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A Characteristic Domain
Decomposition Algorithm for
Two-Phase Flows with Interfaces

Hong Wang and Brit Gunn Ersland

1 Introduction

The mathematical model that describes the process of an immiscible displacement of
oil by water in reservoir production or other two-phase fluid flows in porous media leads
to a strongly coupled system of a degenerated nonlinear advection-diffusion equation
for saturation and an elliptic equation for pressure and velocity. The hyperbolic
nature, strong coupling, and nonlinearity of the system and the degeneracy of the
diffusion makes numerical simulation a challenging task. Many numerical methods
suffer from serious non-physical oscillations, excessive numerical dispersion, and/or
a combination of both [CJ86, Ewi84]. Previously, Espedal, Ewing, and coworkers
developed a characteristic, operator-splitting technique in effectively solving two-
phase fluid flow problems [DEES90, EE87]. In practice, a reservoir often consists
of different subdomains with different porosities and permeabilities. In the case of
single-phase fluid flows the concentration and total flux are continuous across the
interfaces between different subdomains since the diffusion never vanishes. Our earlier
work addressed numerical simulation to linear transport equations arising in single-
phase flows with interfaces [WDET94]. However, in the case of two-phase fluid flows the
saturation equation itself is nonlinear and different subdomains have different capillary
pressure curves. The continuity of capillary pressure across interfaces implies a jump
discontinuity of the water saturation at the same locations. The jump discontinuity
of the saturation at the interfaces might incur some oscillations around the interfaces,
which can be propagated into the domain and destroy the overall accuracy. Hence,
great care has to be taken in the development of an effective solution procedure for
the simulation of two-phase fluid flows in porous media with interfaces.

This paper describes a characteristic-based, non-overlapping domain decomposition
algorithm for solving the saturation equation in two-phase fluid flows with interfaces.
First, with the known saturation at the previous time step one obtains an approximate
Dirichlet boundary condition at the outflow domain interface by integrating the
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saturation equation (ignoring the capillary pressure term) along characteristics. With
the approximate outflow Dirichlet boundary condition at the domain interface and the
given boundary condition at the physical inflow boundary one can close the system
on the current subdomain and applies the characteristic operator-splitting procedure
[DEES90, EE87] to solve the full saturation equation (including the capillary pressure
effect). Second, one uses the continuity of capillary pressure across the domain interface
to pass the value of saturation as an approximate inflow Dirichlet boundary condition
to the next subdomain, one then applies the same characteristic operator-splitting
procedure to solve the saturation equation on the current subdomain. Third, according
to the overall loss or gain of mass one adjusts the approximate outflow Dirichlet
boundary condition at the domain interface to iterate between different subdomains
until the algorithm converges. Finally, a mixed method is adopted to solve the pressure
equation due to its accurate approximation to the velocity field and its local mass
conservation property.

The rest of the paper is organized as follows: In Sections 2 and 3 we formulate the
problem and discuss related solution techniques. In Section 4 we present a domain
decomposition algorithm for the two-phase fluid flow problems with interfaces. In
Section 5 we present some numerical results to show the promise of the method.

2 Problem Formulation

A suitable mathematical model for the total Darcy velocity u, the total pressure p, and
the water saturation S € [0,1] in an incompressible displacement of oil by water in a
porous medium can be described by the following set of partial differential equations
[CJ86]:

V-u(z,t) =aq(z,t), (z,t) € 2 x [0,T],

u(z,t) = —K(z)(A(S) + A (S))Vp(z,1), (z,t) € Qx[0,T], (1)
u(z,t) -n(z) = qlz,t), (z,t) € 09 x [0,T1,
and
oS

¢(£)§ + V- (f(S)u—eD(S,z)VS) =gs(z,t), (z,t) € Qx][0,T],

(F(S)u—eD(S,2)VS) -nz) =a(zt), (@t)cxor], @
S(z,0) =So(z), z€Q,

where Q is the physical domain, K(z) is the absolute permeability tensor of the
medium, A;, 4 = o, w, denotes the water and oil mobilities respectively, ¢;(z,t) and
gs(z,t) are source terms, g2(z,t) and gs(z,t) are the prescribed boundary conditions,
n(z) is the unit outward normal vector, e << 1 is a scaling factor to the diffusion term,
pe is the capillary pressure, and f(S) and D(S,z) are the fractional flow function and
diffusion term given by




Capilary pressure.
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Figure 1 Capillary pressure and diffusion as functions of saturation S for
permeabilities 1, 5, and 10.
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Note that the two equations in (1) form a second-order elliptic equation for the
pressure p(z,t) and are coupled to the saturation equation (2) through the saturation
S in the coefficients. On the other hand, saturation equation (2) is a nonlinear
advection-diffusion equation and is coupled to the pressure equation (1) through the
Darcy velocity u. Furthermore, in the mathematical model the diffusion term D(S, z)
vanishes at S = 0 and S = 1, which is an idealized case since physically D(S, z)
vanishes for S € [0,S%] or S € [1 — S 1] with S being the irreducible saturation
value. The fractional flow function f(S) defined in (3) is typically an S-shaped curve
of saturation S and degenerates at S = 0 (with the same understanding). Because the
saturation profile is usually a decreasing function in space, as time evolves f(S) tends
to force a shock discontinuity to develop in S while the diffusion term D(S,z) tends
to prevent the shock from forming. The dynamic process could be fairly complicated
because the diffusion degenerates in front of the steep saturation front. It depends on
the interaction between the advection and diffusion terms, in particular, on the rates
at which D(S,z) and f(S) tend to zero as S tends to zero.

