp“"]-’ wjp) —h (wjp’wjp_l)]
and for the multiblock computation :

A’w;:p = —0C [h (wjp+1,wjp) —h (wjpaw-]p_1)]

Identifying at j = J,, we deduce the exact explicit interface condition :

wi _=wh _andwf i, =w} ., pe{l,...,P} (2.3)

A QUASI-EXACT INTERFACE CONDITION 811
In the same way, we obtain the exact implicit interface condition :
Awj, 1 = Awy, , and Awy,41 = Awj,,,, p€{l,...,P} (2.4)

The implicit interface condition (2.4) couples the implicit stage systems of the P
blocks. Consequently, we cannot compute the implicit scheme independently in each
block. To uncouple the systems, one solution consists in lagging in time the interface
values on the adjacent block so that the interface condition becomes :

w} _y = w’};_ll and wj 4 = wl™t

Jp+1
- p¥l pef{l,...,P
Awj,_y = Awj™ and Awg = Awj] { } (2.5)

where Aw"™! = w" — w"~l. This time-lagging condition has been proved not to
jeopardize the linear stability of the interface problem [LW96]. However, the interface
condition (2.5) causes a partition dependency which can degrade the solver efficiency
for a large number of blocks.

3 New Implicit Interface Condition

The reduced system

The construction of the implicit interface condition proposed in this paper begins like
a classical parallelizable tridiagonal-linear system solver. We compute the influence
of the ghost-cells on the interior-cell time-increments. The implicit multiblock scheme
using ghost-cells is written in each block p € {1,...,P} as :

”?P nj; Awj, Aui:p n; Awj, 1
- Awj, 41 Aw; Ty 0
Jp+1 . — . _
"}—p—l Awg, 1 Awij’il 0 (3-6)
ny, ngp 5 Awy, szp n'}; Awj, 11
Np

The vector values Aw;, _1 and Awy, 1 are assumed to be null. The inversion of the
matrix N, shows that the linear system (3.6) is a linear form which links the ghost-cell
values Aw;, _; and Awy, 41 to the time-increments Aw;, j € {jp,...,Jp} :

ij = Amj + Bj_ijp—l + B;_ijp_i_l, Jj€Ip (37)

where Aw; is the numerical value of the time-increment in €, assuming a zero value
at each interface, and the matrices B; and B;-L are the influence matrices. The
computation of Awyj, B} and Bf only depends on the interior data in Q,. They
are computed independently in each block using the following algorithm adapted from
the Thomas algorithm.

812 GUY DE SPIEGELEER AND ALAIN LERAT

Ujp_l =0

Cip—1=1

Yj,—1 =10

DO .7 - .7117 JIJ
Dj = —’rL]-_Uj_1 + n?
U; = Dj)_l nf

y; =(Dj) iy
ENDDO
Awy, =7,
B;P = CJP
B}; =-Uy,

. S
B;_ = _UJ'B;'F+1
ENDDO

Now we assemble the interface problem (or reduced system or global Schur complement
operator) whose unknowns are the ghost-cell values. It corresponds to the linear
form (3.7) for j = Ji,52,--Jps JIps---,IP—1,4p, where the exact implicit interface
condition (2.4) has been applied :

(A'U)Jl = ijl +B_—}_1 ij2
ij2 = Am‘h +B]_2 A'LUJl +B;; ij3
— A - +
< Awj, = Aw;, +B; Awy,_, +Bj Awj, ., (3.8)
A’u}_]p = AEJP -f-B;P A’u},]p_1 +BJPijP+1 -
AwJP—l = AmJP—1 +B;p_1AwJP—2 +B.—}_P_1ij1:'
L A’U)J'P = ijp +B]_P A’LUJP71

This reduced system has 2(P — 1) equations and 2(P — 1) unknowns. It can be solved
with the Wang’s direct algorithm [Wan81]. But this algorithm is only efficient when
the cell number in each block is much larger than the block number.

