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A FRESH APPROACH TO HARMONIC ANALYSIS:
NUHAG, WINTER-TERM 08/09

HANS G. FEICHTINGER

Abstract. The results are non-trivial for the real line R, but are formulated for the
d−dimensional Euclidean space Rd, viewed as a prototype for a locally compact Abelian
group (with the usual addition of vectors and the topology provided by the Euclidian
metric). 1 We start with the description of Mb(G), the space of bounded linear measures,
as the dual space of C0, which is naturally endowed with a convolution structure.

1. Introduction
sec:intro

We start with a few symbols. First note that we will permanently make use of the fact
that Rd is a locally compact Abelian group with respect to addition (dilation will come
in only as a convenient but not crucial side aspect).

First we define the most simple algebra (pointwise, later on with respect to convolution)
of continuous “test functions”. 1 Because of the local compactness of Rd the following
object is a non-trivial (not just the zero-space) linear space of functions:

Definition 1.

Cc(Rd) := {f : Rd → C, continuous and with compact support} 2,3

Here we make use of the standard definition of the support of a function:

2000 Mathematics Subject Classification. Primary ; Secondary .
Key words and phrases. XXXX, Fourier transform, convolution, linear time-invariant systems,

bounded measures, Banach modules, approximate units .
1They can be defined on any topological group, and the space is interesting and non-trivial for any

locally compact group. So much of the material given below extends without difficulty to the setting
of locally compact, or at least locally compact Abelian group, except for the statements which involve
dilations

2Why one takes the closure in the above definition will become more clear later on, when the support
of a generalized function or distribution will be defined.

3The capital ”C” stands for continuous, the subscript for compact support
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2 H. G. FEICHTINGER

Ccdef Definition 2. The support of a continuous (!) function is defined as the closure of the
set of “relevant points”: 4

supp(f) := {x | f(x) 6= 0}−

Lemma 1. (Ex to Def.
Ccdef
2) A continuous, complex-valued function on Rd is in Cc(Rd) if

and only if there exists R = R(f) > 0 such that f(x) = 0 for all x with |x| ≥ R.
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A list of symbols: Operators, names of operators, and their definitions:

Definition 3. (1) translation Tx : Txf(z) = [Txf ](z) = f(z − x)
(the graph is preserved but moved by the vector x to another position);

(2) dilation Dρ (value preserving) and Stρ (mass preserving);

(3) involution f 7→ f̌ with f̌(z) = f(−z);
(4) modulationMω: Multiplication with the character x 7→ exp(2πiωx), i.e. [Mωf ](z) :=

e2πiω·zf(z)
(5) Fourier transform F,F−1, to be discussed only later: our normalization will be

that given for f ∈ Cc(Rd) by the integral

Four-intdefFour-intdef (1) F : f 7→ f̂ : f̂(s) =

∫
Rd
f(t)e2πis·tdt

Cbdef Definition 4.

Cb(Rd) := {f : Rd 7→ C, continuous and bounded with the norm ‖f‖∞ = supx∈Rd |f(x)| }
The spaces Cub(Rd) and C0(Rd) are defined as the subspaces of Cb(Rd) consisting of

functions which are uniformly continuous resp. decaying at infinity, i.e.,

f ∈ C0(Rd) if and only if lim
|x|→∞

|f(x)| = 0.

4The superscript bar stands for “closure” of a set. Hence the supp(f) is by definition a closed set.
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Lemma 2. Characterization of Cub(Rd) within Cb(Rd) (or even L∞(Rd)).

‖Txf − f‖∞ → 0 for x→ 0.

if and only if f ∈ Cub(Rd) (characterization within Cb(Rd)).

We will use the symbol L(C0(Rd)) for the Banach space of all bounded and linear
operators on the Banach space C0(Rd), endowed with the operator norm ‖T‖∞ :=
sup‖f‖∞≤1‖Tf‖∞.

2. Banach algebras of bounded and continuous functions

banalg-de Definition 5. (Banach algebra) A Banach algebra is a Banach space (A, ‖ · ‖A) with a
bilinear multiplication (a, b)→ a • b (or simply a · b or just ab, this means that it is also
assocative and distributive, with the extra property that for some constant C > 0 ).5

BanalgsubmBanalgsubm (2) ‖a • b‖A ≤ C‖a‖A‖b‖A ∀a, b ∈ A

Theorem 1. (Banach algebras of continuous functions)

(1)
(
Cb(Rd), ‖ · ‖∞

)
is a Banach algebra with respect to pointwise multiplication, even

a B∗-algebra, with involution f 7→ f̄ (i.e., ‖f̄‖∞ = ‖f‖∞ and ¯̄f = f).
(2)

(
Cub(Rd), ‖ · ‖∞

)
is a closed subalgebra of

(
Cb(Rd), ‖ · ‖∞

)
.

(3)
(
C0(Rd), ‖ · ‖∞

)
is a closed ideal within

(
Cb(Rd), ‖ · ‖∞

)
.

Proof. First we show that Cub(Rd) is a closed subspace of
(
Cb(Rd), ‖ · ‖∞

)
. In fact, let

(fn) be a uniformly convergent sequence in Cub(Rd), convergent to f ∈ Cb(Rd). Then for
given ε > 0 there exists n0 such that ‖f − fn0‖∞ < ε/3. Since fn0 ∈ Cub(Rd) we can find
δ > 0 such that ‖Tzfn0 − fn0‖∞ < ε/3 for |z| < δ. This implies of course for |z| < δ:

unif-uniflimunif-uniflim (3) ‖Tzf − f‖∞ ≤ ‖Tz(f − fn0)‖∞ + ‖Tzfn0 − fn0‖∞ + ‖f − fn0‖∞ < 3ε/3 = ε.

We have to estimate ‖Tx(gf) − gf‖∞, for |x| → 0. If we choose δ > 0 such that both
‖Txf − f‖∞ ≤ ε′ and ‖Txg − g‖∞ ≤ ε′ for |x| ≤ δ we have

‖Tx(g · f)− g · f‖∞ ≤ ‖Txg · (Txf − f)‖∞ + ‖(Txg − g) · f‖∞ ≤ 2(‖f‖∞ + ‖g‖∞)ε′.

�

Lemma 3. Characterization of C0(Rd) within Cb(Rd): C0(Rd) coincides with the closure
of Cc(Rd) within

(
Cb(Rd), ‖ · ‖∞

)
.

Definition 6. A directed family (a net or sequence) (hα)α∈I in a Banach algebra (B, ‖ · ‖B)
is called a BAI (= bounded approximate identity or “approximate unit” for (B, ‖ · ‖B))
if

lim
α
‖hα · h− h‖B = 0 ∀h ∈ B.

We need the following definition:

Definition 7. Definition of value preserving dilation operators:

Drho1Drho1 (4) Dρf(z) = f(ρ · z), ρ > 0, z ∈ Rd

5Without loss of generality one can assume C = 1, because for the case that C ≥ 1 one moves on to
the equivalent norm ‖a‖′A := C · ‖a‖A.
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It is easy to verify that

Drho2Drho2 (5) ‖Dρf‖∞ = ‖f‖∞ and Dρ(f · g) = Dρ(f) ·Dρ(g)

For later use let us mention that the dilation and translation operators satisfy the
following commutation relation:

dil-trans-commdil-trans-comm (6) Dρ ◦ Tx = Tx/ρ ◦Dρ, x ∈ Rd, ρ > 0.

Proof. For any f ∈ Cb(Rd) one has, for any z ∈ Rd:

TEXTFORPROOF

�

Theorem 2.
(
C0(Rd), ‖ · ‖∞

)
is a Banach algebra with bounded approximate units. In

fact, any family of functions (hα)α∈I which is uniformly bounded, i.e. with

|hα(x)| ≤ C <∞ ∀x ∈ Rd,∀α∈I

and satisfies

lim
α
hα(x) = 1 uniformly over compact sets

constitutes a BAI (the converse is true as well).
In particular, one obtains a BAI by stretching any function h0 ∈ C0(Rd) with h0(0) = 1,

i.e. by considering the family Dρh0(g) := h0(ρ · t), for ρ→ 0.

The following elementary lemma is quite standard and could in principle be left to
the reader. Probably it should be placed in the appendix. However, it is quite typical
for arguments to be used repeatedly throughout these notes and therefore we state it
explicitly.

Lemma 4. Assume that one has a bounded net (Tα)α∈I of operators from a Banach space
(B1, ‖ · ‖(1)) to another normed space (B2, ‖ · ‖(2)), such that Tα → T0 strongly, i.e. for

any finite set F ⊂ B(1) and ε > 0 there exists an index α0 such that for α � α0 one has
‖Tαf − T0f‖B2, then one has uniform convergence over compact subsets M ⊂ B1.

Proof. The argument is based on the usual compactness argument. Assuming that∣∣∣∣∣∣Tα∣∣∣∣∣∣ ≤ C1 for all α ∈ I we can find some finite set f1, . . . fK ∈ M such that balls
of radius δ = ε/(3C1) around these points cover M . According to the assumption (and
the general properties of nets) one finds α0 such that

‖Tαfj − T0fj‖B(2) < ε/3, for j = 1, 2, . . . K.