When the physical domain €2 is composed of different media, the different porosities
and permeabilities result in different capillary pressure curves on each subdomain
(Figure 1). Across an interface T' the phase pressures are continuous and mass is
conserved, leading to the following interface conditions

pe(S)lr- = pe(S)Iry,

w-nlp. =u-nlr,, (4)

(f(S)u—eD(S,z)VS) -nr_ = (f(S)u—eD(S,z)VS) -n|r,.

The continuity of capillary pressure p. across an interface I' implies the discontinuity
of the saturation across the interface (Figure 1). One has to resolve the discontinuity
carefully so that no spurious effects will be propagated into the domain.
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3 Operator Splitting Techniques

Extensive research has been carried out for the numerical simulation of system (1)—(2)
without interfaces. Various techniques have been developed to decouple and linearize
the system, including a fully coupled and fully implicit linearization strategy, an
IMPES (IMplicitly advances the Pressure and Explicitly updates the Saturation in
time) strategy, and a sequential time stepping strategy [Ewi84]. Different numerical
methods, including the standard Galerkin finite element method, the cell-centered
finite difference method, the finite volume method, and the mixed finite element
method, have been used to solve the pressure equation [CJ86, DEES90, DEWS83, EE87,
Ewi84]. We used the mixed method to solve the pressure equation due to its accurate
approximation to the velocity field and its local mass conservation property. Because
the normal component of the velocity field is continuous, the discrete algebraic system
for the pressure equation is in fact the same as that with no interfaces. Hence, one can
solve the global system as usual. Alternatively, one can use a domain decomposition
procedure to solve the pressure equation on each subdomain iteratively. We refer the
interested readers to [BW86, SBG96] and the references therein for details.

For simplicity of exposition we consider a one-dimensional analogue of equation (2).
Notice that equation (2) is almost hyperbolic due to the small parameter ¢ << 1. An
effective solution procedure for solving the dominating advective part of equation (2)

s 0

B@) 5 + = (F(S)w) =0 )
is to discretize equation (5) along the characteristics, which allows large time steps
to be used in the numerical simulation. Because equation (5) may have more than
one solution due to the shape of the fractional flow function f(S), one cannot directly
apply the modified method of characteristics [DR82] to equation (5). We follow the
work of Espedal, Ewing, and coworkers [DEES90, EE87] and split the fractional flow
function f(S) into two parts by

1(S) = () +b(S)s, ©)
with £(Sms)
BL .

] S, if0<S<SBr,
f(8) = SpL HYUS 2 = oBL (7)

f(S), if Spr < S<1.

Here the Buckley-Leverett shock saturation Spr, is defined by

r S
f(SBL) = @. (8)
BL

Because f(S)u gives the unique physical velocity for an established shock, we use
this operator splitting and rewrite equation (2) along the characteristics as

65%—}-1 6Sn+l 5 6Sn+l

W) = b)) o+ F (M

=0, (9)

and

asrtt 9 g -
Yla) 5+ %(b(S +1) gty — D87, )

asnt!
ox )
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From the definition of f it follows that the characteristic direction is uniquely
determined by equation (9) since the shape of f allows only a rarefaction wave and
a contact discontinuity for a non-increasing saturation profile. Thus, the hyperbolic
equation (9) is discretized by integrating backwards along the characteristics

—1

z* =z — f (S™)At, (11)

where S™ = S(z*,t") and At = t"*! — " is the time step.

Note that the characteristics determined by equation (9) are all straight lines in the
(z,t) plane. If equation (9) is solved exactly, the only change in the solution along the
characteristics is due to diffusion (and possibly the source term which vanishes except

at wells). Thus, we solve equation (10) by the modified method of characteristics
[DEES90, DR82, EE8T]

Sn+1 -5 n* 8Sn+1 n*\ gn+1 6w('7;)
/QqSdeQ-l-/Q(sD(S @) —b(S™)S u) S de )

= / @wdQ,Yw(z) € Hi ().
Q

Here a characteristic tracking is used for the advection term, and the quadratic Petrov-
Galerkin method is used for the diffusion term and the residual advection term where
the trial functions S are chosen to be hat functions and the test functions w(z) are
constructed by adding an quadratic perturbation to the hat functions [DEES90, EE87].

