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An Efficient FGMRES Solver for
the Shallow Water Equations
based on Domain Decomposition

Serge Goossens, Kian Tan, and Dirk Roose

1 Shallow Water Equations

The Shallow Water Equations (SWE) are a set of nonlinear hyperbolic equations,
describing long waves relative to the water depth. Physical phenomena such as tidal
waves in rivers and seas, breaking of waves on shallow beaches and even harbour
oscillations can be modelled successfully with the SWE. The 3D SWE (1.1)—(1.3)
given below for Cartesian (£,7) coordinates are based on the hydrostatic assumption,
that the influence of the vertical component of the acceleration of the water particles
on the pressure can be neglected.

6“4_“%4_1)6“ wau_fy_}. %—I/ 62_’[1,_'_@ _Li v 6_11,
Y9¢ """ \ae T o)  HP00 \"V oo

ot "o Vo T Hoo =0

(1.1)

@+u@+fl}@+£6—v+fu+ %—V @4_6_2’0 _ii v % =0
ot " "ae "o T Hoo Yo~ " \oe " o 290 \"V o0 ) -

0¢  O(Hu) O(Hv) Ow _
n o€ an 3 = 0 (1.3)

We denote by ( the water elevation above some plane of reference, hence the total water
depth is given by H = d + (, where d is the depth below this plane of reference. The

scaled vertical coordinate o = 2;-1-§ varies between —1 at the bottom and 0 at the free

surface. The velocities in the &- and 7-directions are denoted by u and v respectively,
while w represents the transformed vertical velocity. The parameter f accounts for
the Coriolis force due to the rotation of the Earth. The viscosity is modelled using vg
and vy. In each o-plane vg models the “horizontal” viscosity, while vy, describes the
viscosity in the vertical (o) direction.
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2 Alternating Operator Implicit Method

For the time integration we use the two-stage Alternating Operator Implicit (AOI)
time splitting method, which has been developed at Delft Hydraulics [dG93]. This
method is unconditionally stable and second order accurate in time. In the first
stage (most of) the advection and diffusion terms in the momentum equations are
handled implicitly, while the continuity equation is integrated explicitly. The resulting
two linear systems for the intermediate u and v are solved by Red-Black Gauss-
Seidel iterations. During the second stage the continuity equation is treated implicitly.
Substitution into the continuity equation of the momentum equations, in which the
velocity components are now handled explicitly, leads to a nonlinear system for the
water elevation (. For each time step n, we perform () fixed point iterations to solve this
nonlinear system. Introducing an iteration counter ¢ (¢ = 1,2,... ,Q) and multiplying
the pressure terms in the momentum equations with H (% /H (n.4+1) " we obtain

02 0? n .
(I TVigE T Vna_nz) (D) = fx, (2.4)

where the right-hand side f* involves previously computed values and where (™%
denotes the water elevation at iteration ¢ of time step n. In the remainder of the paper
we drop the superscripts. The imposed boundary conditions might be of Neumann type
(e.g. closed wall) which could lead to a nonsymmetric linear system after discretisation.
The pseudo viscosities ¢ and v, mainly depend on the time step and the total depth,
which makes the linear system nonsymmetric.

Since the classical five point star stencil is used, a discrete equation of the form

(bij + bﬁ? + bg;yj))Ci,j + a;,5Gi-1,5 + CijCiv1,5 + dijGij—1 + €iGijrr = fi 5
2.5

is obtained for each grid point (7, ) and the resulting linear system has a pentadiagonal
structure. In practice it often suffices to take @ = 2. Until recently an ADI iteration
was used for solving system (2.4).

The main topic addressed in this paper is the application of a Domain Decomposition
Preconditioner in combination with the Flexible GMRES (FGMRES) method to solve
(2.4). The original ADI method is used as a preconditioner in the subdomain solver
only.

