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Computational Harmonic Analysis using MATLAB

2 Brieflet!? on Computational Harmonic Analysis?

Summary. Comments on Signal Processing, also preparing material for the MACHA11
course (August 2011 in Marburg), by Hans G. Feichtinger an co-authors.

Format model: ([3]): Shlomo Engelberg: Digital signal processing. An experimental
approach. In the book series “Signals and Communication Technology”. London: Sprin-
ger. xv,
Keywords. test
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3 Complex numbers, unit roots and plotting

Summary. It is the purpose of this section to show how to generate point sequences in
the complex domain and how to plot complex-valued functions.
Keywords. test

3.1 Subsection 1

function u = uroots(N,l);

if nargin == 0; N = 8; end;

bas = 0 : 1/N : (N-1)/N;

u = exp(2 * pi * i * bas);

% i.e. unit roots are generated in the

% mathematical positive sense.

Using the sequence of MATLAB commands (NuHAG tools):

plotnum(uroots(12)); axis square; axis off; figure(gcf);

one obtains the following plot

3.2 Subsection 2

Plotting the columns of the FFT-matrix in the complex plane
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plot(fft(eye(17))); axis square; axis off;

3.3 MATLAB CODE

VERBATIM PART

3.4 Exercises

1. Try: >> plot(fft(eye(n))); , e.g. for n = 13.

2. F = fft(eye(256)); plot(real(F(2,:)),imag(F(2,:)));

3. n=256; plot(1:n,real(F(2,:)),’k’,1:n,imag(F(2,:)),’r’); axis tight; ’

4 DigSig FFT as a Vandermonde Matrix

Summary. TEXT
Keywords. test

4.1 Subsection 1

4.2 Subsection 2

norm( fft(eye(4)) - fliplr(vander(conj(uroots(4)))))

ans = 7.7079e-016

shows that essentially the Fourier transform is Vandermonde-matrix. It uses the
unit-roots in the clockwise sense: conj(uroots(9)) . The fliplr is needed due to the
convention of MATLAB to convert a sequence of coefficients to a polynomial of the form
an−1x

n−1 + · · ·+ an, and one has
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>> vander(1:4)

ans =

1 1 1 1

8 4 2 1

27 9 3 1

64 16 4 1

>> a = rand(1,3), x = 1 : 3;

a = 0.9080 0.8758 0.6048

>> polyval(a,x)

ans = 2.3887 5.9887 11.4047

>> vander(x) * a’

ans = 2.3887

5.9887

11.4047

4.3 MATLAB CODE

VERBATIM PART

4.4 Exercises

1. first

2. second

5 Functions on the Unit Circle

Summary. Although the FFT (resp. DFT) is just a linear mapping and hence repre-
sentable (not realized!) by a matrix, but it is very helpful to interpret it not just as a
linear mapping from Cn to Cn, but from function on the set of unit roots of order N ,
i.e. ZN . Although in the finite dimensional setting any pair of norms is equivalent to

each other (hence one could always choose the Euclidian norm ‖~z‖2 =
√∑N

k=1 |zk|2).
We express it by viewing vectors of length N (alternatively later on n) as elements of
`2(ZN), sometimes also as elements of `1(ZN) of `∞(ZN) , with the endowed with the
`1 or sup- (= max-norm) respectively.

Theorem 1. Since the Fourier matrix FN is, up to scaling (by the factor
√
N) a unitary

linear mapping, one finds that F : ~x 7→ ~y = F(~x) satisfies

‖~y‖2 = N · ‖~x‖2. (1)

Keywords. test
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5.1 Plotting signals of finite length

The interpretation of finite sequences as functions on ZN is nothing else but viewing a
finite sequence of length N as a periodic (infinite) sequence

5.2 Subsection 2

5.3 MATLAB CODE

VERBATIM PART

5.4 Exercises

1. first

2. second
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fully periodic version of signal:real part only

TOP left: standard plot in the complex plane; TOP right: plotri (real/imag plot);
MIDDLE left: plotc(xx) (centered plot); MIDDLE right: 3D−plot;

