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1 Introduction

In this paper, we extend non-overlapping domain decomposition techniques, previously
developed for second order elliptic problems and the Stokes operator [LP96], to the
solution of incompressible flow problems governed by the Navier-Stokes equations. In
this approach, we will reduce the original problem to a problem set on the subspace of
divergence free functions, and apply existing domain decomposition techniques to the
resulting sub-problem. The advantage of this approach is to greatly reduce the size of
the algebraic systems that have to be solved.

Adaptive hp finite elements, in which the spectral order and element size are
independently varied over the whole domain, are capable of delivering solution
accuracies far superior to classical h— or p—version finite element methods, for a
given discretization size. Several researchers [BS87, DORH89, ROD89] have, in fact,
shown that the reduction in discretization error with respect to number of unknowns
can be exponential for general classes of elliptic boundary value problems, as opposed
to the asymptotic algebraic rates observed for h or p-version finite element methods.
Together with multiprocessor computing, these methods thus offer the possibility of
orders-of-magnitude improvement in computing efficiency over existing finite element
models.

The principal computational cost in any finite element solution is encountered in
the solver. For the nonlinear Navier-Stokes equations, solved using a Newton iteration
scheme, the major computational cost is in the linear solve in each iterate. If time
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stepping is used to linearize the problem, the use of implicit methods, leads to a
similar situation. In a parallel computing environment, conventional direct solvers
based on some variant of Gauss elimination are usually inefficient for the irregular
sparse linear systems generated by adaptive hp discretizations. Further, these linear
systems are often very poorly conditioned, ruling out most standard iterative solvers.
Thus, efficient solvers, meeting the twin criteria of being parallelizable and controlling
the conditioning of the system, need to be used.

In this paper, we discuss a practical and efficient parallel iterative solver that meets
the above criteria. The solver combines nonlinear Newton iterations with iterative
substructuring and coarse grid preconditioning. The inner solver for the linearized
problem at each Newton iterate can be thought of as a combination of multiple direct
solvers at the subdomain level together with a preconditioned iterative solver, to
handle the interface problem efficiently in parallel. The iterative solver of choice is
the GMRES algorithm.

In the remaining sections we introduce the steady state incompressible Navier-Stokes
equations and its weak formulation, its finite element discretization and describe a
domain decomposition iterative solver and present some numerical results.

2 The Steady Navier-Stokes Equations

We define the spaces V = (H}(Q))? and Q = LZ(R) and a domain Q C R? with
boundaries 02 that are assumed to be locally Lipschitz . The Navier-Stokes problem
on Q C R? consists of finding a velocity, pressure pair (u, P) € V x Q satisfying

(u-Viu—vA-u+VP =f inQ
Veu =0 inQ
u =g on 0

where f is a body force, v is the kinematic viscosity.

Basic Formulation and LBB condition

Let us consider the following mixed finite element approximation of the Navier-Stokes
problem:
Find up € Vi, pn € W}, such that

c(un,un,vp) + a(up,vn)+ b(vn,pn) = L(vg) Yo, € Vi (2.1)
b(un,qn) = —b(T, qn) Van € Who (2.2)

where uy + @ is the approximate velocity field and py is the approximate pressure
field inside an incompressible viscous fluid flowing through a given domain Q C R?
with imposed velocity 4 at the boundary 9Q of Q. The domain 2 is partitioned into
finite elements such that Q = U.K,, and the finite element spaces V}, and Wp,, are
conforming finite dimensional approximations of H}(Q,R?) and LZ(f2) given by
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Vi ={vn € C(Q,R?),vn k. € Qr(Ke),Ve,vp =0 on 80},
Wi = {qn € L*(Q),qn k, € Qi(K.),Ve}, and Wro = {qn € Wh, [ ¢ndQ = 0}.

In this framework the trilinear form ¢, the bilinear forms a and b and the linear
form L are defined by

c(u,u,v) = [o(u- V)u.vdQ, Yu,v € H'(Q,R?)
a(u,v) = [ovVu.VudQ, Yu,v € H(Q,R?)
b(v,q) = [ qdivudQ, Vo € HY(Q,R?) and Vq € L*(Q),
L(v) = [o fvdQ — a(a,v) — c(u,u,v)

We now introduce a non-overlapping partition of {2 into a finite number of
subdomains such that @ = UY; Q; The interface T'; = 9€2; — 0 is supposed to coincide
with interelement boundaries, and we suppose that the finite element spaces V3 and
W), satisfy the following LBB compatibility condition on each subdomain(including
Qo =Q).

