# 3. Österr. Turnier junger Physiker

### Programm

#### Kontakstelle für interessierte österreichische Mittelschüler und Lehrer:

Mag. Dr. Brigitte Pagana-Hammer
01 - 202 61 41 / 32  or  0664 542 20 38
Mag. Gerhard Schiestl
01 - 202 61 41 / 18  or  0699 - 101 38 547
BG BRG BORG 22 Wien
Polgarstr. 24, A-1220 Wien

Probleme für das 3. AYPT

1. Electrostatic motor
Is it possible to create a motor which works by means of an electrostatic field? If yes, suggest how it may be constructed and estimate its parameters.

3. Tuning dropper
Make the music resonator shown in the picture. Investigate the conditions that affect the pitch. Can you observe amplification of external sounds? If yes, how can you explain this?

6. Fractal diffraction
Produce, demonstrate and analyse diffraction pictures of fractal structures of different orders.

7. Cracks
When drying a starch solution, you will see cracks forming. Investigate and explain this phenomenon.

8. Speedometer
Two electrodes of different metal are immersed in an electrolyte solution. Investigate the dependence of the measured potential difference on the relative motion of electrodes and their shapes.

9. Pouring out
Investigate how to empty a bottle filled with a liquid as fast as possible, without external technical devices.

12. Reaction
Make an aqueous solution of gelatine (10g gelatine in 90ml of water), heat it to 80 degrees C in a water bath and mix it with a solution of potassium iodide. Pour the solution in a test tube and cool it. Pour a solution of copper sulphate on the surface of the gel. Find a physical explanation to the observed phenomena.

15. Bubbles in magnetie field
Observe the influence of an alternating magnetic field (50 or 60 Hz) on the kinetics of gas bubbles in a vessel filled with water. The bubbles can be generated by blowing air into the water.

Investigate and explain the light produced, when adhesive tape is ripped from a smooth surface.

17. Seiches
Seiching is a phenomenon known for long, narrow and deep lakes. For reasons of changes in the atmospheric pressure, the water of the lake can start moving in such a way that the water level at both ends of the lake makes periodic motions, which are identical, but out of phase. Make a model that predicts the period of seiching depending on the appropriate parameters and test its validity.

Top of Page

### Teilnehmende Teams

Wirtschaftskundliches Realgymnasium der Ursulinen Innsbruck

 Blumthaler Ingrid Krapf Karin Sitz Stefanie Trampasch Aurelia Widauer Jasmin Ute Böck
Bundesgymnasium und Bundesrealgymnasium Leoben
 Etschmaier Harald Hofferek Georg Imrich Daniel Lüftner Daniel Reitbauer David Gerhard Haas

Lycée Français de Vienne
Wien I

 Charette Martin Drechlser Maximilan Lahlal Mina Millischez Laurent Surwillo Andrea Yonnel Arrouas
BG BRG BORG Wien 22 Polgargymnasium
Wien II

 Asenbaum Peter Hadnadjev Alexandra Pernfuss Hans Studencki Felix Torzicky Teresa Artur Golczewski
Polen

 Engel Anna Karwacz Katarzyna Kubiak Magdalena Lopusiewicz Olga Pietrawska Barbara Leopold Stefanek
Slowakei

 Belica Michal Brna Andrej Leško Marek Lisý Viliam Smrek Ján Pavol Kubinec
Top of Page

### Juroren

 Asenbaum Augustinus Brestensky Jozef Dindorf Wojciech Höllerl Karl Kabelka Heinz Kohaut Erwin Kühnelt Helmut Napiorkowski Kazimierz Rupp Romano A. Schöberl Franz Stadler Helga Tilgner Heribert
Top of Page

### Programm

• Freitag 2. März
• 20.00 Uhr   Treffen der Jury und des AOC (Jugendgästehaus)
Jugendgästehaus Brigittenau
Friedrich Engels-Platz 24
1200 Wien
33 282 94
• Samstag, 3. März
• 09.00     Empfang der Teams
• 09.30     1. Runde des Wettbewerbs
• 13.00 (ca.) Mittagessen (Polgarstraße)
• 15.00   2. Runde des Wettbewerbs
• 19.00   Dinner Party (Polgarstraße)
• Sonntag, 4. März
• 10.00     Finale
• 12.00     Bekanntgabe der Sieger und Preisverleihung
• 13.00 (ca.) Mittagessen (Polgarstraße)
• 14.00     Treffen der Jury und des AOC
• 15.00 (ca.) Abreise
Top of Page