BOTTOM: plotting the periodic version of (for simplicity) the real part.
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5.5 Subsection 1
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6 Pure Frequencies: Eigenvectors for Cyclic Shift

Summary. TEXT The interpretation of finite signals functions on the cyclic group of
order n (resp. N), i.e. as elements of `2(ZN), resp. as periodic functions, implies that we
have the shift operators Tk, k ∈ Z (for the periodic case) resp. its analogue on `2(ZN)
which is simple the cyclic shift. Instead of a formal definition let us give an example of
use in MATLAB (code is given below)1:

rot(1:8,2) == [7,8, 1,2,3,4,5,6];

rot(1:7,-2) == [3,4,5,6,7,1,2];

rot(1:12,35) == [12,1,2,3,4,5,6,7,8,9,10,11];

Keywords. test

6.1 Subsection 1: Cyclic Shift operators

It is obvious that we have

Tr ◦ Ts = Tr+s = Ts ◦ Tr, r, s ∈ Z (2)

and also
Tr = Ts if and only if r − s == 0(mod n). (3)

Hence we have the simple Lemma:

Lemma 1. The mapping k 7→ Tk is an isomorphism from Zn (viewed as Z/(nZ)) onto
a commutative group of unitary operators on `2(Zn).

Proof. Note only that Tk preserves norms and is invertible, hence it is unitary operator
on `2(Zn).

Corollary 1. The linear span of all the shift operators consists exactly of all operators
which can be written (uniquely) in the form

T =
N−1∑
k=0

ckTk, ~c = (ck)
n
k=0 ∈ `1(ZN). (4)

They form a commutative Banach algebra of complex N ×N-matrices.

Proof. Using the composition law (3) one easily finds that the set of matrices of the
from (4) are closed under composition, and that this composition is a commutative one.

It is also clear that the representation of T in the form (4) is unique, and that,
endowed with the norm

‖T‖1 :=
N−1∑
k=0

|ck| = ‖~c‖1 (5)

the composition satisfies
‖T1 ◦ T2‖1 ≤ ‖T1‖1‖T2‖1, (6)

In other words, the composition of these operators endowed with the `1-norm (5) turns
`1(ZN) into a commutative Banach algebra of matrices of dimension N .

1the code is typically acting on row vectors
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We can also take a look at the corresponding matrices: The matrix for T1 (right shift)
is of course (for N = 5): 

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (7)

and hence the operator corresponding to the sequence ~c = [1, 2, 3, 4, 5, 6] is the matrix
1 6 5 4 3 2
2 1 6 5 4 3
3 2 1 6 5 4
4 3 2 1 6 5
5 4 3 2 1 6
6 5 4 3 2 1

 (8)

By transfer of the multiplication law we can thus turn `1(ZN) into a commutative
Banach algebra, called the group algebra of G = ZN . The corresponding multiplication is
called convolution. Each convolution matrix is also corresponding to a unique bounded
operator on `2(ZN), i.e. we have a representation of the Banach algebra `1(ZN) on the
Hilbert space H = `2(ZN).

Theorem 2. Given two sequences ~a, ~b ∈ `1(ZN), both indexed in the sense of the corre-
sponding operators, i.e. indexed with 0, . . . , N−1, then the resulting convolution product,
denoted by ~c is given by the coordinates, following the Cauchy Product Rules:

ck =
N−1∑
k=0

ajbN−j =
∑
r+s=k

arbs. (9)

Note that the product of convolution matrices can be characterized by the effect of
the circulant matrix of the first factor applied just to the first column of the second
factor, hence one can say, that the convolution can be described directly at the level of
generators of these convolution matrices, i.e. we have the following statement:

Lemma 2. For ~c, ~d ∈ `1(ZN) gilt:

~a := ~c ∗ ~d =
n∑
k=1

ckTk−1~d (10)

or in a coordinate description

ak =
N−1∑
r=0

bk−rcr. (11)

check the details! This can also be reinterpreted as a scalar product

ak = 〈~c, Tk~b∗〉. (12)
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To make it more concrete let us do it on Z8: Given the sequence [a0, a1, . . . , a7] and
correspondingly [b0, . . . b7] we have (e.g.) c2 = a0b2 +a1b1 +a2b0 +a3b−1 + . . . a7b−5 which
of course has to be interpreted modulo 8, hence as

c2 = a0b2 + a1b1 + a2b0 + a3b7 + . . . a7b3

Recall that the involution applied to ~b (up to conjugation) is just [b7, b6, . . . , b0] and
its translate by 2 is just