Assumption 1 There exists a constant B(k) independent of the mesh size h, but
possibly dependent on the local degree k of the finite elements, such that

l fﬂi q dive dQ

T > B(k) Vi =0,..,N (2.3)

inf sup
q€ELF(2)NWh 4 HI (Q:)NVi,

U“LQi

3 Choice of Compatible Spaces for Adaptive hp FEM

We begin the discussion by defining appropriate polynomial spaces. Let L;(t) denote
the Legendre polynomial of degree i. Now define U;(z) = ffl L;(t)dt the integrated
Legendre polynomial. Note that U(+1) = 0. Further define the “volumetric” and
“lateral” polynomial combinations over the master element K = I, x fy =[-1,1] x
[-1,1] as

k-1
Te(K) ={) aUs(z)U;(y), ai; € R} and Ey(K) = Py (L) Pi(l,) U Pe(L) Py (L)
i,j=1
where Py, (I;;) (resp. Py(I,)) denotes the space of polynomials of maximum degree k
in z (resp. y). Different choices of finite elements for an hp approximation may now
be defined by appropriate combinations of Ey and Ji for each element. For example,
one may choose Qi (K) = Ex(K) ® Jp(K).

In the context of p version finite element methods, Stenberg and Suri
[SS95] have recently proposed systematic ways of constructing compatible
higher order approximations for the velocity and pressure spaces such that
Assumption 1 is satisfied automatically. One such construct is Wi(K) =
Qi—1(K), with corresponding velocity space Vi (K) = Qi1 (K) Vk > 2.

In adaptive p and hp methods, the polynomial order may change from element
to element with C° continuity of the velocity approximation being maintained by
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extending the higher order function on the shared edge into the lower order element.

The space Ej(K) must be redefined to reflect this.
For k1,k2, k3, k4 > 2

~

Ex(K) = Epi(n)® Ex2(72) ® Exs(73) ® Era(7a)

= Pra(1)P1(y) @ Pr2(v2)P1(2)Pra(13)P1(y) @ Pra(ya)P1(z)

where k = {k1, ko, k3, ka} and Ej; are the edge spaces of polynomial order ki defined
on the edges ;. Let ky, = maz{ki, ks, ks, ka}. Now the spaces for the adaptive hp-
version can be redefined for this situation as

Wy (K) = FEri—1(m) ® Era—1(72) ® Erz—1(73) ® Era—1(74) ® Ji,, —1(D)

Vi(K) = Ex® Jy,11(0).

This is easily implemented in the code by augmenting the order of the bubble
functions for velocity to one more than the maximum of all the edge polynomial
orders. The pressure shape functions are then constructed as one order less than the
velocity functions on the edges and two orders less in the bubble function. As show in
[LP96] Assumption 1 can be established for this construction of the spaces.

4 Solution Algorithm

The Nonlinear Iteration

For flows characterized by low Reynolds numbers (Re = 1/v = 100) it is often easy
and possible to solve the nonlinear system of equations arising from an adaptive
hp discretization of (2.1,2.2) using Newton’s method. However, for higher Reynolds
numbers this technique does not appear to perform well. Newton’s method generates

a sequence of iterates of the form u’,ﬁ, k=0,1,2,... Given ufl_l we find u’,i by solving
c(uf,up ™t on) + c(uf ™t ufon)  + a(uf,on) + blun,pf) = (f,0n) +
c(uﬁ_l,uﬁ_l,vh) Yoy, € Vi (4.4)
b(uk, qn) =0 Van € Who

Thus at each stage we need to solve a large irregularly sparse linear system.
We will now discuss an efficient parallel solver for this system. The solver uses
iterative substructuring with coarse grid preconditioning of the type discussed in
[OPF94, LP96].

Reduction to Interface Problem

We use fast local subdomain based sparse solvers and the discontinuity of the pressure
field to reduce the global problem to one posed purely in terms of the interface
velocities. We start by using the structure in the p version to decompose the velocity
space at the element level into the three subspaces of vertex functions (V), edge
functions (E) and bubble functions (B), and augment it with a pressure space(P). The
element stiffness can then be written as:
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VVear VEea: VPer VBey uy

EVea: FEEq FEPei FEBey Ug
I<elt =

PVes PEg 0 PBey P

BVe: BEg: BPe: DBBen up

We also compute a vector corresponding to b(up,1) = B, for subsequent use in the
preconditioning form.

The bubble functions have support only inside an element, so they may be
immediately eliminated using a static condensation procedure. This modifies the rest
of K¢yt and B,;. The zero on the diagonal corresponding to the pressure degrees of
freedom is now replaced by PP = —(PB)(BB)~}(BP). If the pressure is assumed to
be continuous in each subdomain and discontinuous across interfaces (I';) we obtain
a subdomain stiffness matrix of the form:

WW; WF; WI; Vi VE; VP
K= | FWr FFr FI I, = | BV: EE; EP
Iw, [IFr I PV; PE; PP

where WWr and FFr denote the vertex and edge degrees of freedom associated with
subdomain interfaces on the I** subdomain and II; denotes those on the interior.