4 A Characteristic Domain Decomposition Algorithm for System
(1)-(2) with Interfaces

We now describe a characteristic domain decomposition algorithm for solving the
system (1)—(2) with interfaces. We adopt a sequential solution strategy to decouple
and linearize the system [DEES90, DEW83]. For the domain decomposition techniques
for pressure equations with interfaces we refer the interested readers to [BW86, SBG96]
for details. We present the algorithm for a one-dimensional problem on £ = (a, b) with
one interface at a < d < b. Let N be a positive integer, At = T'/N, and t" = nAt.

Initialization

Substitute the initial condition S(z,0) for S in (1) and solve equations
(1) at t° by the mixed method to obtain the Darcy velocity u°(z), where
u™(z) = u(z, t").

forn=0,1,... ,N—1do

for | =0,1,...,lpy — 1 do
L1. For I = 0, in equation (2) approximate u*!(z) by u?™!(z) = u™(z) or
2u™(z) — u""!(z). For I > 1, substitute SPHY, for S in (1) and solve

equations (1) at "+ by the mixed method to obtain the Darcy velocity
n+1
u "
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L2. For [ = 0, assign S&'gl(d_) = S™(d*), where Sf,jl(d_) =
ltiim<dSl,k(w,t"+1) and d* is defined in equation (11) with z being
z—d,x

replaced by d. For I > 1, assign Sl’?g'l(d_) = Sf_“'ll,kM (d-).
L3. Use the interface condition pZ(S]y'(d-)) = pE(S]'¢'(d})) to evaluate

S'3t (ds), where S (dy) = lim ST (@),

for k=0,1,... ,kpy — 1 do
if ERROR > TOLERANCE then

K1. With the given inflow boundary condition at z = a and Sl’",jl(d_)
as the outflow Dirichlet boundary condition at £ = d, solve equation
(12) on the subdomain (a,d) for S/ at time t"+1.

K2. With Sl’f,jl(d+) as the inflow Dirichlet boundary condition at z = d
and the given outflow boundary condition at 2 = b, solve equation
(12) on (d,b) for Sl’f;:l at t"t! in parallel to the previous step.

K3. Calculate the mass error M5 = AM — [ (S5 — S™)dQ, where
AM is the mass injected at the inflow boundary and through the
wells during the time period [¢", #"11].

K4. Update the Dirichlet boundary condition at the interface 2 = d by
S{f,jl (d-) = S{f}:l (d-)+ chl’,‘,jl, where k is a relaxation parameter.

K5. Use the interface condition pZ(S/it(d-)) = pR(S/{(dy)) to
evaluate Sf,fl(d+).
else
k= kM and [ = lM
endif
end
k=kum
end
l=1Ilm
wtl = u?ﬂjl and St .= SZ\Z%M.

end

Note that the full equation (12) is almost symmetrized and almost well conditioned.
Namely, the condition number is of order O(DAt/(Az)?). Hence, a diagonal
preconditioner works well in practice, in contrast to elliptic equations where the
coefficient matrix is ill conditioned and extensive research has been carried out to
develop an efficient preconditioner.

We now outline generalizations of the above algorithm in several directions. First,
it is easy to see that the above algorithm applies to problems with several interfaces.
Second, we note that the procedure applies to multidimensional problems, as long as
the adjustment in Step K3 is kept local in space to avoid introducing any spurious
nonzero saturation to the location where the saturation is zero. Third, Because the
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Figure 2 The saturation “jumps up” across the interface from a higher
permeability zone to a lower permeability zone.
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coefficient matrix for the pressure equation has a much bigger condition number than
that for the saturation equation, it is much more expensive to solve equations in (1)
than to solve equation (2) at each time step. Physically the Darcy velocity is much
smoother and varies less rapidly than the saturation. Thus, we can use larger time
steps for pressure equations in (1) and smaller time steps for the saturation equation
(2) (see [DEW83, Ewi84] for details).

5 Numerical Experiments

In this section we present a numerical example to show the promise of the algorithm.
More extensive results can be found in [Ers96]. In the example, the space domain
(a,b) = (0,1) with the interface located at d = 0.5. The time interval [0, T'] = [0, 0.048],
€ =0.01, A\y(S) = 52, Xo(S) = (1 = 9)%, Az = 1/150, At = 0.001, K = 10 on (0,0.5)
and 1 on (0.5,1). The initial condition is an established shock given by

0.3

e —— i <zx<0.

So(z) = 1 0‘453, if0<z<04, (13)
0, if0d<z<1.

In the numerical experiments, Iy = 1 and kj; = 4. Namely, we extrapolated the
current velocity field u™! by its values at the previous time steps and did not iterate
on equations in (1). With the extrapolated velocity field at the current time step,
we iterated four times on the saturation equation (2) at each time step. It was seen
in Figure (1) that the permeability has considerable effect on diffusion and capillary
pressure. For a fixed saturation the capillary pressure is higher in a lower permeable
zone than it is in a high permeable zone. We observe that the continuity of capillary
pressure in (4) enforces a jump up in the saturation profile across the interface. The



842 WANG & ERSLAND

numerical results are free of oscillation or numerical dispersion, and agree with the
results in [CY92].
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