Noting that MATLAB does not allow for zero-indexing and rewriting the sequences
a,b, c as x,y, z ∈ CN we find that the convolution product z has as a typical coordinate

z2 = x1y3 + x2y2 + x3y1 + x4y8 + . . . x8y4.

Such a some can be translated into a scalarproduct, involving the flipped version of ~b
resp. y, which is y̌ = [y1, y8, . . . , y2] which essentially means reading out the data from
the group ZN not in the clockwise sense, but instead in the mathematical positive sense.

There is also a natural involution on the set of circulant matrices, namely taking the
adjoint. The adjoint of a circulant matrix whose generator (i.e. first row) is ~a is just

a∗ := [a1, a8, . . . , a2]

By looking at the matrix corresponding to the adjoint of the circulant matrix generated
by a we find out that the adjointness relation a 7→ a∗ is just the natural analogue of
the involution, taken at the matrix level (or equivalently in the operator algebra on the
Hilbert space `2(ZN)).

This involution is compatible with the usual adjointness relation: The adjoint of the
matrix given above is: 

1 2 3 4 5 6
6 1 2 3 4 5
5 6 1 2 3 4
4 5 6 1 2 3
3 4 5 6 1 2
2 3 4 5 6 1

 (13)

The involution, which is quite different from the flip-operator (in MATLAB we have
flipud, fliplr), and can be understood better if we interpret the sequences ~c not just
as elements of Cn but rather as elements in `1(ZN) (with f(0) = c1, f(1) = c2, etc.). So
in the continuous domain the involution (at the signal level) is of the form

f 7→ f ∗ : f ∗(x) = f(−x).

Clearly
‖x∗‖1 = ‖x‖1, (Tkx)∗ = T−kx

∗, and x∗∗ = x.

A few concrete demos for convolution
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6.2 Subsection 2: Pure Frequencies as eigenvectors

Here it will be shown that the pure frequencies, i.e. the columns (or rows!) of the DFT
Matrix (fft(eye(n)) ) are exactly the eigenvectors for (the commutative family) of
cyclic shift operators.

Theorem 3. The pure frequencies are joint eigenvectors to the (commutative Banach)
algebra of circulant matrices, and the eigenvalue for a given character χs is just the value
of the corresponding Fourier transform, which is

〈~c, ~χs〉 =
N−1∑
l=0

cl ω
−sl = ds, for ~d = fft(~c). (14)

Proof. We have seen that the homomorphism property of χs (due to the exponential
law)

[Tzχ](x) = χ(x− z) = χ(x) · χ(−z) = χ(z)χ(x) (15)

implies that χs is an eigenvector to all the translation operators Tz, with eigenvalue
χ(−z), or in argument-free form:

Tzχs = χ(−s)χs.

Hence with the above convention of putting ~d = fft(~c) we have:

Tχs = (
∑
l

clTl)χs = [
∑
l

clχs(−l)]χs = dsχs (16)

Summarizing these facts in matrix format we find out that the circulant matrix C
representing the operator C (convolution by ~c) is the diagonal matrix generated from

the sequence ~d, the Fourier transform of ~c:

C = F ′ ∗D ∗ F/N, with D = diag(~d). (17)

Note that for the concrete choice of G = ZN one easily finds, that the set of all
possible homomorphism (nontrivial, from ZN into C\{0}) can be identified with the set

{χs, 0 ≤ s ≤ N − 1}.

