ZUR IDEALTHEORIE VON SEGAL-ALGEBREN

Hans G. Feichtinger

It is known that for every Segal algebra $S^1(G)$ in $L^1(G)$ with right approximate units there is a bijective correspondence between the closed right ideals of $S^1(G)$ and those of $L^1(G)$ ([3], §9, Theorem 1). For abelian groups H. Reiter showed that under this correspondence also the existence of approximate units is preserved ([3], §16, Theorem 1). Here among similar results a very simple proof of this fact is given for right approximate units in two-sided ideals which works without the assumption that G be abelian. In fact, the result can be established for abstract Segal algebras, in the sense of J. Burnham [1].

DEFINITION: (vgl. [1]) Sei $(A, \| \|_A)$ eine Banach algebra.
Eine Teilalgebra B von A heißt A-SEGALALGEBRA ("abstrakte Segalalgebra") von A, wenn sie folgende Bedingungen erfüllt:

1) B ist ein dichtes Linksideal von A;
2) B ist ein Banachraum bezüglich einer Norm $\| \|_B$;
3) es gibt eine Konstante $M > 0$ derart, daß $\|b\|_A \leq M\|b\|_B$ für alle $b \in B$ gilt;
4) es gibt eine Konstante $C \geq 1$ derart, daß $\|ab\|_B \leq C\|a\|_A \|b\|_B$ für alle $a \in A$ und $b \in B$ gilt.

Für das weitere soll außerdem vorausgesetzt werden, daß

5) A [mehrfache] (beschränkte) RECHTE APPROXIMIERENDE EINHEITEN hat! (Definitionen: [3], §6)

SATZ 1. a) Sei I ein abgeschlossenes Rechtsideal von A, $I_B := I \cap B$. Dann gilt $I = I_B$ (Hülle bezüglich A).

Beweis: a) vgl. [3], §9 Theorem 1, ii.
Es gibt nach Voraussetzung (5) ein \(a \in A \) derart, daß
\[\| f - f \|_A < \frac{\varepsilon}{2} \]
gilt. Weil \(B \) in \(A \) dicht liegt \([vgl. (1)]\),
gibt es weiter ein \(b \in B \) so, daß
\[\| b - a \|_A < \frac{\varepsilon}{2\| f \|_A} \]
; es ist also \(\| f - f \|_A < \varepsilon \) und \(f \) liegt in \(I_B \), weil \(I \) Rechtsideal und \(B \) Linksideal von \(A \) ist \([vgl. (1)]\).

b) Seien \(f_1, \ldots, f_n \in I \) (der Fall von einfachen approximierenden Einheiten entspricht \(n = 1 \)) und \(\varepsilon > 0 \) gegeben. Dann gibt es ein \(b \in B \) derart, daß
\[\| f_i b - f_i \|_A < \frac{\varepsilon}{2} \quad \text{für } i = 1, \ldots, n \]
(vgl. (5), a). Weil jedes \(f_i b \) aber ein Element von \(I_B = I \cap B \) ist, gibt es nach Voraussetzung ein \(v \in I_B \) derart, daß
\[\| f_i b v - f_i b \|_B < \frac{\varepsilon}{2\| f \|} \]
daher ist nach (3) \(\| f_i b v - f_i b \|_A < \frac{\varepsilon}{2} \),
also gilt
\[\| f_i b v - f_i \|_A \leq \| f_i b v - f_i b \|_A + \| f_i b - f_i \|_A < \varepsilon \]
für \(i = 1, \ldots, n \), und \(b v \) liegt in \(I \), weil \(I \) Linksideal von \(A \)
und \(v \) in \(I_B \subseteq I \) ist.

BEMERKUNG 1. Setzt man voraus, daß \(B \) ein dichtes RECHTSIDEAL in \(A \) ist und \(A \) linke approximierende Einheiten hat, dann gilt ein "symmetrischer" Satz für LINKE approximierende Einheiten in abgeschlossenen LINKSIDEALEN.

Wir zeigen nun weiter, daß unter den Voraussetzungen von Satz 1a gilt:

LEMMA 1. Sei \(I \) abgeschlossenes RECHTSIDEAL. Hat \(I_B = I \cap B \)
linke bzw. rechte (zweiseitige) approximierende Einheiten,
die in der Norm von \(A \) BESCHRÄNKT sind, dann hat auch \(I \)
linke bzw. rechte (zweiseitige), in der Norm von \(A \) be-
schränkte und daher auch mehrfache, beschränkte approxi-
mierende Einheiten und zwar dieselben.