Consequently on has for any f ∈M and suitable chosen index j (with ‖f − fj‖B(1) < δ):

comp-convgcomp-convg (7) ‖Tαf − T0f‖B(2) < ‖Tα(f − fj)‖B(2) + ‖Tαfj − T0fj‖B(2) + ‖T0(fj − f)‖B(2) .

Since the operator norm of T0 is also not larger than C1 (! easy exercise) this implies

comp-convg2comp-convg2 (8) ‖Tαf − T0f‖B(2) ≤ 2C1‖f − fj‖B(1) + ‖Tαfj − T0fj‖B(2) ≤ 2C1δ + ε/3 < ε.

�
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total-test1 Remark 1. In fact, a similar argument can be used to verify that the w∗-convergence of a
bounded net of operators by verifying the convergence only for f from a total subset within
its domain. In fact, using linearity implies that convergence is true for linear combinations
of the elements for such a set, and by going to a limit one obtains convergence for arbitrary
elements in B(1).

Obviously the above argument applies to nets of bounded linear functionals as well
(choose B(2) = C).

Lemma 5. The family of operators (Dρ)ρ>0 is a family of isometric isomorphisms on(
C0(Rd), ‖ · ‖∞

)
. Moreover, the mapping ρ 7→ Dρ,R+ → L(C0(Rd)) is a group homo-

morphism from the multiplicative group of positive reals into the isometric linear operators
on
(
C0(Rd), ‖ · ‖∞

)
.

Lemma 6. Let I be the family of all compact subsets of Rd, and define K � K ′ if K ⊇ K ′.
If we choose for every such K ⊂⊂ Rd 6 a plateau function pK such that 0 ≤ p(x) ≤ 1 on
Rd and pK(x) ≡ 1 on K. Then (pK)K∈I constitutes a BAI for C0(Rd).

Proof. First we have to show that the “direction” of I is reflexive ( K ⊇ K and transitive,
i.e. K1 ⊇ K2 and K2 ⊇ K3 obviously implies K1 ⊇ K3. Finally the key property for the
index set of a net is easily verified: Given two “indices” K1, K2 the set K0 := K1 ∪K2 is
a element of I, i.e. a compact set, with K0 � Ki for i = 1, 2. Hence (pK)K∈I is in fact a
net.

In order to verify the BAI property let f ∈ C0(Rd) and ε > 0 be given. Then - by
definition of C0(Rd) there exists some R > 0 such that |x| > R implies |f(x)| ≤ ε. Then
one has |f(x) · p(x) − f(x)| = |(1 − p(x))||f(x)| ≤ |f(x)| ≤ ε for |x| ≥ R. On the other
hand |f(x) · p(x) − f(x)| = |f(x) · 1 − f(x)| = 0 for |x| ≤ R, as long as p is a plateau
function equal to 1 on the compact set K0 = BR(0) 7, i.e. as long as p = pK has an index
with K � K0. Altogether ‖f · p− f‖∞ ≤ ε �

Lemma 7. Another characterization of C0(Rd) within Cb(Rd):
h ∈ Cb(Rd) belongs to C0(Rd) if and only if

char-CO1char-CO1 (9) lim
α
‖hα · h− h‖∞ = 0

for one (hence all) BAIs for C0(Rd) (as described above).

Remark 2. It is a good exercise that such a BAI acts uniformly on compact subsets, i.e.
for any relatively compact set M in

(
C0(G), ‖ · ‖∞

)
one finds: Given ε > 0 one can find

some α0 such that for α � α0 implies

char-CO2char-CO2 (10) ‖hα · h− h‖B ≤ ε ∀h ∈M.

The following simple lemma will be useful later on (characterization of LTIS):

6we write K ⊂⊂ Rd to indicate that K is a compact subset of Rd.
7BR(0) denotes the ball of radius R around 0.
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homog-BF1 Lemma 8. A function f ∈ Cb(Rd) belongs to Cub(Rd) if and only if the (non-linear)
mapping z 7→ Tzf is continuous from Rd into

(
Cb(Rd), ‖ · ‖∞

)
. In fact, such a mapping

is continuous at zero if and only if it is uniformly continuous.

Proof. It is clear that continuity is a necessary condition (and we have already seen that
it is equivalent to uniform continuity for f ∈ Cb(Rd)). Conversely assume continuity at
zero, i.e. ‖Tzf − f‖∞ < ε for sufficiently small z (|z| < δ). Then one derives continuity
at x as follows:

‖Tx+zf − Txf‖∞ = ‖Tx(Tzf − f)‖∞ = ‖Tzf − f‖∞ < ε

implying uniform continuity of the discussed mapping. 8 �

Remark 3. On can say, that the mapping x 7→ Tx from Rd into L(C0(Rd)) is a represen-
tation of the Abelian group Rd on the Banach space

(
C0(Rd), ‖ · ‖∞

)
, which by definition

means that the mapping is a homomorphism between the additive group Rd and the
group of invertible (even isometric) operators on

(
C0(Rd), ‖ · ‖∞

)
. The additional prop-

erty that z 7→ Tzf is continuous for f ∈ C0(Rd) is referred to as the strong continuity
of this representation. The same mapping into the larger space L(Cb(Rd)) would not be
strongly continuous, because for f ∈ Cb(Rd)\Cub(Rd) this mapping fails to be continuous
(cf. below)

Remark 4. One can derive from the above definition that the mapping (x, f) → Txf ,
which maps Rd×C0(Rd) into C0(Rd) is continuous with respect to the product topology
(Exercise).

Definition 8. We denote the dual space of
(
C0(Rd), ‖ · ‖∞

)
with (M (Rd), ‖ · ‖M ). Some-

times the symbol Mb(Rd) is used in order to emphasize that one has “bounded” (regular
Borel) measures.

The Riesz representation theorem provides the justification for this definition and es-
tablishes the link to the concept explained in measure theory. In that case the action of
µ on the test function is of course written in the form

meas-actmeas-act (11) µ(f) =

∫
Rd
f(t)dµ(x).

In the classical case of functionals on C(I), where I = [a, b] is some interval, on can
describe these integrals using Riemann-Stieltjes integrals. They make use of functions
F of bounded variation. The distribution function 9 F is connected with the measure µ

8The proof gives an argument, that a homomorphism from an Abelian topological group G (Rd in
our case) into a group of operators on a Banach space (B, ‖ · ‖B) (here

(
C0(Rd), ‖ · ‖∞

)
), is strongly

continuous, i.e. satisfies the discussed continuity property analogue to f 7→ Tzf , is continuous from G
into (B, ‖ · ‖B) if and only it is continuous at zero (the identity element of G).

9This use of the word distribution is quite different from the use of distributions in the sense of
generalized functions, as it is used in the rest of these notes.
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(defined on the σ-algebra of Borel sets in I via

(12) dist−measF (x) =

∫ x

a

dµ(x);

∫
I

f(x)dµ(x) = limδ→0

∑
i

f(ξi)[F (xi)−F (xi−1)])

EXAMPLES: point measures δ0 : f 7→ f(0), δx : f 7→ f(x), or integrals over bounded

sets: f 7→
∫ b
a
f(x)dx, or more generally f 7→

∫
Rd f(x)k(x)dx, where integration is taken in

the sense of Riemannian (or Lebesgue) integrals, for k ∈ Cc(Rd). For the setting of locally
compact groups G one will use the Haar measure for the definition of such integrals.
Note: the norm of µ ∈M (Rd) is of course just the functional norm, i.e.

‖µ‖M := sup
‖f‖∞≤1

|µ(f)| = sup‖f‖∞=1 |µ(f)|

EXERCISE: ‖δt‖ = 1, and more generally:

Theorem 3. For any finite linear combinations of Dirac-measures, i.e. for µ =
∑

k∈F ckδtk
(where F is some finite index set and we assume that one has the natural representation,
with tk 6= tk′ ) one has ‖µ‖Mb

=
∑

k∈F |ck|

A simple lemma helps us to identify the closed linear subspace of (M(Rd), ‖ · ‖M )
generated from the (linear) subspace of finite-discrete measures.

Lemma 9. Let V be a linear subspace of a normed space (B, ‖ · ‖B). Then the closure
of V coincides with the space obtained by taking the absolutely convergent sequences in
(B, ‖ · ‖B) with elements from V :

abs-convser1abs-convser1 (13) Abs(B) := {x =
∑
n

vn, with
∑
n

‖vn‖B <∞}

Proof. It is obvious that Abs(B) ⊆ V −, the closure of V in (B, ‖ · ‖B). Conversely, any
element x = limk→∞vk can also be written as a limit of a sequence with ‖x− vk‖B < 2−n

and may therefore be rewritten as a telescope sum, with y1 = v1, yn+1 = vn+1 − vn.
. . . . �

absconv-dense Remark 5. A simple but powerful variant of the above lemma is obtained if one allows
the elements vn being only taken from a dense subset of V (density of course in the sense
of the B−norm. Since such a set has the same closure this is an immediate corollary
from the above lemma.

As a consequence (of the last two results) one finds that the closed linear subspace
generated by the finite discrete measures coincides with absolutely convergent series of
Dirac measures:

Definition 9.

Md(Rd) = {µ ∈M(Rd) : µ =
∞∑
k=1

ckδtk s.t.