Since it is clear that the product (in the pointwise sense) of two characters of any
group is again a character, due to the identity

[χ1·χ2](x+y) := χ1(x+y)·χ2(x+y) = χ1(x)χ1(y)χ2(x)χ2(y) = [χ1χ2](x)[χ1χ2](y). (18)

It is also not difficult to verify that an operator which can be diagonalized via the
Fourier transform, i.e. a matrix, which is of the form A = F ∗D ∗ F for some diagonal
matrix D has to be a circulant matrix. This follows from the fact that a diagonal matrix
is just a multiplication operator, which obviously implies that it commutes with the
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pointwise multiplication with pure frequencies. But multiplication with characters on
the Fourier transform side is exactly commutation with translation operators.

So it remains to verify that a matrix commuting with cyclic shift operators (it is
enough to focus on cyclic shift by one sample, the rest follows therefrom!) is a circulant
matrix. Thus we have to inspect matrices which satisfy the invariance property

A = T−1 ∗A ∗ T1. (19)

This matrix has the same entries, but both in the row direction and the column direction
cyclically shifted, thus e.g. turning

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

 (20)

into the matrix 
6 10 14 2
7 11 15 3
8 12 16 4
5 9 13 1

 (21)

Observe that the block  6 10 14
7 11 15
8 12 16

 (22)

in the lower right corner of the matrix is moved up along the main diagonal!
A formal verification results from the observation that the matrix entries ...

6.3 MATLAB CODE

VERBATIM PART

6.4 Exercises

1. first

2. second

7 Fourier Basics

Summary. TEXT Keywords. test
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7.1 Subsection 2

7.2 MATLAB CODE

VERBATIM PART

7.3 Exercises

1. first

2. second

8 Fourier Inversion and Gibbs Phenomenon

Summary. Keywords. test

8.1 Gibbs Phenomenon
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maximal frequency 99 using flts(n,99)
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8.2 Subsection 2

8.3 MATLAB CODE

VERBATIM PART

8.4 Exercises

1. first

2. second

9 Spline Function Basics

Summary. Spline functions are obtained as convolution powers of box-functions. The-
refore the collection of spline-functions has the same translative structure, and also
constitutes (for each degree of smoothness) a (bounded uniform) partition of unity.
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Keywords. test

9.1 Subsection 2

9.2 MATLAB CODE

VERBATIM PART

9.3 Exercises

1. first

2. second

10 Scalar Products, Orthonormal Systems

Summary. For the description of signal spaces (linear manifolds of signals) and the ope-
rators between them the most important subclass is the family of Hilbert spaces, such as
L2(Rd), known as the space of Lebesgue square integrable complex-valued functions (>
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separate chapter) or signals of finite energy (interpreting
∫
Rd |f(x)|2dx as the “energy”

contained in the signal f). While infinite-dimensional (mostly separable) Hilbert spaces
H, which can be shown to be isomorphic to `2(I) for some countable index set I (via
Gram-Schmidt, which allows to built complete orthonormal bases in such spaces), the
situation is much easier in the finite dimensional context. For this reason we will work
with finite dimensional Hilbert spaces (signals of finite length resp. periodic, discrete
signals)
Keywords. test

10.1 Subsection 1

10.2 Subsection 2

10.3 MATLAB CODE

VERBATIM PART

10.4 Exercises

1. first

2. second
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11 Sampling and Shannon’s Sampling Theorem

The core statement of this section is the Whittaker-Kotelnikov-Shannon Theorem, which
states that an L2(R)-function whose Fourier transform is contained in the symmetric
interval I = [−1/2, 1/2] around zero (i.e. supp(f̂) ⊆ I) can be completely recovered from
regular samples of the form (f(αn)n∈Z as long as α ≤ 1.

The reconstruction can be achieved using the so-called SINC-function, with SINC(t) =
sin(πt)/πt, the sinus cardinales2, which can be characterized as the inverse Fourier trans-
form of the box-function 1I , the indicator function of I.

It is convenient to apply the following notation:

BI := {f | f ∈ L2(R), supp(f̂) ⊆ I}, (23)

Due to the fact that F(f ∗ g) = Ff · Fg it is clear that we have for every f ∈ BI :

f ∗ sinc = f. (24)

Let us first try to understand the effect of sampling:
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The image provided above shows the following situation. In the left upper corner we
see a band-limited complex-valued function, whose real part is plotted in blue, the ima-
ginary part is plotted in green. In the right upper corner one sees the Fourier transform.
In fact, these Fourier coefficients have been obtained using a random number generator,
with both real and imaginary part uniformly distributed with the interval [−β, β], and
normalized in the L2-norm. Clearly the length of the interval is (clearly smaller) than
one quarter of the signal length, which appears to be 360 in this example.