3 Generalised Additive Schwarz Preconditioner

The domain decomposition preconditioner which is employed in accelerating the
FGMRES method to solve (2.4) on the entire domain is based on a Generalised
Additive Schwarz Preconditioner (GASP). Let R; : Q — Q; denote the (linear)
restriction operator that maps onto subdomain ¢ by selecting the components
corresponding to this subdomain. The matrix M; = R;ART denotes the principal
submatrix of the matrix A associated with subdomain 2;. The result of applying
the GASP can be written as a sum of the extensions of the solutions of independent
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subdomain problems, which can be solved in parallel.

p
M~ =Y RIM 'R (3.6)

=1

We elaborate on this GASP for the case of two subdomains separated by the interface I’
as shown in Fig. 1. Extension to more subdomains is straightforward. At the heart
of our GASP lies an extension of the subdomains to (physically) slightly overlapping
grids. With a proper definition of the overlap, the restrictions R; can be defined
in such a way that the original discretisation is “distributed” across the subdomain
operators M;. Since the classical five point star stencil is used an overlap of two grid
lines is sufficient. Figure 2 illustrates the extension process. In the discretisation, points

Figure 1 Grid before partitioning Figure 2 Grid after partitioning
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in subdomain Q; are only connected to points in §2; or in ;. Similar statements can be
made about the points in €2, Q, and Qs. This leads to the following block structured
linear system.

An Ay O 0 G fi

An Au Ay O a | _| fi
O Arl Arr Ar2 Cr - fT (37)
0 0 Ay A G2 fa

After extension towards overlap, and thus duplication of ; and Q, into Q; and Qz,
we obtain an enhanced system of equations in which we still have to specify the
relation between the “overlapping” unknowns. The obvious way is just to state that
the values in the duplicated subdomains {2; and 2z should be copied from the values
in the original subdomains ; and (2, respectively. This is known as the Dirichlet-
Dirichlet (DD) coupling. The enhanced system of equations with this DD coupling
can be written as follows.

Ay Ay O 0 0 0 G fi
An Ay Ay O 0 0 G fi
0o 0 I 0 -I 0 &l | o
0 I 0 I 0 0 c 17| o (38)
0 0 0 Arl ATT Ar2 Cr f’“
0 0 0 0 Azr A22 C2 f2
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Tan [TD88] showed that the spectral radius of the preconditioned operator AM ~!
and thus the convergence properties of a Krylov Subspace Method preconditioned by
a GASP as given by (3.6), are improved by pre-multiplying the linear system with a
properly chosen nonsingular matrix P of the form.

10 0 0 00
07 0 0 00
loo ca -cuoo

P=19 0o ¢, ¢, 0 0 (3.9)
00 0 0 I 0

00 0 0 01

This can also be interpreted in terms of imposing more general conditions at the
subdomain interfaces. This approach was originally introduced by Lions [Lio90] and
subsequently used by e.g. Hagstrom et. al. [HTJ88] and Nataf and Rogier [NR95]. The
submatrices Cy,, Cy, Crr and C,; are chosen to achieve a clustering of the eigenvalues
of the preconditioned operator, subject to the condition that P remains nonsingular.
This gives rise to the Locally Optimised Block Jacobi preconditioners which are thus
based on the enhanced system of equations A = f:

Ay Ay 0 0 0 0 C1 fi
An Au Ay 0 0 0 G Ji
0 Cu ¢, —-Cy —C, O G| 1 0
0 —Lrl _Crr Crl Crr 0 C~l N 0
0 0 0 A Ay Ao CT‘ fr (310)
0 0 0 0 AQT A22 CQ f2

This enhanced system of equations can be written in terms of the 3 x 3 blocks. Defining
the restriction operators R; and Rs in terms of the index sets corresponding to (1, G
and (, on the one hand and (;, {, and (> on the other hand, the GASP can be written
as the block diagonal matrix M with

_( RRART 0
M_( 0 RyART ) (3.11)

4 Flexible GMRES

Applying FGMRES in combination with the GASP described above to solve (2.4)
is straightforward. The FGMRES method developed by Saad [Saa93] is a Krylov
subspace method which allows the introduction of a set of well-chosen vectors in
the search space. We assume for convenience that AM~! is normal. The FGMRES
algorithm computes the fundamental relation

AZy = Vg Hi + b1, mUmt1€0, (4.12)

where Z,, = ( 21 22 ... Zm ) is the matrix containing the search directions and
the matrix V,, = (w1 v2 ... wp ) is defined by its columns. The matrix Hy, is
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a square m X m upper Hessenberg matrix whose elements are computed during the
orthogonalisation process of the v-vectors, consequently V,2V,, = I. Using a fixed
preconditioner with FGMRES is equivalent to using right preconditioned GMRES
with this preconditioner. In this case, the matrix Z,, can be computed by applying
the fixed preconditioning operator M ! to the matrix V.

