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Hierarchical Boundary Element
Preconditioners in Domain
Decomposition Methods

O. Steinbach and W. L. Wendland

1 Introduction

For a non—overlapping domain decomposition of a bounded domain Q@ C R"™ (n = 2,3)
we consider a variational problem to find 4 € V such that

a(u,v) = f(v) (1.1)

holds for all test functions v € V. This formulation corresponds to a mixed boundary
value problem for a self-adjoint and elliptic partial differential operator. The Hilbert
space V is given by all functions u € H'/?(T's) vanishing on the Dirichlet boundary
I'p; I's denotes the skeleton of the domain decomposition and f(-) is a given bounded
linear form. The symmetric and V—elliptic bilinear form in (1.1) is given by

a(u,v) = Y / (Siupr;)(2) - vr, (z) dsq (1.2)

i=1 T

where S; denotes the locally defined Steklov—Poincaré operators mapping the local
Dirichlet data wr, onto the Neumann data #;. This Dirichlet-Neumann map can be
expressed explicitly by boundary integral operators in terms of the boundary integral
equations

(Viti)(z) = (3I+ Kiupr,(z) — (N f)(2),
(Diwr,)(z) = (31— Kti(e) = (Nif)(2)

The mapping properties of all operators introduced above are well known [Cos88]. The
symmetric representation of S; follows immediately from (1.3),

} for x € T';. (1.3)

(Siur)(@) = [Di+ KIVUR) wpe, (o) + Nif - RIVTINGF,  (14)
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where
(Kiur,)(z) forz € I'p,

Kiur,)(z) =
(Kiur.) () { (A1 + Ki)up, (z) elsewhere.
Let V, C V be a finite dimensional subspace, then the Galerkin—Bubnov discretization

of (1.1) based on the symmetric formulation (1.4) leads to the algebraic system of linear
equations

p

> a] (Dni+ KVt Rni) A = f. (L5)
=1
The local stiffness matrices are given by
Dpilt,k] = (D, >y
Knils, k] = (K%, %)z
Viils,r] = (V7,9 e
fork,£=1,...,N;, r,s =1,..., M; and where A; denotes Boolean matrices describing

the transformation of the global numbering into the local one. The *} and ’% are
appropriate trial functions, e.g. smoothest piecewise polynomial B—splines of degree
and v, respectively. To solve the symmetric and positive definite system (1.5) by the
conjugate gradient iteration scheme we need an optimal preconditioner to keep the
numerical amount of work as low as possible. The construction of a preconditioner is
essential for domain decomposition algorithms based either on a finite element or
a boundary element discretization of the original problem as well as on coupling
both. There are numerous different approaches to solve the corresponding finite
element equations by using hierarchical [BPS87, SBG96, Wid88] or of Neumann—
Neumann type preconditioners [LeT94] or [HW92] with boundary elements. However,
the resulting spectral condition number of the preconditioned system matrix often
depends on mesh and material parameters of the model. Here we give a general
technique to construct optimal preconditioners independent of these bad parameters
by using the symmetric representation of the local Steklov—Poincaré operators and
its spectral equivalence to the Galerkin discretization of the hypersingular integral
operator.

2 Spectral Equivalence Inequalities

To construct an optimal preconditioner Cg for the assembled stiffness matrix
»
Sh =Y Al SniAi (2.6)
i=1
we first consider the local matrices
Shi = Dni+ Ky Vi Kni. (2.7)
Obviously, we have the lower spectral equivalence inequality

(Dh,iﬂi,ﬂi) < (Sh,iﬂiaﬂi) (2-8)
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for all v; € R™: due to the H~1/2(T";)-ellipticity of the single layer potential operators.
For two—dimensional problems suppose diam(£2;) < 1 [HW77]. Since V; is a self-adjoint
pseudodifferential operator, the operator T; = KV, 'K, is self-adjoint and H'/2(T;)-
elliptic, too. If we denote by T} ; the Galerkin discretization with the matrix entries