2The word “cardinal” comes into the picture because of the Lagrange type interpolation property of
the function SINC: SINC(k) = δk, 0.

21



The sampling is carried out at a rate of 1/4, i.e. starting from the first coordinate
(corresponding to the zero-point in ZN) we preserve every fourth value, while the inter-
mediate (3 out of 4 values) are discarded, or more correctly, are put to zero. The effect
can easily be seen on the Fourier transform, which is just the 4-periodic version of the
original spectrum (Fourier transform). Also, in the given situation it is clear, that we
have no overlap between the periodic copies of the spectrum.

The next plot shows a similar situation. Top row: The signal and its spectrum,
concentrated on some interval. Also the regular sampling points are marked with red
stars, and obviously one needs at least as many sampling points (point-evaluations)
as one has unknown (complex) Fourier coefficients in the signal in order to be able to
recover arbitrary signals with the given spectrum. The lower row shows the ideal low-pass
filter, i.e. simply a box-function of appropriate size, symmetrically around zero in the
frequency domain, and on the left side its inverse Fourier transform, which is a SINC-like
(discrete) function.
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The next plot demonstrates how the band-limited (real-valued) functions is composed
from shifted SINC-functions (positioned at exactly the regular sampling points, and with
amplitudes which are identical with the sampling values).

Next we display the graph of some real-valued, band-limited function (in black, con-
tinuous line), which is sampled regularly, and with the corresponding
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The following example is showing a similar example, but with some “natural/smooth”
Fourier-transform, for better visualization on the FT-side.
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12 Pure Mathematics and Engineering Applications

Summary. It is the purpose of this booklet to serve a dual purpose. On the one hand
mathematicians should get to see how abstract concepts from harmonic analysis, com-
bined with methods from numerical linear algebra allow to compute and visualize these
concepts, to obtain numbers, to produce plots supporting the (geometric) intuition and
further a deeper understanding of the abstract theory. On the other hand engineers
should see, that one can arrive at the most important abstract concepts starting from
ideas in signal processing and linear algebra (which at least communication engineers
are studying quite carefully anyway). The abstract view-point helps to avoid discussions
about continuous versus discrete, periodic versus non-periodic, finite versus infinite, or
Keywords. test

12.1 Subsection 1

See the books of Walker91 [12], or [13,14] other citations
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14 DigSig II Material
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14.3 MATLAB CODE

A few short MATLAB codes

finding all proper divisors
function d=propdiv(n)

% PROPDIV - Proper divisors of integer

% N. Kaiblinger, 2000

% Usage: d=propdiv(n)

% Input: n integer

% Output: d vector of proper divisors of n

d = n./(n-1:-1:2); d = d(d==round(d));

’cyclic shift operator’

function RM = rot(M,a);

% a integer, M matrix, which is rotated in cyclic way

[hig,wid] = size(M);

RM = M(:, rem( (wid:2*wid-1)-a ,wid) +1);

’Centralized adjusted plotting’

function plotc(xx);

% centered plot of single, complex-valued signal

xx = xx(:).’; xx = rot(xx,round(u/2)-1);

bas = 0:u ; bas = bas - round(u/2);

% adjusting the axes:

v3 = 1.1 * min(min(real(xx)),min(imag(xx)));

v4 = 1.2 * max(max(real(xx)),max(imag(xx)));

plot(bas,real(xx),bas,imag(xx)); grid;

axis([ bas(1) bas(u) v3 v4 ]); % adjust axes

figure(gcf); % get current figure: activates plot
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14.4 Exercises

1. Use the M-file PROPDIV.M to find the number of divisors of n, for n = 1, . . . , 2520.

2. Check catalogues of flatscreens, computer screens, notebook displays, mobile pho-
nes etc. for the format of the display and the corresponding number;

3. Find the prime factorization and number of divisors of the sampling rate for CDs,
which is 44100 samples per second (Answer: 79 proper divisors); also in connection
with the Shannon sampling theorem we will come to the conclusion that something
in the order of 40.000 + 10% is a reasonable sampling rate in case one wants
to reproduce band-limited signals of maximal frequency of 20 kHz (the maximal
frequency a person ever can hear), plus some oversampling (to allow alternative
reconstructions aside from the classical Shannon-sampling theorem).