Ty = MV, (4.13)

The GASP described above is a fixed preconditioner if and only if the linear systems
in the subdomains are solved to full precision. The convergence of FGMRES is
mainly governed by the eigenvalue distribution of the preconditioned operator AM ~1.
In particular, convergence acceleration can be expected for well-separated extreme
eigenvalues. Also, the stage of the FGMRES process in which acceleration occurs
is related to the convergence of the Ritz values to extreme eigenvalues [VASVdV86,
VdVV93]. This phenomenon can be made visible by explicitly computing the Ritz

Figure 3 Spectrum of Hy,: Figure 4 Spectrum of Hy,: Locally
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values, i.e. the eigenvalues of H,, = V,L(AM~1)V,,, in the course of the FGMRES
process. The eigenvectors corresponding to the outliers of this spectrum represent the
eigenvector components to be removed from the initial residual which “uphold” the
convergence. Due to the construction of the GASP considered here, this Ritz spectrum,
at least for meshes not too fine, typically resembles the spectrum as depicted in Fig. 4,
i.e. a few well-separated outliers and a cluster around 1. For comparison we show in
Fig. 3 the Ritz spectrum of the domain decomposition preconditioner for the same
problem when Dirichlet-Dirichlet coupling is used. This spectrum does not show a
clear separation of a cluster of eigenvalues around 1 and some outliers. On the contrary,
the eigenvalues are spread out over the open interval (0, 2) and a lot of the eigenvalues
are either close to 0 or to 2. The eigenvalue distribution explains the slow convergence
of this domain decomposition method with DD coupling when it is used as a solver,
because the spectral radius of the matrix (I — AM ~1) is close to 1. In the next section
we try to exploit the nice spectral properties of the GASP.
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Table 1 Number of iterations needed to solve the second linear system when the
reuse of vectors in the subspace is done by truncation, assembling (rank-k) or
assembling of preconditioned Ritz vectors (k outliers) for the rectangular basin

partitioned in 4 strips.

truncation =~ GASP appl. | rank-k  GASP appl. | k outliers GASP appl. |

21, 22 9 or 10 2 9 2 8
21, 22, 23 9 or 10 3 8or9 3 Tor8
21y enn y 24 8or9 4 8 4 7
21, ..., 25 8 5 7 5 6
21y .-, 26 Tor8 6 6 6 5
21y ..y 27 6 or 7 7 6
21y ..., 28 6 8 6
21y ..., 29 S5or6 9 5or6
21, - -, 210 5 10 5or6

5 Reuse strategies

The main motivation for using FGMRES instead of GMRES is that the former —
in contrast to the latter — accommodates variable preconditioning; any vector z
can be put into the search space Z,, as long as its image Az is known in order
to be able to compute the correction to the residual. This property in combination
with the observation that our specific time integration method results for each time
step in a sequence of systems (2.4) has raised the question whether it is possible to
reuse previously computed search vectors during the solution of the next systems by
FGMRES. Obviously, one advantage of reusing vectors is that it is a lot cheaper than
applying the (expensive) GASP which after all requires the solution of a linear system
in each subdomain. Also, when (approximations of) the preconditioned eigenvectors
that uphold the convergence are collected in the search space, accelerated convergence
might be achieved from the first newly computed z-vector on. Several strategies to
reuse vectors from an already generated subspace have been tested. In practice, we
always use () = 2, i.e. two systems must be solved in each time step. We focus on the
solution of the second system in each time step (¢ = 2), possibly reusing information
from the search space Z,, built during the solution of the first system (¢ = 1). We
formulate the following reuse strategies:

1. truncation: introduce the first k z-vectors zz(R) =z (i=1,... k).

2. assembling: introduce the best rank-k approximation of SPAN{z1, 22, ... , Zm }-

3. assembling of preconditioned Ritz vectors: introduce k preconditioned
approximate eigenvectors corresponding to outliers: zZ(R) = Zny; (i =
1,...,k), where y; is the eigenvector of H,, corresponding to the

eigenvalue \;, i.e. H,y; = \y;.