Beweis: (für linke approximierende Einheiten):
Wir setzen voraus, daß \(I_B \) linke approximierende Einheiten hat, die in der \(A \)-Norm beschränkt sind: \(\| u \|_A \leq C_1 > 1 \).
Sei nun \(f \in I \), dann gibt es ein \(f_1 \in I_B \) mit
\[\| f - f_1 \|_A < \frac{\varepsilon}{3C_1} \]
(Satz 1a). Man kann jetzt nach Voraussetzung ein
\(u \in I_B \subseteq I \) so wählen, daß \(\| u f_1 - f_1 \|_B < \frac{\varepsilon}{3M} \) ist.
Dann gilt:
\[\|u f - f\|_A \leq \|u f - u f_1\|_A + \|u f_1 - f_1\|_A + \|f_1 - f\|_A < \]
\[< \|u\|_A \|f - f_1\|_A + M\|u f_1 - f_1\|_B + \frac{\varepsilon}{3} < \varepsilon. \]

SATZ 2. Es gelte folgende Voraussetzung:
Ist \(I_B \) ein abgeschlossenes Rechtsideal in B, dann gilt:
a) \(I_B = I \) ist ein abgeschlossenes Rechtsideal in A und \(I_B = I \cap B \).
b) Hat I [mehrfache] rechte approximierende Einheiten, so hat \(I_B \) [mehrfache] rechte approximierende Einheiten.

Beweis: a) vgl. [3], §9, Theorem 1, iii.
b) Seien \(f_i \in I_B = I \cap B \) (vgl. a), \(\varepsilon > 0 \), \(i = 1 \ldots n \) gegeben. Es gibt gemäß (6) ein \(b \in B \) derart, daß \(\|f_1 b - f_1\|_B < \frac{\varepsilon}{2} \). Nach Voraussetzung gibt es ein \(a \in I \) so, daß
\[\|f_1 a - f_1\|_A < \frac{\varepsilon}{2\|b\|_B^2} \], daher folgt
\[\|f_1 ab - f_1\|_B \leq \|f_1 ab - f_1 b\|_B + \|f_1 b - f_1\|_B \]
also weiter
\[[\text{nach (4)}] < C\|f_1 a - f_1\|_A \|b\|_B + \frac{\varepsilon}{2} < \varepsilon, i = 1 \ldots n. \]
Außerdem ist \(a b \in I_B = I \cap B \), weil I nach a) Rechtsideal und B nach (1) Linksideal von A ist.

LEMA 2. Es habe B rechte approximierende Einheiten, die in der Norm von A BESCHRÄNKT sind (\(\|b\|_A \leq C_2 \)), dann gilt:
Falls das Rechtsideal I rechte, in der Norm von A be-
schränkte Einheiten hat (\(\|a\|_A \leq C_3 \)), so auch \(I_B \).

Beweis: Satz 2 b, \(\|ab\|_A \leq \|a\|_A \|b\|_A < C_3 C_2 < \infty \).

LEMA 3. Es habe B ZWEISEITIGE approximierende Einheiten, die in der Norm von A BESCHRÄNKT sind (\(\|b\|_A \leq C_2 \)), dann hat das Rechtsideal \(I_B \) LINKE (zweiseitige) approximierende Ein-
heiten, die in der Norm von A BESCHRÄNKT sind, wenn nur I derartige approximierende Einheiten hat (\(\|a\|_A \leq C_3 > 1 \)).

Beweis: Seien \(f \in I_B \subset B \), \(\varepsilon > 0 \) gegeben. Dann gibt es ein \(b \in B \) derart, daß \(\|f - f b\|_B < \frac{\varepsilon}{4 C_3} \) und \(\|f - b f\|_B < \frac{\varepsilon}{4 C_3} \), also \(\|f b - b f\|_B < \frac{\varepsilon}{2 C_3} \).
Weiters gibt es nach Voraussetzung ein \(a \in I \) so, daß
\[
\| af - f \|_A < \frac{\epsilon}{4 \| b \|_B}.
\]
Daher folgt:
\[
\| ab f - f \|_B \leq \| ab f - a f b \|_B + \| a f b - f b \|_B + \| f b - f \|_B
\]
und gemäß (4):
\[
\leq \alpha \| a \|_A \| b f - f b \|_B + C \| a f - f \|_A \| b \|_B + \frac{\epsilon}{4}.
\]
\[
\leq \frac{\epsilon}{2} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.
\]
Außerdem liegt \(a b \in I_B \subseteq I_B \) und \(\| a b \|_A \leq \| a \|_A \| b \|_A \leq C_3 C_2 < \infty \)