15 Recalling concepts from linear algebra
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16 DigSig II Material

Summary. TEXT Keywords. test
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1. first
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17 Summability kernels

Summary. The functions in the Segal algebra S0(R) are all suitable summability kernels
in the sense of classical Fourier Transform theory. This means, that one can use them
to recover the function f(t) from its Fourier transform f̂(s), which is known to be
continuous and bounded. By pointwise multiplication with a dilated version Dρh of
such a summability kernel h(s), which has to satisfy h(0) = 1 (and typically with
h(x) ≥ 0) allows to guarantee the applicability of the Fourier inversion formula to
Dρh · f̂ , which obviously tends to f̂ (in some sense). Since each good summability kernel
(all the ones listed below) are of the form h = ĝ, for some other “nice” summability
kernel g ∈ L1(R), with

∫
R g(t)dt = 1, this can be seen from the Dirac property of the

dilated family (Stρg)ρ→0, which forms an approximate unit with respect to convolution.
Mathematical/technical details will be given separately.
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Abbildung 1: two figures

Beethoven Piano Sonata:
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Abbildung 2: The collection of first pure frequencies: blue shows real part = cosine [even
function] and green curves = sine-component = imaginary part: odd function.

Recording: Anna Bolena Premiere, Vienna State Opera
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Demo for simple Kronecker product of matrices

Demo for imgc and imgcins 2D−display options
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My favorite Test image

Abbildung 3: Original image and coarse resolution approximation: “pixelized”
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Fourier Approximation and Gibb’s phenomenon
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18 Tight Gabor Frames: featured articles

Material related to the construction of tight Gabor frames:
Featured articles for SS 2011: (Monika, Maurice, etc.)
[Gabardo, Jean-Pierre;Han, Deguang] Frames associated with measurable spaces. [5]
D.Han [Han, Deguang] The existence of tight Gabor duals for Gabor frames and

subspace Gabor frames [7]
[Han, Deguang] Tight frame approximation for multi-frames and super-frames. [6]
Bekka [1],
[Gabardo, Jean-Pierre] Tight Gabor frames associated with non-separable lattices

and the hyperbolic secant. [4]
[2] as a justification of the double-preconditioning method (still not verified theore-

tically)
[Janssen, A. J. E. M.;Strohmer, Thomas] Characterization and computation of cano-

nical tight windows for Gabor frames. [9] [Qiu, Sigang] Gabor-type matrix algebra and
fast computations of dual and tight Gabor wavelets [11]

[Qiu, Sigang;] Super-fast Computations of dual and tight Gabor atoms [10] [Janssen,
A. J. E. M.;Strohmer, Thomas] Characterization and computation of canonical tight
windows for Gabor frames. [9]

[Janssen, A. J. E. M.] On generating tight Gabor frames at critical density. [8]
Are there multiple tight frames?? (i.e. for two different TF-lattices Λ C R2d)
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TEST EPS-file
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19 Hermite functions and their TF-concentration

Hermite function are eigenvectors for the Fourier transform. They can be generated
numerically as eigenvectors of certain STFT-multipliers, with Gaussian analysis and
synthesis window, and (more or less) an arbitrary radial symmetric weight function over
(the discrete) TF-plane.

The NuHAG toolbox contains the following functions
radwgh.m : creating a the radial distance function

gabmulmh: gabmulmh(W,g); Gabor multiplier, with weight W and window g
gaussnk: Gauss-function (discrete, sampled and periodized)
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20 LEFT over Material

gameliv4
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THE BIBLIOGRAPHY is NOT RELEVANT for the content of the previous manuscript so far!
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