Thill, k] = (T, ) ) L2 (ry)
for k,£=1,...,N;, we get the upper spectral equivalence inequality [Ste96]
(f(;,ivh_,ilf{h,iyhyi) < (Thivs, v5) (2.9)
due to the ellipticity of V;, and by adding (D ;v;,v;),
(Sh,iv;,v;) < (Dhyi+ Thi)v;,v;) (2.10)

for all v; € IRM:. This means, that the discrete Steklov—Poincaré operator Sh,i is
bounded by the Galerkin discretization of the continuous Steklov—Poincaré operator.
Since S; and D; are both H/2 (T's) semi—definite and bounded, the discrete Steklov—
Poincaré operator Sp; is spectrally equivalent either to Dy, ; + Tp,; or to Dy, ;. This
result holds independent of the dimension and the discretization, i.e. of the mesh and
trial functions used. Altogether we have the spectral equivalence inequalities

p p P

Z(Dh,in’:Qi) < Z(Sh,iﬂiaﬂi) < Z((Dh,i+Th,i)Qi:Qi) (2-11)

i=1 i=1 i=1

with v; = A;v. Employing the isomorphism v € RN < v, € H 1 2(I's), this is also
equivalent to

p p p
€ Z ||Uh||2H1/2(pi.) < Z(Sh,iﬂiaﬂi) < e Z ”Uh”%{l/Z(Fi)
i=1 1

i= i=1

where the constants are independent of the discretization parameters.

Let us denote by v} the piecewise linear interpolant of a function v' € H 12(Ty)
with vi(zc) = vi(zc) for all coarse grid nodes z¢ associated with a mesh size H;.
Then from Sobolev’s imbedding theorem, one obtains the error estimate

||Ui _ 1)3”%[1/2(1-‘1_) <ec- L(s) . Hizs—l . ||vi||ils(1",-) (2‘12)

for s > 251 where L(s) = (2s—n+1)'~". For a function vj € V}, and v}, = vy, r,, this
inequality, together with the inverse inequality in V},, implies the stability condition

o, = Uﬂﬁqlm(ri) < ¢ K(hi, Hi) - ||U;i1||§11/2(ri) (2.13)
where
n—2 n—1 Hz’
K(hs, Hi) = """ (log 1)"™%, v = 7~
2
For the bilinear form
p
c(v,v) = Z {||v - UI||§;1/2(FZ_) + ||UI||2H1/2(Fi)} (2.14)

i=1
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then we find the spectral equivalence inequalities

p

cc(vn,vn) < Y (Shivi,v;) < c2-c(vn,vh) (2.15)

i=1

C1
(1+ K(h,H))

which correspond to the spectral equivalence inequalities for finite element
preconditioners of hierarchical type, c.f. [BPS87, Wid88]. According to (2.14) and
the mapping properties of the hypersingular integral operators, the preconditioning
bilinear form is given by

Z{ i(u —ur),v —vr)ra,y + (Diwr,vr)rawy) } -
(2.16)

3 Preconditioners

For a given function v, € V}, <+ v € IRY the splitting
vp(z) = On +vr(z), On(z) = vn(z) —vi(z)

corresponds to the basis transformation

(2;1 ) _ ( _I;h IA?_ )Q, (3.17)

Here, I, is the identity matrix of dimension g corresponding to the number of unknown
coarse grid nodes; In_, is the identity matrix for all remaining fine grid nodes and I},
is the discrete counterpart of the linear interpolation. The Galerkin discretization of
the preconditioning form (2.16) now leads to the matrix representation

I, —-IT D 0 1 0
Csi=| ¢ " H e , (3.18)
0 In_g 0 D ~Ir In-g

where Dgg and Dy, are the assembled stiffness matrices for the coarse and
fine grid trial functions, respectively. In general, this preconditioner corresponds
to the BPS preconditioner [BPS87], which was also used for elasticity problems
in [SBG96]. However, the diagonal matrix in (3.18) may be computed exactly
by using the hypersingular boundary integral operator. If we have given a fine
grid preconditioner C}, which is spectrally equivalent to Dpp, then the resulting
hierarchical preconditioner is given by

- I, 0 Dy 0 I, Iy _ (3.19)
hier I, In_, 0o C;t 0 In—g

Due to the spectral equivalence inequalities (2.15), the spectral condition number of
the preconditioned system is bounded by
k(C; L

hier

Sn) < ¢ (1+K(h,H)),
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which depends on the discretization parameters, i.e. on the relation of the coarse to
the fine grid mesh sizes.