The iterative process

Taking advantage of the particular structure of our problem, we have easily formed
the reduced system. Thus we can completely relax system (3.8) by introducing the
following iterative algorithm :

A QUASI-EXACT INTERFACE CONDITION 813

Initialization of Aw(> =0 and Aw(’ =0
DO =1,L
Aw) = Aw;, + B; Aw§ Y + B Awll Y
Aw(}j = Aw;, +B Awgt - +Bf Aw Y
ENDDO
Awj, 1 = Aw(Jf) Awg, 41 = Aw](fjl

This algorithm consumes very little CPU time because an iteration represents only four
matrix-vector multiplications independently computed in each block. Nevertheless, its
convergence rate is proportional to the overlapping size. On Fig. 2 -left, we represent
by an arrow the geometrical dependency of the ghost-cells from iteration (I — 1) to
iteration (). Since it is equivalent to a one-cell overlapping Schwarz algorithm, this
algorithm requires many iterations to reach a perfect accuracy.

Figure 2 Left : Slow iterative algorithm. Right : Fast iterative algorithm.

Jpijop Jpjpr F1jp Jpjpr
[[] [
5 I —

(n [l
-

/ ~
/ ~o - Pl
/ S~ - f 1

T

Il

‘ 15| [
| L a-1 [\

In order to dramatically increase this low efficiency, we suggest a second algorithm.
We now relax system (3.8) according to the following relation :

Al =Aw;, +Bp AW +Bf AwY

»)) ef{1,...,P
A =Aw, +B; Aw(l Y +B+ Aw ﬁﬂ Ped J
We find our new implicit interface algorithm :

Initialization of Awg) =0and Aw(;:) =0
DOol=1,L

Aw() = Aw;, + B Aw(l 1) + B;_ ij(l_l)

P p+1

Aw(l) =Aw,, + BJpAw(l b + BJPAwX:)
ENDDO
Aw; _1 = AwlP , Aw = AwtP)

Jp—1 Jp—1 Jpt+l = Jp+1

where the new influence matrices are computed in parallel before the first iteration
as :

AT, =M, (Aw;, + B Awy,) | AT, =M, (AW, + BY,Aw,,.,)

Ef'ﬁ = M,;,B; By | Ei” = M,,Bj
B, =M,;B;} B, =M, BY B}
P P p+1

—1 -1
with M; I-Bj B+ with M; = (I — B+B
Jp Jp—1 P Jp+1

814 GUY DE SPIEGELEER AND ALAIN LERAT

Figure 3 Inviscid transonic flow (Mo = 0.85, @ = 1?). Convergence history in
terms of iterations and CPU time.

licit-|
plicit-nterface

X I3, r‘i’i me-Lagging -

0 Single-block 0 18
18 X 3, Implicit Interface - i 18
18 X 3, Time-Lagging A

3.1
3;-H

3 ,, g
S 6 ™ S 6
D D
o L o
8 " 8
10 k B 10
12t g 12+
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500
Iterations Total CPU time

This iterative process is now equivalent to a one-block overlapping Schwarz algorithm
(see Fig. 2 -right). The convergence rate of the latter algorithm (called the fast
algorithm) is much greater than the convergence rate of the previous one because
the overlapping distance has been increased from one cell to one block. It offsets the
increasing cost due to the computation of the new influence matrices.

4 Numerical Applications

For the numerical applications, we use the centered implicit dissipative Lerat scheme
[Ler83]. This inviscid method is second-order accurate, unconditionally stable and
dissipative in the sense of Kreiss. For viscous flow computations, we use an extension
due to Hollanders et al. [HLP83]. The implicit system is solved using a line Jacobi
relaxation procedure so that the computation of the two-dimensional scheme is
equivalent to two computations of the one-dimensional scheme (2.2). A local time step
is used so that the CFL number is uniform all over the mesh. The computations start
from an uniform flow. All computations have been made without artificial viscosity.
The present multiblock implicit solver has been implemented on a Cray J916.
Its efficiency is assessed by computing two external steady flows around a NACA
0012 airfoil and comparing the convergence histories of the single and multiblock
methods using either the time-lagging interface condition or the new implicit
interface condition with only two iterations of the fast iterative algorithm. The com-
parison is made in terms of iterations and also of CPU times for the multiblock solvers.

A QUASI-EXACT INTERFACE CONDITION 815

Inviscid transonic flow

The first application is an inviscid transonic flow at freestream Mach number M., =
0.85 with a 1° angle of attack. The calculation is run on a 188 x 24 C-mesh which
is partitioned into 18 x 3 = 54 blocks of approximately 10 x 8 cells each, the CFL
number is equal to 20.

