Institut für Mineralogie und Kristallographie
Faculty of Geosciences, Geography and Astronomy
University of Vienna

Althanstr. 14 (UZA 2), A-1090 Wien

Secretary: Mo-Mi: 9-12 & 13-16; Do: 13-17; Fr: 9-13;
Tel.: (+431) 4277 53201, FAX: (+431) 4277 9532,
Email.: mineralogie@univie.ac.at

Deutsch  
         

 

 

 

 

Staff Studies Research News Location Links
   

Christoph Lenz


Christoph Lenz, Dipl.-Min.

Room number: 2A249
Phone number: (+431) 4277 53280
 

 

   
       Curriculum vitae
2004 – 2007
Basic studies of mineralogy at the Technical University Bergakademie Freiberg, Institute of Mineralogy
Mentor: Prof. Dr. D. Wolf / Prof. Dr. G. Heide
 
2007 – 2009
Advanced studies with focus on "Technical Mineralogy“ at the Technical University Bergakademie Freiberg
Mentor: Prof. Dr. G. Heide; Prof. Dr. J. Götze
 
2009 – 2010
Diploma thesis about the topic: „Correlation between atomic M-O distance and cathodoluminescence of selected carbonate minerals”
Mentor: Prof. Dr. J. Götze
 
seit 2010

Doctorate position at the Institute of Mineralogy & Crystallography, University of Vienna
Mentor: Prof. Dr. Lutz Nasdala

   
 

Research field: Spectroscopy in mineralogy

 
Research topic:
Luminescence of Lanthanides (Rare Earth Elements, REE) – Probes of structural variations in minerals
   
 

(1) Characterization/Quantification of order-disorder phenomena caused by the accumulation of radiation damage in zircon, xenotime & monazite.

 

 

Abb.1

 

Photolumineszenz-Map Zirkon

Fig. 1 (↑) Photoluminescence spectra of zircon showing a different accumulation of radiation damage (band width broadening): a completely metamict inherited zircon core from the Meissen Massif, Saxony (Nasdala et al. 1998) and crystal halves from the Mulcahy Lake intrusion, Ontario, Canada, with one crystal half annealed through heat treatment and the other half remained in its natural moderatly radiation-damaged state (see measurement points A and B in Fig. 2). The extended spectral range shows the most intense luminescence transition of Dy3+ and Sm3+exc = 473 nm). Red inset: Detail of the emission of Nd3+ (4F3/24I9/2; λexc = 532 nm) and of the PL emission of Dy3+ (4F9/26H13/2; λexc = 473 nm).

Fig. 2 (←) Hyperspectral photoluminescence map of two zircon crytsal halves from the Mulcahy Lake intrusion, Ontario, Canada. The annealed crystal half (right) shows a homogeneous distribution of the Dy3+ band width, whereas the natural, radiation-damaged half (left) shows a zonation of Dy3+ band width along areas with high damage accumulation caused by the incorporation of radioactive uranium. Measurement point of spectra A and B (Fig. 1) are labelled.
   
 
 

(2) Structural variation of minerals under extreme conditions (HT/HP): Characterization possibilities of REE-luminescence probes.

   

 

(3) Phase-identification by REE-luminescence: Characteristic luminescence fingerprints.

 

Abb.1

 

Fig. 3 Photoluminescence spectra of synthetic xenotime & monazite doped with Sm3+ at 77K. Different cation-site symmetries affect the crystal-field splitting of luminescence transitions. Therefore, the luminescene signal is characteristic for the mineral (fingerprint method).

     
  Photolumineszenzspektren
Fig. 4 Photoluminescence spectra (532 nm excitation) of Nd3+ (4F3/2 → 4I9/2) in different host minerals/phases: Yttrium-stabilized cubic zirconia (YCZ), yttrium-aluminium garnet (YAG), xenotime–(Y), monazite–(Ce), and titanite. Different cationic environments of the substituted Nd3+ cause dissimilar crystal field splittings and hence fingerprint-like luminescence patterns.
   
  Publikationen - Papers
 

Wierzbicka-Wieczorek, M., Lenz, C., Giester, G. (2013): Flux synthesis and structural and spectroscopic characterization of a cobalt europium trisilicate. European Journal of Inorganic Chemistry, 19, 3405–3411.

Lenz, C., Talla, D., Ruschel, K., Skoda, R., Götze, J. & Nasdala, L. (2013): Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineralogy and Petrology, 107, 415–428.

   
  Publikationen - Abstracts
 

Lenz, C., Nasdala, L. (2013): Potential estimation of radiation-induced structural disorder with REE3+ luminescence spectroscopy. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 159, 19–23, 88. MinPet2013, Graz

Lenz, C., Reissner, C., Talla, D., Nasdala, L. (2013): Orientation-dependent REE3+ luminescence: A possible artefact in luminescence imaging. Mineralogical Magazine, 77(5), 1586. Goldschmidt 2013

Wierzbicka-Wieczorek, M., Lenz, C., Giester, G. (2013): Photoluminescent properties of lanthanide-doped sorosilicates. Conference on Raman and Luminescence Spectroscopy in the Earth Sciences (CORALS–2013, Wien). Book of Abstracts, 111–112

Wanthanachaiseng, B., Bunnag, N., Sutthirat, C., Atichat, W., Ounorn, P., Sripoonjan, T., Lenz, C., Nasdala, L. (2013): Investigation of Be-treated sapphire by luminescence spectroscopy. Conference on Raman and Luminescence Spectroscopy in the Earth Sciences (Corals–2013, Wien). Book of Abstracts, 109–110

Reissner, C., Lenz. C., Nasdala, L. (2013): Orientation dependence of REE3+ photoluminescence spectra and a possible artifact. Conference on Raman and Luminescence Spectroscopy in the Earth Sciences (CORALS–2013, Wien), Book of Abstracts, 87–88

Škoda, R., Novák, M., Havránek, V., Lenz, C. (2013) Solid solutions between silicate and phosphate minerals of the olivine structure type: Example from Pøibyslavice metagranite, Czech Republic. GAC–MAC Joint annual meeting, Winnipeg 2013, Program with abstracts, 178.

Lenz, C., Ruschel, K., Kronz, A., Talla, D., Škoda, R., and Nasdala, L. (2012): A Nd3+ luminescence spectroscopic study on the structural disorder of monazite-(Ce). European Mineralogical Conference, 1, EMC2012–458

Petautschnig, C., Götze, J., Lenz, C., Nasdala, L. and Rericha, A. (2012): Micro-Raman spectroscopy of annealed Mali onyx agate and man-made analogues. GeoRaman '10 Conference (Nancy, France). Book of Abstracts, 261–262

Lenz, C., Petautschnig, C., Akhmadaliev, S., Hanf, D., Talla, D., Nasdala, L. (2012): Combined Raman and photoluminescence spectroscopic investigation of He-irradiation effects in monazite. Geophysical Research Abstracts, 14, EGU2012–11138

Lenz, C., Talla, D., Nasdala, L. (2011): Orientation-dependent REE photoluminescence of zircon, xenotime and monazite. Zeitschrift für Kristallographie – Supplements Nr. 31/2011, 139.

Lenz, C., Götze, J. (2011):  Manganese-activated cathodoluminescence of selected carbonate minerals. Conference on Micro-Raman and Luminescence Studies in the Earth and Planetary Sciences (CORALS II), 54. LPI Contribution No. 1616, Lunar and Planetary Institute, Houston.
   
 
05.06.2014/ZW