Satz 3. Sei \(A \) eine Banachalgebra mit beschränkten rechten approximierenden Einheiten, \(B \) eine \(A \)-Segalalgebra mit
a) [mehrfachen] rechten
b) in der \(A \)-Norm beschränkten rechten
c) in der \(A \)-Norm beschränkten zweiseitigen approximierenden Einheiten, so gilt:
 a) Die abgeschlossenen Rechtsideale \(\mathcal{U} \) \(\mathcal{W} \) ebenso die abgeschlossenen zweiseitigen Ideale von \(A \) bzw. \(B \) entsprechen einander eindeutig unter der Zuordnung \(I \to I_{B} \) bzw. \(I_{B} \to I_{B} \) (Hülle bezüglich \(A \)). In dieser Beziehung entsprechen einander genau die ZWEISEITIGEN Ideale mit [mehrfachen] RECHTEN approximierenden Einheiten.
 b) Ebenso entsprechen einander die Rechtsideale mit RECHTEN approximierenden Einheiten, die in der Norm von \(A \) BESCHRÄNKT sind.
 c) Die Rechtsideale mit LINKEN (ZWEISEITIGEN) approximierenden Einheiten, die in der Norm von \(A \) BESCHRÄNKT sind, entsprechen einander.

Beweis: a) Satz 1, Satz 2 (Man muß nur überlegen, daß die Hülle eines zweiseitigen Ideals \(I_B \) ein zweiseitiges Ideal in \(A \) ist).
 b) Lemma 1, Lemma 2.
 c) Lemma 1, Lemma 3.

BEMERKUNG 2: Die Voraussetzungen von Satz 3 (a–c) werden insbesondere von jeder symmetrischen oder pseudosymmetri-
schen Segalalgebra von $L^1(G)$ erfüllt (vgl. [3], §4 sowie §8, Proposition 1, ii, iii). Somit stellt Satz 3 eine weitgehende Verallgemeinerung von [3], §16, Theorem 1 auf nichtabelsche Gruppen dar. Für symmetrische Segalalgebren (z.B. beliebige Segalalgebren auf abelschen Gruppen) gelten die entsprechenden Analogien zu den Sätzen über Rechtsideale auch für Linksseitnale. Der vorliegende Beweis für Satz 3a ist kürzer als der von M. Leinert, welcher früher, aber unabhängig die Richtigkeit dieser Aussage bewies (vgl. [2]).

Als weitere Folgerung aus Satz 3 ergibt sich, daß Theorem 1 in [3], §17 auch für (pseudo)-symmetrische Segalalgebren richtig bleibt:

SATZ 4. Sei G eine kompakte Gruppe, $S^1(G)$ eine (pseudo)-symmetrische Segalalgebra. Ein zweiseitiges, abgeschlossenes Ideal I_S von $S^1(G)$ hat in der L^1-Norm beschränkte, linke approximierende Einheiten genau dann, wenn $I_S = \mu \ast S^1(G)$ ist, wobei μ ein zentrales, idempotentes Maß aus $M^1(G)$ ist.

Beweis: a) I_S habe L^1-beschränkte, linke approximierende Einheiten, dann hat nach Lemma 1 auch $I_S = I L^1$-beschränkte, linke approximierende Einheiten. Nach [3], §17 ist also I von der Gestalt $\mu \ast L^1(G)$. Andererseits hat auch $\mu \ast S^1(G)$ das Ideal I zur L^1-Hülle. Nach Satz 2a stimmt I_S mit $\mu \ast S^1(G)$ überein.

b) Sei umgekehrt $I_S = \mu \ast S^1(G)$, μ ein beschränktes Maß auf G. Dann ist I_S ein abgeschlossenes, zweiseitiges Ideal in $S^1(G)$, weil $S^1(G)$ Linksseitideal in $M^1(G)$ ist und μ zentral und idempotent ist. Nach [3], §17 hat $\mu \ast L^1(G)$ linke approximierende Einheiten, die in der L^1-Norm beschränkt sind, nach Lemma 3 daher auch $(\mu \ast L^1(G)) \cap S^1(G) = I_S$ (vgl. a und Satz 3a).

Man sieht auch leicht, daß ein Ideal der Form $\mu \ast S^1(G)$ mehrfache rechte approximierende Einheiten μ besitzt, so daß $\|\mu\|_1 \leq \|\mu\|$. ([3], §17 und Lemma 3)
LITERATUR

Hans G. Feichtinger
Mathematisches Institut
der Universität
A-1090 Wien
Boltzmanngasse 9

(Eingegangen am 3. Mai 1973)