∞∑
k=1

|ck| <∞}

The elements of Md(Rd) are called the discrete measures, and thus we claim that they
form a (proper) subspace of (M (Rd), ‖ · ‖M ).
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We claim, however, that the finite discrete measures form a w∗-dense subspace of
M (Rd). For this reason we will introduce a simple tool, the so-called BUPUs, the
“bounded uniform partitions of unity”. For simplicity we only consider the regular case,
i.e. BUPUs which are obtained as translates of a single function:

Definition 10. A sequence Φ = (Tλϕ)λ∈Λ, where ϕ is a compactly supported function
(i.e. ϕ ∈ Cc(Rd)), and Λ = A(Zd) a lattice in Rd (for some non-singular d× d-matrix) is
called a regular BUPU if ∑

λ

ϕ(x− λ) ≡ 1.
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a semiregular BUPU obtained by division

The regular BUPUs are sufficient for our purposes. They are a special case for a more
general concept of (unrestricted) BUPUs:

BUPU-gen0 Definition 11. A BUPU, a so-called bounded uniform partition of unity in some Banach
algebra (A, ‖ · ‖A) of continuous functions on G is a family Ψ = (ψi)i∈I of non-negative
functions on G, if the following set of conditions is satisfied:

(1) There exists some neighborhood U of the identity element of the group G that for
each i ∈ I there exists xi ∈ G such that supp(ψi) ⊆ xi + U for all i ∈ I;

(2) The family Ψ is bounded in (A, ‖ · ‖A), i.e. there exists CA > 0 such that
‖ψ‖A ≤ CA for all i ∈ I;

(3) The family of supports (xi + U)i∈I is relatively separated, i.e. for each i ∈ I the
number of intersecting neighbors is uniformly bounded in the following sense

#{j | (xi + U) ∩ (xj + U) 6= ∅} ≤ C0;

(4)
∑

i∈I ψi(x) ≡ 1 .
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Occasionally we will refer to U as the size of the BUPU. The constant CA is the norm
of the family Ψ in (A, ‖ · ‖A), and C0 is a kind of overlapping constant of the family.

Let Ψ = (ψi)i∈I be a BUPU, i.e. a bounded uniform partition of unity.

Theorem 4. Then ‖µ‖M =
∑

i∈I ‖µψi‖M , i.e. µ =
∑

i∈I µψi is absolutely convergent for
µ ∈M(Rd).

Proof. The estimate ‖µ‖M ≤
∑

i∈I ‖µψi‖M is obvious, by the triangular inequality of the
norm and the completeness of (M(Rd), ‖ · ‖M ). In order to prove the opposite inequality
(and in fact the finiteness of the series on the right hand side) we can argue as follows.
Given ε > 0 we can choose a sequence εi > 0 such that

∑
i∈I εi < ε. By the definition of

‖µψi‖M we can find fi ∈ C0(Rd) with ‖fi‖∞, such that |µψi(fi)| = |µ(ψifi)| > ‖µψi‖M −
εi. Without loss of generality (by changing the phase of fi if necessary) we can assume
that µ(ψifi) is real-valued and in fact non-negative, i.e. absolute values can be omitted.

Putting together the function f :=
∑

i∈I fiψi we have |f(t)| ≤
∑

i∈I ‖fi‖∞|ψi(t)| ≤∑
i∈I ψi(t) = 1, and

µ(f) ≥
∑
i∈I

|µ(ψif)| =
∑
i∈I

µ(ψif) >
∑
i∈I

(‖µψi‖M − εi) ≥
∑
i∈I

‖µψi‖M − ε,

thus completing our argument. �

Corollary 1. Every measure µ is a limit of its finite partial sums. Hence the compactly
supported measures are dense in (M (Rd), ‖ · ‖M ). In particular, (M (Rd), ‖ · ‖M ) is an
essential Banach module over

(
C0(Rd), ‖ · ‖∞

)
with respect to pointwise multiplications.

One possible approximate unit consists of the families ΨJ , where the index J is running
through the finite subsets of I and is given as ΨJ =

∑
i∈J ψi.

For every BUPU Ψ = (ψi)i∈I we can define two operators, the spline-approximation
operator SpΨ : f → SpΨ f , given by SpΨ(f) :=

∑
f(xi)ψi, where (xi)i∈I is a family

of points with xi ∈ supp(ψi), for i ∈ I, and its adjoint operator, which we will call
discretization operator, which maps bounded measures into discrete measures, denoted
by DΨ.

Lemma 10. The operators SpΨ are uniformly bounded on
(
C0(Rd), ‖ · ‖∞

)
or
(
Cb(Rd), ‖ · ‖∞

)
respectively. Moreover ‖ SpΨ(f)− f‖∞ → 0 for |U | → 0.

The adjoint operator can be obtained from the following reasoning:

SPpsi-dual0SPpsi-dual0 (14) Sp∗Ψ(µ)(f) = µ(SpΨ(f)) = µ(
∑
i∈I

f(xi)ψi) =
∑
i∈I

µ(ψi)f(xi) =
∑
i∈I

µ(ψi)δxi(f),

hence we can make the following definition

DPsi-def1 Definition 12. DΨ(µ) (or) DΨµ =
∑

i∈I µ(ψi)δxi .

Definition 13. For any BUPU Φ the Spline-type Quasi-Interpolation operator SpΦ is
given by:

f 7→ SpΦ(f) :=
∑
λ∈Λ

f(λ)φλ



10 H. G. FEICHTINGER

perhaps better/more consistent:
For any BUPU Ψ the Spline-type Quasi-Interpolation operator SpΨ is given by:

f 7→ SpΨ f :=
∑
i∈I

f(xi)ψi

It is a good exercise to verify the following statements:

Lemma 11. For f ∈ C0(Rd) the sum defining SpΦ(f) is (unconditionally) norm conver-
gent in

(
C0(Rd), ‖ · ‖∞

)
(even finite at each point), and ‖SpΦ(f)‖∞ ≤ ‖f‖∞, i.e. SpΦ is

a linear and non-expansive mapping on
(
C0(Rd), ‖ · ‖∞

)
. In particular, the family of op-

erators (SpΦ)Φ, where Φ is running through the family of all (regular) BUPUs of uniform
size (that means that the support size of φ with ‖φ‖∞ is limited) is uniformly bounded on(
C0(Rd), ‖ · ‖∞

)
. 10 Moreover, these spline-type quasi-interpolants are norm convergent

to f as |Φ| (the maximal diameter of members of Φ) tends to zero. In other words, we
claim: For every ε > 0 and any finite subset F ⊂ C0(Rd) there exists δ > 0 such that
‖SpΦf − f‖∞ < ε if only |Φ| ≤ δ0.

11

For every BUPU Φ we denote the adjoint mapping to SpΦ by DΦ: Discretization
operator to the partition of unity Φ. It maps M(Rd) into itself (in a linear way), and
since SpΦ is non-expansive the same is true for DΦ

Again: one might prefer to write DΨ !
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1

a completely irregular BUPU

50 100 150 200
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−0.2
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10these statements have to be simplified
11In some cases it might be of interest to look at BUPUs which preserve uniform continuity, i.e. which

have the property that SpPsif ∈ Cub(G) for any f ∈ CbG. This is certainly the case if one has a
regular BUPU, i.e. a BUPU which is generated from translate of a single, or perhaps a finite collection
of “building blocks”.
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Definition 14. Definition of dilation operators:

Dρf(z) = f(ρ · z), ρ > 0, z ∈ Rd

We will allow to apply operators of this kind of operators also to families, i.e. we will
shortly write DρΦ for the family (Dρ(Tλϕ))λ∈Λ. Since Dρ preserves values of functions
(it moves the values via stretching or compression to “other places”), hence DρoneRd =
oneRd. Consequently Φ is a (regular) BUPU if and only if DρΦ is a BUPU (for some,
hence all) ρ > 0.

Remark 6. REMARK

In order to understand the engineering terminology of an “impulse response” uniquely
describing the bevaviour of a linear time-invariant system let us take a quick look at the
situation over the group G = Zn, the cyclic group (of complex unit roots of order n).
Obviously c0(Zn) is just Cn, and the (group-) translation is just cyclic index shift (mod
n).

Cn-TILS Lemma 12. A matrix A represents a “translation-invariant” linear mapping on Cn if
and only if it is circulant, i.e. if it is constant along side-diagonals (we will also call such
matrices “convolution matrices”);

Proof. We can start with the “first unit vector”, which is mapped onto some column
vector in Cn by the linear mapping x 7→ A ∗ x. Since we can interpret all further vectors
as the image of the other unit vectors, but these are obtained from the first unit vector
by cyclic shift, we see immediately that the columns of the matrix are obtained by cyclic
shift of the first column, hence the matrix A has to be circulant (in the cyclic sense).

Usually engineers call the first column of this matrix, which is the output corresponding
to an “impulse like” input (the first unit vector) the impulse response of the translation
invariant linear system A.

Since the converse is easily verified we leave it to the interested reader. In fact, it may
be interesting to verify the translation invariance by deriving first for a general matrix
action A the action of T−1 ◦A ◦ T1 and to observe subsequently that this operation does
not change circulant matrices. �

For the “continuous domain” (i.e., for linear systems over R resp. over Rd) one has to
invoke functionals in order to be able to “represent” the translation invariant systems.