Since this preconditioner (3.19) is not optimal, we consider a second one. For the
matrix

»
Sh2 = ZAiTDh,iAi (3.20)

=1

we conclude from (2.11), that the spectral condition number of the preconditioned
system CS_éSh is bounded by a constant, i.e.

K(C;;Sh) < C,

where ¢ does not depend on the discretization parameters and not on the domain
decomposition considered, either. On the other hand, we have to realize the matrix
multiplication with Cg; in an efficient manner. Since the matrix C’s 2 is given explicitly
by the locally stored matrices Dy, ;, the matrix times vector multiplications can be
executed in parallel. Therefore we can use iterative schemes to realize Cgé, e.g.
multigrid methods [CKL96] or a conjugate gradient iteration using the BPS type
preconditioner described above.

4 Numerical Results

In this section we compare our proposed preconditioner Cso = CG(Dp) with the
known BPS preconditioner in the case of the Laplace equation. We further show,
that this technique can be used also in the case of linear elasticity. We compare the
number of cg iterations and the corresponding computing times to get a relative error
reduction of 107%. All computations were made on an Intel Paragon.

For the simple model problem of the Laplace equation in the unit square and a
domain decomposition into 64 subdomains we get the results shown in Table 1.1:

Table 1 Numerical results for the Laplace equation

| | BPS | CG(Dn) |
| N | Iter | sec | Iter | sec |

64 24 22.52 11 41.28
128 24 26.55 12 47.01
256 25 45.47 13 62.11
512 27 127.39 13 107.80
1024 28 489.38 14 326.77

The number of iterations for the BPS preconditioner is twice the number of our
proposed technique, where, on the other hand, the costs to realize the preconditioner
are more expensive. Since we can bound the spectral condition number independent
of the mesh size, and since the costs of the preconditioners are to set in relation to the



502 STEINBACH & WENDLAND

matrix times vector multiplication itself, i.e. the solution of a mixed boundary value
problem per global iteration step for the realization of the Steklov—Poincaré operator,
our new preconditioner seems to be optimal, in agreement with our theory.

In Table 1.2 we present the results of our proposed preconditioner by solving a
mixed boundary value problem in linear elasticity with up to 32 subdomains. As one
can see, the number of iterations is nearly the same as for the Laplace equation, i.e.
we have independence of the underlying partial differential equation.

Table 2 Numerical results in linear elasticity

| e=2 | p=8 | p=32 |

| N | Iter | sec | Tter | sec | Iter | sec |
64 11 3.49 13 11.78 14 111.82
128 11 9.87 14 26.08 15 139.82

256 11 33.56 14 73.43 15 205.59
512 11 129.22 14 263.63 15 438.44

5 Conclusions

The proposed preconditioning technique is based on the Galerkin discretization of
the hypersingular boundary integral operator; and therefore is well suited for the
symmetric formulation of boundary element methods. We note, that the Galerkin
discretization of the hypersingular integral operator can be reduced to the computation
of weakly singular integral operators by partial integration [Ned82]. Because of
the spectral equivalence of the discrete Steklov—Poincaré operator and the discrete
hypersingular operator, from the latter one can derive other preconditioners of
algebraic type, as e.g. multigrid methods or structured matrices like block circulant
matrices, which, in turn, can be inverted by the fast Fourier transformation. The
realization of the matrix times vector multiplication with the discrete Steklov—Poincaré
operator requires the solution of local mixed boundary value problems. For the
iterative solution of these problems one can use the concept of pseudodifferential
operators of dual order [SW96], i.e. the discrete hypersingular integral operator can
be used as a preconditioner of the single layer potential and vice versa. The proposed
preconditioning technique is almost independent of the underlying partial differential
equation and is also well suited for coupled boundary and finite element methods
[Lan94].
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