The trivial truncation strategy 1 gives an indication of what can be expected from
more sophisticated reuse strategies. The case in which all z-vectors are reused, allows
us to verify whether the Arnoldi process is able to quickly generate a reasonably
approximate eigenspectrum. The second strategy requires the computation of the
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singular value decomposition of Z,, = USXVT. When the singular values are ordered
01 > 0y > ... > o > 0, the best rank-k approximation of SPAN{z1,2a,... ,2m,} is
given by SPAN{u1, us, ... ,ur}. The use of a best rank-k approximation is motivated by
the fact that the column space of Z,, contains preconditioned approximate eigenvectors
corresponding to the outliers. The hope is that a lower dimensional approximation still
contains an approximation of these eigenvectors. The results seem to indicate that this
strategy is not entirely capable of filtering out the preconditioned eigenspace. The third
reuse strategy relies on the observation of clustered eigenspectra in combination with
a (small) number of clearly distinguishable outliers as is the case in Fig. 4. An explicit
construction of the preconditioned eigenspace corresponding to the outliers is then
possible. Note that the construction is also based on (4.13). Based on the results in
Table 1 the assembling strategy of preconditioned Ritz vectors has been chosen for
further experiments.

6 Test Case and Results

The test case is concerned with the flow in a 8000m by 1200m rectangular basin which
is 8m deep. The uniform grid has one layer in the vertical (¢) direction which contains
80 x 12 grid points in the horizontal direction. The prescribed boundary conditions are
as follows. The north and south boundaries are closed, leading to Neumann boundary
conditions in (2.4). At the east boundary the water elevation is kept constant at
¢ = 2m. At the west boundary the water elevation is prescribed to model the tide,
yielding { = 2 + sin 326%7:0 m. Tests have been carried out with stripwise partitionings
of the rectangular domain into 4 and 8 subdomains. A test with 4 subdomains and a
mesh width of 50m instead of 100m was also done to see the effect of refinement on
the number of outliers and the separation between the outliers and the cluster.

The convergence histories showing the scaled (with || f||2) residual norm as a function
of the dimension of the search space for the FGMRES algorithm applied to the two
linear systems arising each time step are shown in Fig. 5. The convergence history
for the first linear system starts at about 0.2 and drops below the adopted threshold
of 1079 after 11 iterations. This requires 11 applications of the GASP. Figure 4 shows
the eigenvalues of the Hessenberg matrix H,, constructed by FGMRES during the
solution of this first linear system. The six eigenvalues that are not close to 1 are the
outliers which “hamper” fast convergence of FGMRES. The convergence history for
the second linear system starts off with a plateau at about 0.001, dropping sharply
to reach the tolerance criterion after 11 iterations as well. The plateau corresponds to
the reuse of assembled preconditioned Ritz vectors. This corresponds to the removal
of the approximate eigenvectors associated with the outliers from the initial residual,
a process which hardly reduces the norm of it. However it makes FGMRES converge
as if the outliers were not present at all; starting from the first newly computed search
vector the residuals decrease rapidly, at the same speed as in the end stage of the
solution of the first system. Because of the reuse, solving the second linear system
requires only 5 applications of the GASP.

Instead of computing the approximate eigenvectors at each time step from the
matrix Z,, constructed during the solution of the first linear system (¢ = 1), we
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Figure 5 Convergence histories of the Figure 6 Convergence histories of the
preconditioned FGMRES method preconditioned FGMRES method

Time step 1: first linear system -s—
e stey nd linear system —--

First linear system -s—
Second system linear with reuse -

Time step 72: first linear system -5---
‘Time step 72: second linear system -

can also construct the approximate eigenspace only once, i.e. from the first linear
system arising in the first time step. Moreover, the eigenspace is now reused in the
solution process for the first linear systems (¢ = 1) of each time step as well. The
convergence histories are shown in Fig. 6. As can be seen from this Fig. we save
on preconditioning steps by introducing these vectors also in the search space when
solving the first linear system. The convergence histories for the second linear system
show that it is not necessary to compute the approximate eigenvectors at each time
step, since the results with the vectors from the first time step are sufficiently close to
those with the vectors from the current time step.

7 Conclusion

We have developed a Generalised Additive Schwarz Preconditioner for use within
FGMRES to solve linear systems arising in the solution of the time-dependent shallow
water equations. The preconditioned operator AM ~! has a clustered eigenspectrum
with only a few outlying eigenvalues, at least for meshes not too fine. This property
together with the specific time integration method enables the reuse of search vectors
in the FGMRES process which leads to reductions in computation time.
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