———————————————- IDEA (to be worked out):
One can first show that the translation invariant systems on C0(Rd) are exactly given by
“convolution” with bounded measures. Given this, it follows however that the adjoint
mapping has to map M (Rd) into M (Rd), and has to commute with the adjoint action
of translation operators (which can be interpreted as a translation of measures, since it
acts on point measures in the expected way: Tz(δx) = δx+y.

It is also not obvious ?? whether the adjoint action will give a Banach algebra (well,
it should!)

================= END of IDEA =======================
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compact-CORd Theorem 5. A bounded and closed subset M ⊂ C0(Rd) is compact if and only if it is
uniformly tight and equicontinuous, i.e. if the following conditions are satisfied:

• for ε > 0 there exists δ0 such that |y| ≤ δ ⇒ ‖Tyf − f‖∞ ≤ ε ∀f ∈M ;
• for ε > 0 there exists some k ∈ Cc(Rd) such that ‖f − kf‖∞ ≤ ε, ∀f ∈M ;

Proof. It is obvious that finite subsets M ⊂ C0(Rd) have these two properties, and it is
easy to derive them for compact sets by the usual approximation argument.

So we have to show the converse. We observe first that ‖pf − f‖∞ → 0, if p is a
sufficiently large plateau-function. The set {pf | f ∈ M} is still equicontinuous (cf. the
proof, that Cub(Rd) is a Banach algebra with respect to pointwise multiplication). We
may assume that p has compact support. Then we apply a (sufficiently) fine BUPU to
ensure that ‖pf −SpΨ(pf)‖∞ ≤ ε. Since p has compact support only finitely many terms
make up SpΨ(pf), i.e. one can approximate by finite linear combinations of the elements
of Ψ, and the proof is complete (?more details)? �

def-BIBOTLIS Definition 15. The Banach space of all “translation invariant linear systems” on C0(Rd)
is given by 12

HG(C0(Rd)) = {T : C0(Rd)→ C0(Rd), bounded, linear : T ◦ Tz = Tz ◦ T,∀z ∈ Rd}

Remark 7. 13 It is easy to show that HG(C0(Rd)) is a closed subalgebra of the Ba-
nach algebra of L(C0(Rd)) (in fact it is even closed with respect to the strong operator
topology), hence it is a Banach algebra of its own right (with respect to composition as
multiplication). We will see later that it is in fact a commutative Banach algebra.

Definition 16. recall the notion of a FLIP operator: f̌(z) = f(−z)
Given µ ∈M (Rd) we define the convolution operator Cµ by: Cµ(f)(z) := µ(Tzf̌).
The reverse mapping R recovers a measure µ = µT from a given translation invariant

system T via µ(f) := T (f̌)(0).

characterization-TLIS Theorem 6. [Characterization of LTISs on C0(Rd)]
It is possible to identify the Banach space HG(C0(Rd)) isometrically with (M (Rd), ‖ · ‖M ),
the dual of

(
C0(Rd), ‖ · ‖∞

)
, by means of the following pair of mappings:

(1) Given a bounded measure µ ∈ M (Rd) we define the operator Cµ (to be called
convolution operator with convolution kernel µ later on) via:

Cµf(x) = µ(Txf̌).

(2) Conversely we define T ∈ HG(C0(Rd)) the linear functional µ = µT by

µT (f) = [T f̌ ](0).

The claim is that both of these mappings: C : µ 7→ Cµ and the mapping T 7→ µT are
linear and non-expansive, and inverse to each other, and consequently they constitute an
isometric isomorphism between the two Banach spaces.

12The letter H in the definition refers to homomorphism [between normed spaces], while the subscript
G in the symbol refers to “commuting with the action of the underlying group G = Rd realized by the
so-called regular representation, i.e. via ordinary translations

13Sometimes we will write [T, Tz] ≡ 0 in order to express the commutation formula using the commu-
tator symbol, and the “≡”–symbol to express that this relation holds true ∀z ∈ Rd.
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Proof. The proof has a number of partial steps carried out in the course.
First of all it is easy to check that the definition of Cµ really defines an operator on

C0(Rd), with the output being a bounded function. Since

conv-bd1conv-bd1 (15) |Cµ(f)(x)| ≤ ‖µ‖M‖Txf̌‖∞ = ‖µ‖M‖f‖∞,
and hence the operator norm of Cµ

14 satisfies ‖Cµ‖L(C0(Rd)) ≤ ‖µ‖M(Rd).

Furthermore it commutes with translations, since D−1(Tzf) = T−zD−1f = T−zf̌

conv-commut1conv-commut1 (16) Cµ(Tzf)(x) = µ(TxT−zf̌) = µ(Tx−zf̌) = Cµ(f)(x− z) = TzCµf(x).

It is also easy to check - using this fact - that (uniform) continuity is preserved, since

conv-contconv-cont (17) ‖Tz(Cµ(f))− Cµ(f)‖∞ = ‖Cµ(Tzf − f)‖ ≤ ‖µ‖M‖Tzf − f‖∞ → 0 for |z| → 0.

�

Remark 8. The convolution of two measures (for now the order matters) can be written
more or less directly in the following way: Givin µ1, µ2 ∈ Mb(Rd) the action of µ1 ∗ µ2

on f ∈ C0(Rd) is given, in the usual format, by

conv-meas1conv-meas1 (18) µ1 ∗ µ2(f) =

∫
Rd

∫
Rd
f(y + x)dµ2(y)dµ1(x).

Proof. First recall the definition, i.e. that µ12 is the linear functional corresponding to
T := Cµ1 ◦ Cµ2 ∈ HG(C0(Rd))

µ1 ∗ µ2(f) = T (f̌)(0) = [(Cµ1 ◦ Cµ2)(f̌)](0) = [Cµ1(Cµ2(f̌)](0) = µ1(g)

with g(x) = [Cµ2(f̌)]ˇ(x) = Cµ2(f̌)(−x) = µ2(Txf). Putting everything into the standard
notation we have g(x) =

∫
Rd f(y + x)dµ2(y) which implies the result stated above. �

Although the above result, combined with Fubini’s theorem indicates that convolution
is commutative we do not make use of this fact, because we do not want to invoke results
from measures theory at this point. In fact, using an approximation argument (using
discrete measures) we can get the result. Looking back we can say however that this is
also more or less they way how we prove Fubini, using suitable resummation of suitable
Riemannian sums.

The previous characterization allows to introduce in a natural way a Banach algebra
structure on M (Rd). In fact, given µ1 and µ2 the translation invariant system Cµ1 ◦ Cµ2

is represented by a bounded measure µ. In other words, we can define a new (so-called)
convolution product µ = µ1 ∗ µ2 of the two bounded measures such that the relation
(completely characterizing the measure µ1 ∗ µ2)

CONVO1CONVO1 (19) Cµ1∗µ2 = Cµ1 ◦ Cµ2

It is immediately clear from this definition that (M (Rd), ‖ · ‖M ) is a Banach algebra
with respect to convolution.

14Of course we think of the “convolution by the measure µ, in conventional terms, if we write the
symbol C.
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The translation operators themselves, i.e. Tz are elements of HG(C0(Rd)), which cor-
respond exactly to the Dirac measures δz, z ∈ Rd.

Since the algebra L(C0(Rd)) is not commutative it is not at all clear from this definition
why (M (Rd), ‖ · ‖M , ∗) should be a commutative Banach algebra, which is in fact true.

In order to prepare for this statement we have to provide a few more statements.
The compatibility of the (isometric) dilation operators Dρ with translations, i.e. the

rule

dil-transdil-trans (20) DρTz = Tz/ρDρ

makes it possible to define another norm preserving automorphism for the Banach algebra
(M (Rd), ‖ · ‖M , ∗), i.e. one has CORRECTION!, better Stρ

Strhodef Definition 17. The adjoint action of the group R+ on M (Rd) is defined as the family
of adjoint operators on M(Rd) via:

def-Strohdef-Stroh (21) Stρµ(f) := µ(Dρf), ∀f ∈ C0(Rd), ρ > 0.

Being defined as adjoint operators each of the operators Stρ is not only isometric on
M (Rd), but also w∗-w∗−continuous on M (Rd).

Definition 18. ALTERNATIVE DESCRIPTION (replaced later >> theorem): Given
µ ∈M(Rd) the uniquely determined measure corresponding to the operator D−1

ρ ◦Cµ◦Dρ

will be denoted by Stρµ.

We collect the basic facts for this new mapping:

conv-strhoconv-strho (22) Stρµ1 ∗ Stρµ2 = Stρ(µ1 ∗ µ2)

Proof. To be provided later. It shows that the two alternative definitions above are indeed
equivalent!! �

Strho-isomStrho-isom (23) ‖Stρµ‖M = ‖µ‖M .

Stρµ ∗D1/ρf = D1/ρ(µ ∗ f)

Stroh-map Lemma 13. (?? Ex. to Def.
Strho-isom
23) The mapping ρ 7→ Stρ is continuous from R+ into

L(M (Rd)), endowed with the strong operator topology. It is also true that the mapping
(f, ρ) 7→ CStρµ(f) is continuous from C0(Rd)× R+ into

(
C0(Rd), ‖ · ‖∞

)
.