Figure 4 Viscous subsonic flow (M = 0.8, @ = 10°). Convergence history in
terms of iterations and CPU time.

AL
Yaammmil

Mesh partitioning in 21 x 5 blocks. Mach-number field (AM = 0.05).
0 ‘ ‘ ‘ S’naIeBI;Jck e 0 ‘ 21X 5, Imo;icitlnterface 7‘
21 X 5, Implicit Interface -~ (diverges) 21 X 5, Time Lagging -~

(diverges) 21 X 5, Time Lagging

10g10(R)
10g10(R)

-10

0 2000 4000 6000 8000 10000 0 5000 10000 15000
Iterations Total CPU Time

The convergence histories are shown on Fig. 1.3. In terms of time iterations, all
the methods behave similarly at the beginning of the transient phase, but after 500
iterations the implicit interface condition is much more efficient than the time lagging
condition. The number of iterations to reach a Ly - residual of 10719 is reduced by a
factor 3.3. The CPU-time per iteration depends on the coding and the load balancing
between the explicit and implicit stage of the scheme. The extra-cost per iteration
(over time-lagging) decreases when the flow modelization is improved and varies
from 65 % for the present Euler computation to 5% for a turbulent Navier-Stokes
computation. Therefore, in the present Euler test-case, the total CPU-time to reach
the 10710 residual is reduced by a factor 2 (see Fig. 1.3).

816 GUY DE SPIEGELEER AND ALAIN LERAT

Furthermore, Fig. 1.3-left shows that the implicit multiblock solver converges faster
than the single block solver. This surprising result is due to a better treatment of the
cut line issuing from the trailing edge. Actually the matching is time lagged in the
single block computation while it is accurately implicited in the proposed multiblock
treatment.

Viscous subsonic flow

The second application is a viscous subsonic laminar flow (Re = 500) at free stream
Mach number My, = 0.8 with a 10° angle of attack. The C-mesh is composed of
254 x 58 cells. It is partitioned into 21 x 5 = 105 blocks of roughly 12 x 12 cells (see
Fig. 4). The CFL number is equal to 35. On the Mach number field, we observe a
large recirculation region.

The multiblock solver using the time-lagging interface condition diverges while the
use of the new implicit interface condition yields the single-block solver efficiency. Note
that even if there are numerous blocks into the boundary layer, no numerical problem
has been found with for the multiblock calculation.

5 Conclusion

A new implicit interface condition has been developed for the solution of the Euler
and the Navier-Stokes equations on multiblock structured meshes. This method is
perfectly parallelizable and as accurate as an exact implicit interface condition.

The present method reduces the CPU cost of a steady flow computation with respect
to a block-Jacobi solver or simply allows the convergence when the latter is not able
to reach the steady-state.

REFERENCES

[Bru91] Brugnano L. (1991) A parallel solver for tridiagonal linear systems for
distributed memory parallel computers. Par. Comput. 5: 1017-1023.

[HLP83] Hollanders H., Lerat A., and Peyret R. (1983) Three-dimensional calculation
of transonic viscous flows by an implicit method. AIAA P. 83-1953. (1985) ATAA
J. 23 : 1670-1678.

[Jen94] Jenssen C. B. (1994) Implicit multiblock Euler and Navier-Stokes calculations.
ATAA J. 32(9): 1808-1814.

[Ler83] Lerat A. (1983) Implicit methods of second order accuracy for the Euler
equations. ATAA P. 83-1925. (1985) AIAA J. 23: 33-40.

[Lio88] Lions P. L. (1988) On the Schwarz alternating method I. In Glowinski R.,
Golub G. H., Meurant G. A., and Périaux J. (eds) Proc. First Int. Conf. on Domain
Decomposition Meths., pages 1-42. SIAM, Philadelphia.

[LW96] Lerat A. and Wu Z. N. (1996) Stable conservative multidomain treatments for
implicit Euler solvers. J. Comp. Phys. 123: 45-64.

[Rai86] Rai M. M. (1986) An implicit, conservative, zonal-boundary scheme for Euler
equation calculations. Comp. Fluids 14(3): 295-319.

[Wan81] Wang H. (1981) A parallel method for tridiagonal equations. ACM Trans.
Math. Software 7: 170-183.