If the pressure field is assumed to be discontinuous across elements then, the pressure
degrees of freedom may be eliminated at the element level with respect to an average
element pressure. This elimination is carried out using a procedure identical to the
static condensation used on the bubble nodes after setting one of the pressure nodes
to a value of zero. This is necessary to make PP invertible. The pressures can be
computed consistently by requiring p;, € L3(€;). If the actual pressure on this node
is denoted p, then the actual pressure is p = P,; + P,.; where, P € L3(€Y;) is the
relative pressure computed. The value P,; of the pressure on the remaining node can
be computed from the velocities at the subdomain level and corresponds therefore to a
subdomain internal degree of freedom. It will be associated to the the local constraint
of volume conservation felt div u;p, = 0. These values can be eliminated by treating
this local constraint by a penalty approach on all subdomain elements except one.

The static condensation process can now be used (irrespective of the pressure
approximation) at the subdomain level to obtain

Ww; WF; 0

. _ __ WW; WE;

K= FWr FFr 0 S; = - -
0 0 II FWr  FFp

Note that the same modifications are also carried out on Bj.
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The matrix Sy is the contribution of each subdomain to the interface operator S.
The vectors By assemble into B described in conjunction with the solution of the
interface operator. Procedures for parallel iterative solution for S are discussed next.

Interface Solver using GMRES and Divergence-Free Search Vectors

The interface operator S is non-symmetric and the iterative solver of choice is usually
GMRES, a method that minimizes the residual over a Krylov space. The basic GMRES
algorithm however suffers from the the drawback that the work grows quadratically
and storage grows linearly with the number of iterations. The restarted version of
the algorithm alleviates this difficulty to some extent, and is the one used in this
study. The preconditioned version of the GMRES includes in each iteration, a solve C
G™ = R™ where C is a preconditioning operator, R™ is the residual in the nt" iterate
and G" is the computed search vector.

Further, to satisfy the incompressibility condition on the interface velocities, we
restrict our choice of search directions to divergence free vectors. This is accomplished
by modifying the preconditioning step C G™ = R™ to

CG"+ BTp= ¢
BG"= 0

where

B:/ Vup.1 d§; :/ vp.n dl’
Q; r;

and p is a vector of average pressure per subdomain. This computation reduces to
one coarse solve of a problem of dimension equal to the number of subdomains per
application of the preconditioner, and the initial cost of setting up and factoring
BC—'BT.

Choice of Preconditioner

As described in [OPF94, LP96] matrix S is naturally blocked into a small
portion (VT/\I//V) corresponding to the nodes on the interface and the larger portion
corresponding to the unknowns associated with the edges(ﬁ’) and their interactions
WF and FW. As a preconditioner C, we explore two choices, denoted C; and Cs,
analogous to the choices in [LP96]. These are a) the WW block and the diagonals of

FF and b) the WW block and the block diagonals of FF. Block diagonals correspond
to the degrees of freedom associated with a particular edge. In matrix notation these
are:

WW 0 WWw 0
Cl = o C2 = —~
0  diag(FFy) 0  diagB(FFy)

where diag(FF;) and diagB(FF;) denote the diagonal and block diagonal
respectively.
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Figure 1 Driven Cavity Flow for low Reynolds numbers. Solution obtained using
two level Newton-Krylov domain decomposition solver.
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Figure 2 Sample hp adapted mesh for the problem and partitioning into 4
subdomains. Solver converged in 9 preconditioned GMRES and 6 Newton iterations.
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5 Numerical Results

The algorithm described in this paper is new and only validation studies for low
Reynolds number (1 =~ 100) are currently available. Numerical experience indicates
a strong dependence on the highest polynomial order used and a weaker dependence
on the smallest element size used. Fig. 1 shows the test problem and results obtained
on a uniform discretization of 64 quadratic elements using this solver. Fig. 2 shows
a sample hp adaptive mesh and its partitioning into 4 subdomains, also used on
the same problem. The GMRES algorithm used in the inner loop for the linearized
problem shows good convergence (see Fig. 3) for polynomial orders p < 4 and values
of h/H > .125, where h/H is the ratio of mesh size to subdomain size.

The use of the two level iterative scheme permits us to use inexact solves in the
linear solver and still obtain fairly rapid convergence of the overall solution algorithm.
This option needs further testing to establish minimum levels of accuracy in the inner
loop to maintain convergence rates in the outer loop. Experience seems to indicate
that between 10 and 15 GMRES iterations are adequate.
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Figure 3 Convergence rates obtained for inner loop GMRES solver using C1
preconditioner, for different choices of h/H (ratio of minimum element size to
subdomain size) and polynomial order p.
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