Proof. Proof to be typed later on. �

Strho-deltasStrho-deltas (24) Stρδx = δρx,

Remark 9. Due to the w∗-density of finite discrete measures in M (Rd) one can charac-
terize Stρ as the uniquely determined norm-to-norm continuous and w∗ − w∗-continuous
mapping which is isometric on (M (Rd), ‖ · ‖M ) and satisfies formula (

Strho-deltas
24).
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A series of lemmata (lemmas) making use of density.

Lemma 14. Assume a bounded linear mapping between two Banach spaces is given on a
dense subset only, then it can be extended in a unique way to a bounded linear operator
of equal norm on the full space.

Proof. It is enough to know a bounded, linear mapping T on a dense subset D of a normed
space, in order to observe that for any element v in the domain of T one has a convergent
sequence (dn)n∈N in D with limit x. Hence (dn)n∈N is a Cauchy sequence, so that the
boundedness of T implies that (Tdn)n∈N is a again a Cauchy sequence in the range, hence
(by completeness) has a limit. The uniqueness of this extension and the fact that this
extension has the same norm, i.e. that

|‖T‖| := ‖T‖Op = sup‖d‖≤1‖Td‖
is also an immediate consequence. �

Lemma 15. Test of BAI on a dense subspace:
A bounded family (eα)α∈I in a Banach algebra (A, ‖ · ‖A) is a BAI for A if (only) for
some total subset D ⊆ A one has:

‖eα · d− d‖A → 0 ∀d ∈ D.

Proof. It is easy to derive - using the properties of a net - that one has (uniform) conver-
gence for finite linear combinations of elements from D, and then by a density argument
one verifies convergence for all elements. 15 �

doubnetlim Lemma 16. A statement about iterated bounded, strongly convergent nets of operators.
Assume that two bounded nets of operators between normed spaces, (Talpha)α∈I and

(Sβ)β∈J are strongly convergent to some limit operators T0 and S0 respectively. Then the
iterated limit of any order exists and the two limits are equal.

In fact, the index set (α, β) ∈ I × J with the natural order 16 is turning (Sβ ◦ Tα) into
a strongly convergent net.

Proof. . . . Without loss of generality we may assume T0 = 0 and S0 = 0 (otherwise treat
Tα − T0 etc.). THE REST OF THE PROOF is LEFT TO THE READER.

�

Lemma 17. One can choose the BAI elements from a dense SUBSPACE .
Let (A, ‖ · ‖A) be a Banach algebra with a bounded approximate unit, and D some dense
subset of A. Then there exists also approximate units (dα)α∈I in D (if D is a dense
subspace the new family (dα)α∈I can even be chosen to be of equal norm).

Proof. One just has to choose dα close enough to eα, especially for α large enough (to
be expressed properly). By the density of D one can do this. If D is a subspace (not
just a subset) one can renormalize the new elements so that they have the same norm in
(A, ‖ · ‖A) as the original elements (eα)α∈I . �

15Of course this is more or less a statement about strong operator convergence for a net of bounded
operators.

16explanation: the natural ordering is given by the fact that (α, β) � (α0, β0) if α � α0 and β � β0.
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Lemma 18. Uniform action of BAIs on compact subsets
By the definition a family (eα)α∈I acts pointwise like an identity in the limit case, for each
“point”. However, the action is even uniformly over finite sets, and hence over compact
sets, by approximation.

Proof. That one has uniform convergence over finite subsets is easily verified, using the
property of a net. The inductive step is based on the following argument: Assume that
one has found α0 such that

‖eα · ai − ai‖ ≤ ε ∀α � α0, 1 ≤ i ≤ m.

Since ‖eα · am+1 − am+1‖ ≤ ε for all α � α1 we just have to choose some index α2 with
α2 � α0 and α2 � α1 (which is possible due to the definition of directed sets). Obviously

‖eα · ai − ai‖ ≤ ε ∀α � α2, 1 ≤ i ≤ m+ 1.

In order to come up with uniform convergence over compact sets, we use again a typical
approximation argument. Given any compact set M ⊆ C0(Rd) and ε > 0 we have to find
some index α3 such that

‖eα · a− a‖≤ ε ∀a ∈M.

Recalling that (eα)α∈I is bounded, i.e. ‖eα‖ ≤ C for some C ≥ 1 for all α ∈ I, we may
choose some finite subset F ⊆ M such that for any a ∈ M there exists ai ∈ F with
‖ai − a‖ ≤ ε/(3C) > 0 (which is just another positive constant, known once we know C
and ε). Hence for any given a ∈ M one can use one of such elements ai ∈ F in order to
argue that the triangular inequality implies (adding and subtracting the term eα · ai).

‖eα · a− a‖ ≤ ‖eα · (a− ai)‖+ ‖eα · ai − ai‖+ ‖ai − a‖.
If we choose now α3 such that ‖eα · ai − ai‖ ≤ ε/3 ∀α � α3 and ai ∈ F we obtain
altogether (more details are left to the reader, . . . ),

‖eα · a− a‖ ≤ ε

�

Lemma 19. The following properties are equivalent.

• there is a bounded approximate identity in (A, ‖ · ‖A);
• there exists C > 0 such that for every finite subset F ∈ A and ε > 0 there exists

element h ∈ A with ‖h‖ ≤ C, such that

‖h · a− a‖≤ ε ∀a ∈ F.

The argument to turn this family into a bounded net is the obvious one. One just has
to set α := (F, ε), and defining such a pair “stronger than another pair α1 := (F1, ε1) if
F1 ⊇ F and ε1 ≤ ε. It is easy to verify that this defines a directed set, and that the choice
eα = h (corresponding to the pair (K, ε) as describe above) turn (eα)α∈I into a bounded
and convergent net, hence constitutes a BAI for (A, ‖ · ‖A).

Note: In words: The existence of a BAI is equivalent to the existence of a bounded
net in (A, ‖ · ‖A) such that the action of “pointwise multiplication” (each element eα
is identified with the left algebra multiplication operator a 7→ eα · a) is convergent to
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the identity operator in the strong operator norm topology (which is just the pointwise
convergence of operators).

Note: Sometimes one observes that one has unbounded approximate identities, where
the “cost” (i.e. the norm of eα grows as the required quality of approximation, expressed
by the smallness of ε), tends to the ideal limit zero. It makes sense to think of limited
costs (given by C > 0) for arbitrary good quality of approximation which makes the BAI
so useful.

Theorem 7. (The Cohen-Hewing factorization theorem, without proof, see [
hero70
13])

Let (A, ‖ · ‖A) be a Banach algebra with some BAI, then the algebra factorizes, which
means that for every a ∈ A there exists a pair a′, h′ ∈ A such that a = h′ · a′, in short:
A = A ·A. In fact, one can even choose ‖a− a′‖ ≤ ε and ‖h′‖ ≤ C.

There is a more general result, involving the terminology of Banach modules.

BanMod Definition 19. A Banach space (B, ‖ · ‖B) is a Banach module over a Banach algebra
(A, ‖ · ‖A) if one has a bilinear mapping (a, b) 7→ a • b, from A×B into B with

‖a • b‖B ≤ ‖a‖A‖b‖B ∀ a ∈ A, b ∈ B

which behaves like an ordinary multiplication, i.e. is associative, distributive, etc.:

a1 • (a2 • b) = (a1 · a2) • b ∀a1, a2 ∈ A, b ∈ B.

Ex1Banmod Lemma 20. (Ex. to Def.
BanMod
19) A Banach space (B, ‖ · ‖B) is an (abstract) Banach mod-

ule over a Banach algebra (A, ‖ · ‖A) 17 if and only if there is a non-expansive (hence
continuous) linear algebra homomorphism J from (A, ‖ · ‖A) into L(B).

Proof. For a Banach module the mapping: a 7→ J(a) : [b 7→ a•b] defines a linear mapping
from A into L(B).

Conversely, one can define a A-Banach module structure on B by the definition: a•b :=
J(a)(b).

Without going into all necessary details let as recall that the associativity law

a1 • (a2 • b) = (a1 · a2) • b ∀a1, a2 ∈ A, b ∈ B.

It is a consequence of the homomorphism property of J : The left hand side a1 • (a2 • b)
translates into J(a1)[J(a2)b], while the right hand side equals J(a1 · a2)(b). �

ess-Banmod Lemma 21. A Banach module (B, ‖ · ‖B) over some Banach algebra (A, ‖ · ‖A) is called
essential if it coincides with the closed linear span of A •B = {a • b | a ∈ A, b ∈ B}.

For a general Banach module (B, ‖ · ‖B) the closed linear span of A •B is denoted by
Be or BA (especially if there are different Banach algebras acting on the same space).

The notion of “essential Banach modules” is of course trivial in case the Banach algebra
A has a unit element which is mapped into the identity operator, i.e. if there exists u ∈ A
such that u · a = a ∀a ∈ A and also u • b = b, ∀b ∈ B.

17A may be commutative or non-commutative, with our without unit.



18 H. G. FEICHTINGER

Lemma 22. Let (A, ‖ · ‖A) be a Banach algebra with BAIs (eα)α∈I . Then a Banach
module (B, ‖ · ‖B) is essential if and only if

essmod-BAIessmod-BAI (25) ‖eα • b− b‖B → 0 ∀b ∈ B

In particular, relation (
essmod-BAI
25) holds true for one such BAI if and only if it is true for every

BAI in A.

dual-alg Definition 20. For any Banach algebra (A, ‖ · ‖A) the dual space can be turned natu-
rally into a A-Banach module via the action

dual-alg1dual-alg1 (26) [a1 • σ](a) := σ(a1 · a), ∀a, a1 ∈ A, σ ∈ A′.

Lemma 23. (Ex. to Def. (
dual-alg
20) hδx = h(x)δx, i.e. multiplication of a Dirac measure is

realized as scalar multiplication of this Dirac measure by the point value of the continuous
function h at that point.

For convenience we will write h ·µ instead of the abstract symbol • in order to indicate
pointwise multiplication between functionals µ and functions h.

Theorem 8. The Banach space (M (Rd), ‖ · ‖M ) is an essential Banach module over
C0(Rd) with respect to the natural (dual) action of pointwise multiplication.

Proof. In fact we will show much more: for any BUPU Φ one has

µ =
∑
i∈I

φiµ

as absolutely convergent sum in (M(Rd), ‖ · ‖M ). �

Lemma 24. Let µ ∈ M (Rd) and ε > 0 be given. Then there exists k ∈ Cc(Rd) with
‖k‖∞ ≤ 1 such that µ(k) ≥ 0 and µ(k) ≥ ‖µ‖M (1− ε).

Proof. �

Corollary 2. Every µ ∈ M (Rd) is the limit of “compactly supported” measures of the
form

∑
i∈F (φi · µ), where F is running through the finite subsets of I (which is typically

countable).

In the terminology of Banach modules we can restate the last corollary in the form:

Corollary 3. The dual space to
(
C0(Rd), ‖ · ‖∞

)
, i.e. (M(Rd), ‖ · ‖M ), is an essential

Banach module over the Banach algebra
(
C0(Rd), ‖ · ‖∞

)
with respect to the action of

pointwise multiplication.

We will derive therefrom that one can also “integrate” arbitrary elements h ∈ Cb(Rd).

Lemma 25. Integration of bounded functions against bounded measures
For any h ∈ Cb(Rd) and µ ∈M (Rd) the net µ(pK · h) = pK · µ(h) is a Cauchy-net in C.
Therefore it makes sense to define µ(h) = limK µ(pK · h). It is clear that in this way µ
extends in a unique way to a bounded linear functional on

(
Cb(Rd), ‖ · ‖∞

)
, and that the

norm of this extension equals ‖µ‖M .
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Remark 10. If the net of bounded measures is (bounded and) tight, then it is an exercise
to show, that it is vaguely convergent 18 if and only if it is w∗−convergent, resp. if and
only if µα(h)→ µ0(h) ∀h ∈ Cb(Rd). It is a bit more work (but still an exercise) to check
out that this “pointwise convergence” even takes place uniformly over compact subsets of
Cb(Rd).

Remark 11. (maybe misplaced remark)
Recall that the “mass-preserving” stretching/compression operator Stρ can be extended
to Mb(Rd) by the definition

Stρ µ(f) := µ(Dρf).

Check that one has Stρ δx = δρx, and that limρ→0 Stρ µ = µ(1)δ0. In fact, for each f ∈
C0(Rd) one has: Dρf is uniformly bounded with respect the sup-norm for ρ→ 0 one has:
f(x)→ f(0), uniformly over compact sets. Since we can approximate the measure µ (by
localizing it) to a measure with compact support its action is defined on sufficiently large
compact sets, where Dρf is like the constant function f(0) = δ0(f), while the action on
Const ≡ 1 is denoted by µ(1).

One can use this fact to find out that it is even possible to extend the convolution opera-
tors f 7→ Cµf to all of Cb(Rd) (still with the equality of operator norm on

(
Cb(Rd), ‖ · ‖∞

)
with the functional norm of µ), and with the property that the operators arising in such
a way commute with translations. However, by means of the Hahn-Banach theorem
one can construct translation invariant means on

(
Cb(Rd), ‖ · ‖∞

)
which in turn allow to

construct bounded linear operators on Cb(Rd) which commute with all the translation
operators without being of the form of a convolution by some bounded measure. In fact,
those operators are non-zero operators on Cb(Rd), but they map all of C0(Rd) onto the
zero function. It is also not much more than a simple exercise to find out (using the
characterization of Cub(Rd) within Cb(Rd) given early on) to check that any operator on
Cb(Rd) commuting with translations will map Cub(Rd) into itself (in fact, this argument
was used at the beginning of the identification theorem.)

We are now in the position to define the Fourier transform of a bounded measure. In
the classical literature this is often referred to as the Fourier-Stieltjes transform of a mea-
sure, because it can be carried out technically over R using Riemann-Stieltjes integrals.
Such a R-St-integral is the difference of two R-St-integrals with respect to bounded, non-
decreasing “distribution” functions F . So in such a definition the ordinary Riemanian
sum is replaced by an sum of the same form, but instead of the “natural length” of the
interval [a, b], which is |b− a|, one uses the length in the sense of F which is F (b)−F (a).

Definition 21. A character is a continuous function from a topological group into the
torus group T = {z ∈ C | |z| = 1}. In other words, χ is a character if χ(x+y) = χ(x)·χ(y)

for all x, y ∈ G. Moreover, since |χ(x)| = 1 one has χ(x) = 1/χ(x) for all x ∈ G.

18This means that it is convergent in the σ(Mb(Rd),Cc(Rd))-topology, resp. µα(k) → µ0(k) ∀k ∈
Cc(Rd).
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Definition 22. The set of all character is called the dual group, because those characters
form an Abelian group under pointwise multiplication (!Exercise!). We write Ĝ for the
dual group corresponding to G (the group law written as addition in this case).

Theorem 9. In the case of (Rd,+) the dual group consists of the characters χ of the form
χs : t 7→ exp(2πis·t), with s ∈ Rd. Due to the exponential law the pointwise multiplication
of characters turns into addition of the parameters s (describing the “frequency content”
of χs).

Definition 23. The Fourier transform of µ ∈Mb(Rd) is defined by

meas-FT-defmeas-FT-def (27) µ̂(s) = µ(χs)

Lemma 26. The Fourier transform is a linear and non-expansive mapping from Mb(Rd)
into

(
Cub(Rd), ‖ · ‖∞

)
.

Proof. The uniform continuity results from the essential concentration of bounded mea-
sures over compact sets, the “usual rule” TsF(µ) = F(Msµ)., and the properties of
characters.

In fact, given ε > 0 (alternative typing: ε > 0, and χ0 ∈ Ĝ, we can find a compact
subset Q ⊆ G such that ‖µ − ψQµ‖M < ε/3. Hence there is a neighborhood W of the

identity in Ĝ such that for all χ ∈ χ0+W one has |χ(y)−χ0(y)| = |χ(y)/chi0−1| < ε/3 for

all y ∈ Q, by the definition of neighborhoods in Ĝ (compact open topology), and the fact
that the quotient χ/χ0 belongs to W . Expressed differently we have ‖ψQ(χ0−χ)‖∞ < ε/3.
Altogether we have

|µ̂(χ0)− µ̂(χ)| ≤ |F(µ− µψQ)(χ0)|+ | F(µψQ)(χ0 − χ)|+ | F(µψQ − µ)(χ)|
and consequently

|µ̂(χ0)− µ̂(χ)| ≤ 2‖µ− µψQ‖M + ε/3 ≤ ε.

�

Although little can be said about the connection between w∗-convergence (in M (Rd))
and pointwise convergence “on the Fourier transform side” in general one has the following
useful fact:

wsttoFOUR1 Lemma 27. Let (µα) be a w∗-convergent and tight net in Mb(G), with µ0 = w∗−limαµα.

Then we have µ̂α(s)→ µ̂0(s), uniformly over compact subsets of Ĝ.

Proof. Pointwise convergence of the Fourier transform is a consequence of �

XXXX

Theorem 10. The FT on Mb(Rd) is injective, and turns convolution into pointwise mul-
tiplication, i.e. in fact, it is a homomorphism of Banach algebras. This also implies that
convolution is commutative (because obviously pointwise multiplication is a commutative
operation).

Proof. Since µ 7→ µ̂ is a linear mapping it is enough to show that µ̂(s) = 0 for all
s ∈ Rd implies µ = 0. If µ(s) ≡ 0 we can conclude (by linearity) that µ applied to any
trigonometric polynomial p(t) =

∑
k ckχsk(t) is equal to zero, i.e. µ(p) = 0. Etc.
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Assume that µ 6= 0. Then there exists some k ∈ Cc(Rd) such that µ(k) = 1 (without
loss of generality). Since k has compact support we can write k = h · k, for some other
h ∈ Cc(Rd), or equivalently to claim that hµ(k) = 1.

Since supp(h) is compact, it follows from the Theorem of (Stone)-Weierstrass (density
of trigonometric polynomials, with respect to the sup-norm, over a compact set 19 ) we
can find a trigonometric polynomial such that

‖h · p− h · k‖∞ < δ,

and ‖p‖∞ ≤ 2‖k‖∞. But this implies

1 = |(hµ)(k)| ≤ |(hµ)(p)|+ |µ(hk)− µ(hp)| ≤ ‖hµ− µ‖M‖p‖∞ + |µ(p)|+ δ‖µ‖M < ε′

for any given ε′ > 0, since µ(p) = 0 and because (by an appropriate choice of h) one can
make ‖hµ− µ‖M arbitrarily small.

ETCC.
The compatibility with convolution is an easy exercise for discrete measures, and can

be transferred to the general case using a weak-star argument. Recall again that w∗-
convergence of bounded nets of measures implies pointwise convergence of their Fourier
transforms. �

There is an alternative way of proving commutativity of convolution. It is easy to see
that the convolution of (finite) discrete measures is commutative, and the general case
follows from this (by approximation in the strong operator topology).

Material on Banach Modules

The Banach module is called ”true” if the mapping J described above is injective.
If one only has a continuous (but not necessarily non-expansive algebra homomorphism

J) one can replace the norm on A by another equivalent norm (just some constant
multiple of the original one) in order to ensure this (harmless) extra property.

Recall the notions of weak topology on any Banach space (such as
(
C0(Rd), ‖ · ‖∞

)
, and

the w∗-topology) on any dual space, such as (M (Rd), ‖ · ‖M ).

Theorem 11. A sequence (or indeed a bounded net) of functions in
(
C0(Rd), ‖ · ‖∞

)
is weakly convergent if and only if it is pointwise convergent (while in contrast norm-
convergence means uniform convergence over Rd).

Proof. Since the Dirac measures are specific linear functionals on
(
C0(Rd), ‖ · ‖∞

)
weak

convergence of a sequence (fn) in C0(Rd) implies fn(x) = δx(fn) → δx(f0) = f0(x) for
any x ∈ Rd. Conversely, the possibility of approximating a general measure in a bounded
way by linear combinations of Dirac measures implies that pointwise convergence indeed
implies weak convergence. If one goes into the details of the proof the boundedness of

19This is a consequence of the fact that the trigonometric polynomials (restricted to any compact
set) form an algebra of continuous functions, which is closed under complex conjugation, contains the
constants, and is point separating, i.e. for x1 6= x2 there exist trig. polynomials p(x) such that p(x1) 6=
p(x2).
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the set of approximating measures as well as the boundedness of the sequence (resp. a
net (fα)

�

Remark 12. For equicontinuous families one can show that weak (or pointwise) conver-
gence is equivalent to “uniform convergence over compact set”. A (?bounded) net (fα) is
weakly convergent if and only if it is UCOCS, etc. dots

Remark 13. How can we characterize w∗-convergence in M (Rd)?

Alternative description of “multipliers” on C0(Rd) resp. translation invariant BIBOS
(bounded input bounded output systems, with the property of mapping C0(Rd) into
itself).

characterizeHGCO Theorem 12. Let H be any w∗− total subset of M(Rd), and assume that a bounded
linear operator T ∈ L(C0(Rd)) commutes with the action of H, i.e., that the commutators
[Ch, T ] ≡ 0 for all h ∈ H. Then T ∈ HG(C0(Rd)).

Note that in the original definition the set H was just the set of convolution operators
by Dirac measures δx, x ∈ Rd (or at least from some dense subset).

UPCOMING MATERIAL:
Embedding of test functions into M (Rd) (over groups this requires the use of the

[invariant] Haar measure, which indeed is a linear functional on Cc(G)). Compatibility
of operators which are now available on both the functions and the measures (resp.
functionals). E.g. we can now do an internal convolution of functions (viewed as bounded
measures) or an external action (one is acting as a bounded measure, the other is consider
as the C0(Rd) element on which the action takes place). Associativity of convolution in
the most general situation (also of course commutativity, etc.).

Further notes:
Cub(Rd) is a (closed) subspace of the dual of L1(Rd). Hence it carries a σ(Cub(Rd),L1(Rd))

topology which can be shown to be equivalent (at least on bounded sets!?, or more) to
the uniform convergence over compact sets (?true).

STATEMENT: Every f ∈ Cb(Rd) is a limit (in the sense of uniform limit over compact
sets) of a bounded sequence of functions from C0(Rd) resp. even from Cc(Rd). In fact, on
can take the sequence pn · f , where (pn) is a BAI for C0(Rd) consisting of (increasing)
plateau functions).

EXTENSION PRINCIPLE. Let (pn) be as above, and f ∈ Cb(Rd) and µ ∈M(Rd) be
given. Then the sequence µ(pn · f) is a Cauchy sequence, hence convergent in C. In fact,
the limit is the same for any other BAI in C0(Rd). Therefore it makes sense to define
µ(f) := limn→∞ µ(pnf).

REMARK: this will be important to define the Fourier Stieltjes transforms for bounded
measures, i.e. for µ̂(s) = µ(χ−s) later on!

Lemma 28. The convolution operators form a (commutative) Banach algebra of oper-
ators. It turns out that the characters can be identified with the joint eigenvectors for
this whole class of operators. Indeed, we have Cµ(χs) = µ̂(s)χs (RICHTIG?) for any
µ ∈Mb(Rd) and any character χs on Rd.
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3. Identifying “ordinary functions with functionals”

There is a natural way to identify “ordinary functions” (say k ∈ Cc(Rd)) with linear
functions µ ∈M(Rd), by the following trick: Given

fcttomeasurefcttomeasure (28) µ = µk, resp. µ(f) =

∫
Rd
f(x)k(x)dx

This is also possible over general locally compact Abelian groups, but requires the
existence of the Haar measure (we will not go into this direction, a good explanation is
given in Deitmar’s book).

Lemma 29. The mapping k → µk described above defines an isometric embedding from
(Cc(Rd), ‖ · ‖1) into (M (Rd), ‖ · ‖M ). Hence we may identify the closure of MCc =
{µk | k ∈ Cc(Rd)} with the completion of the normed space (Cc(Rd), ‖ · ‖1).

Proposition 1. There is a natural, isometric embedding of (Cc(G), ‖ · ‖1) into Mb(G),
given by

k 7→ µk : µk(f) =

∫
G

f(x)k(x)dx.20

Proof. It is obvious that each µk is in fact a bounded linear functional on C ′0(G) and that
the mapping k 7→ µk is linear and nonexpansive, since evidently for each f ∈ C0(G), k ∈
Cc(G) one has:

|µk(f)| = |
∫
G

f(x)k(x)dx| ≤
∫
G

|f(x)||k(x)|dx ≤ ‖f‖∞‖k‖1.

The converse is a bit more involved. In principle one would choose, for the case of a real-
valued function k a function f ∈ C0(G) which is a minimal (but continuous!) modification
of the signum function, which turns (when integrated against k) the negative parts into
positive parts, thus turning µk(f) in a good approximation of ‖k‖1.

To be more formal let us consider f ∈ Cc(G), let us consider for any η > 0 the
“essential” support Kη := {z ∈ G | |k(z)| ≥ η}. Then Kη is a compact set and we can
find continuous function 21 hη with values in [0, 1] such that hη(z) = 1 on Kη and with
support of hη within (the interior) of Kη/2. The function fη(x) := hη(x)|k(x)|/k(x) is
then well defined (because k(x) 6= 0 for any point in the support of hη, and ‖fη‖∞ ≤ 1).
We observe that ∫

G

fη(x)k(x)dx =

∫
G

|k(x)|hη(x)dx.

It remains to verify that this tends to ‖k‖1 for η → 0.

20The integration is with respect to the Haar measure on the group G.
21The existence of hη is guaranteed by Tietze’s theorem, on of the important theorems concerning

locally compact, hence completely regular topological spaces. It helps to avoid the potential problem of
a phase discontinuity, i.e. problems with the continuity of k(x)/|k(x)| near the zeros of k.
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Writing K0 for supp(k) this is a direct consequence of the following estimate∫
G

|k(x)(1− hη(x))| ≤
∫
K0

|k(x)|(1− hη(x))dx ≤ V ol(K0)22 · ‖k(1− hη)‖∞ → 0.

�

Li-Def Definition 24. We define L1(Rd) as the closure of MCc within (M (Rd), ‖ · ‖M ).

Of course one has to justify this definition, by recalling that the usual definition of
L1(Rd) based on Lebesgue’s integrability criterion provides us with a Banach space (of
equivalence classes of measurable functions, identifying two functions if they are equal
almost everywhere), which contains Cc(Rd) as a dense subspace (cf. more or less any
book on measure theory for details on this matter: in fact, it is sufficient to approximate
- in the L1-norm - indicator functions of parallel-epipeds by continuous functions with
compact support, i.e. something like a trapezoidal function sufficiently close to a “box-
car”-function in the 1-dimensional case).

It is also of interest to introduce the concept of a support to measures, in a way
which is compatible with the notion supp(k) for k ∈ Cc(Rd) given above:

22V ol(K0) stands for the Haar measure of the set K0, but the ‖ · ‖1 of a plateau-function p(x) with p
with p(x) · k(x) = k(x) would do. In fact, the “measure of K0, i.e. V ol(K0) = µ(K0) can be shown to be
equal to the infimum over all those ‖ · ‖1-norms.
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meas-support Definition 25. A point x does not belongs to the support of a measure µ ∈ M (Rd) if
there exists some k ∈ Cc(Rd) with k(x) = 1, but nevertheless k · µ 6= 0. The complement
of this set is denoted by supp(µ).

Lemma 30. .

• supp(µ) is a closed subset of Rd,
• there is consistency with the concept already defined for k ∈ Cc(Rd), in other

words: supp(k) (in the old sense) coincides with supp(µk), just defined.
• For a discrete measure the support is given by the closure of the union of all points

involved, i.e., for µ =
∑∞

k=1 ckδtk we have23 supp(µ) = (
⋃
k tk)

−.
• The notion of support is compatible with pointwise products: i.e., for any h ∈

Cb(Rd) on has supp(hµ) ⊆ supp(h) ∩ supp(µ) (as for functions).

We have the following equivalent description of the supp(µ) (which is actually the usual
definition):

meas-charact Lemma 31. The following properties are equivalent:

• z ∈ supp(µ);
• for any ε > 0 there exists some h ∈ Cc(Rd) with supp(h) ⊆ Bε(z) with µ(h) 6= 0.
• supp(µ) coincides with the intersection of all supports of [plateau-]functions p such

that pµ = µ.

The following results indicates the w∗−continuity of the concept of a support.

Lemma 32. Assume that µ0 = w∗ − limαµα, then supp(µ0) ⊆
⋂
α supp(µα)

The notion of support is also compatible with convolution: 24

conv-support Lemma 33. For µ ∈Mb(Rd) and f ∈ Cb(Rd) one has

conv-suppconv-supp (29) supp(µ ∗ f) ⊆ supp(µ) + supp(f).

Lemma 34. Assume that µ0 = limw∗µα. Then also for any BUPU Ψ the family DΦµα is
w∗-convergent to DΦµ0. Even more, the family DΦµα is uniformly tight and w∗-convergent
to µ0 as |Φ| → 0.

Finally we claim that the family DΦ(pKµα), where pK runs through the family of all
plateau functions (with K → Rd), satisfies the same relation. Note that the resulting
measures are in fact FINITE discrete measures.25

23Assuming of course the canonical representation of µ, with tk 6= tl, for k 6= l.
24We probably still have to take care of the notion of support for the case that the measure does not

have compact support.
25Alternatively one could use only finite subfamilies from the partition of unity, or put pk on the

outside, i.e. write pk ·DΦµα. The consequences remain the same for all of these variants!
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4. Basic properties of
(
L1(Rd), ‖ · ‖1

)
We have defined L1(Rd) as the closure of Cc(Rd) (identified via k 7→ µk with a subspace

of M (Rd)) in (M (Rd), ‖ · ‖M ). Since this is a Banach space, it is a Banach space itself,
and identical with the (abstract) completion of Cc(Rd) in M(Rd).

The next theorem gives us some more information about the containment of L1(Rd) in
M (Rd):

L1-Basic Theorem 13. (Basic properties of L1(Rd))

•
(
L1(Rd), ‖ · ‖1

)
is a closed ideal within (M(Rd), ‖ · ‖M ). It is a Banach algebra

with a BAI (so-called Dirac sequences).
• L1(Rd) can be characterized as the closed subspace of with continuous shift, i.e. a

bounded measure µ is of the form µ = µg, resp. µ(f) =
∫

Rd f(x)g(x)dx if and only
if ‖Txµ− µ‖M → 0 for x→ 0.
• L1(Rd) is w∗−dense in M (Rd), in fact, for every µ ∈ M (Rd) there exists a

tight (hence bounded) sequence (fk) in L1(Rd), with fk resp. µfk → µ in the
w∗−topology.

Proof. The main arguments are the identification of the “internal convolution” within
M (Rd) with the usual convolution formula

conf-CcRdconf-CcRd (30) f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy, for f, g ∈ Cc(Rd).

but also the external action of M (Rd) on the homogeneous Banach space

M (Rd)e = {µ | ‖Txµ− µ‖M → 0 for x→ 0.}
The typical bounded approximate units are of the form (Stρg)ρ>0, for an arbitrary g ∈
L1(Rd) with ĝ(0) =

∫
Rd g(t)dt = 1.

It is easy to verify that this net is tight and tends to δ0 in the w∗−topology. In a
similar way one can approximate a finite and discrete measure by a linear combination
of such Dirac sequences. Since the Dirac measures form a total subset in M (Rd) with
respect to the w∗−topology the w∗−density of L1(Rd) in M (Rd) is established. �

Lesson of May 29th: Bounded measures operate not only on C0(Rd) but also on any
homogeneous Banach space (B, ‖ · ‖B). The proof of this fact is essentially based on
the idea that it is enough to establish this fact for bounded discrete measures (which is
easy) and then show that for any sequence of discretizations of a given measure (where
the diameter of the support of the corresponding BUPUs shrinks to zero) generates a
sequence µk which is uniformly tight and bounded, but also produces a Cauchy sequence
in (B, ‖ · ‖B) of the form (µk ∗ f), for any given f ∈ B. Obviously it makes sense to
define the limit (which does not depend on the choice of discretizations via BUPUs) by
µ ∗ f (although it is formally a new operation, and the “star” just introduced should be
distinguished for a little while from the “known” star which denotes convolution within
M (Rd)): µ ∗ f ∈ B and NORMS

Dirac-Conc Lemma 35. A bounded net of functions (hα)α∈I is a BAI for
(
L1(Rd), ‖ · ‖1

)
if the fol-

lowing property is satisfied: For every ε > 0 there exists some α0 such that for α � α0
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one has:

Dirac-epsDirac-eps (31) |
∫
Bε(0)

hα(t)dt− 1| ≤ ε and

∫
|x|≥ε
|hα(t)|dt ≤ ε.

Proof. Argument: Due to the density of Cc(Rd) in L1(Rd) one can reduce the discussion
to functions k ∈ Cc(Rd), i.e., it is enough to show that hα ∗ k 7→ k for any k ∈ Cc(Rd).
The second condition allows to restrict the attention to a net with common compact
support K. Consequently one has hα ∗ k(x) 6= 0 only for x ∈ K + supp(k). Furthermore
we obtain hα ∗ k(x) =

∫
Rd hα(y)k(x− y)dy 7→ More to be done tomorrow!! �

Remark 14. Of course one can also consider M (Rd) as a Banach module over the Banach
algebra L1(Rd) (with respect to convolution). Then the L1(Rd)-essential part of M (Rd)
is equal to L1(Rd) itself.

On the other hand we can consider
(
C0(Rd), ‖ · ‖∞

)
as a Banach module over L1(Rd)

(again with respect to convolution), and then this is an essential Banach module.

5. Tight subsets

A given f ∈ C0(Rd) is of course “essentially concentrated” on a compact set (and
uniformly small outside a sufficiently large compact set, by definition). We also have
shown that a functional µ ∈M (Rd) is having most of its “mass” sitting within a compact
set, while its action outside of this compact set is small. Indeed, since for any BUPU Φ
we have µ =

∑
iinI φµ as absolutely convergent sum the tails µ minus a large partial sum

is small in the M(Rd)-sense.
Next we want to extend this “concentration over compact sets” concept to general

bounded subsets of M(Rd) (and later other functional spaces):

Definition 26. A bounded subset H ⊂ M (Rd) is called (uniformly) tight if for every
ε > 0 there exists k ∈ Cc(Rd) such that ‖µ− k · µ‖M≤ ε for al µ ∈ H.

In a similar way we define tightness in C0(Rd):

Definition 27. A bounded subset H ⊂ C0(Rd) is called (uniformly) tight if for every
ε > 0 there exists h ∈ Cc(Rd) such that ‖h− k · h‖∞≤ ε for al h ∈ H.

Note: For a general C0(Rd) module (B, ‖ · ‖B) one can define tightness as follows:

Definition 28. A bounded subset H ⊂ (B, ‖ · ‖B) is called (uniformly) tight if for every
ε > 0 there exists h ∈ Cc(Rd) such that ‖h− k · h‖∞≤ ε for al h ∈ H.

The concept of tightness plays a big role in the characterization of relatively compact
subsets (hence compact operators)

Theorem 14. Assume that W is a tight set within M(Rd) and that H is a tight subset
within C0(Rd). Then W ∗H = {µ ∗ h |µ ∈ W,h ∈ H} is a tight subset in C0(Rd).

cf. the “compactness paper” p.307 (bottom):
http://univie.ac.at/nuhag-php/bibtex/open files/fe84 compdist.pdf

Indeed, for any plateau-function τ which satisfies τ(x) ≡ 1 on supp(k1) + supp(k2),
hence the following estimate holds:
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(1− τ)(f 1 ∗ f 2) = (1− τ)(f 1 ∗ f 2 − f 1k1 ∗ f 2k2)

(1− τ)(µ ∗ f) = (1− τ)(µ ∗ f − µk1 ∗ fk2)

Applying norms to both sides and using the triangle inequality we obtain the following
estimate in the sup-norm:

‖(1− τ)(µ ∗ f)‖ = ‖(1− τ)(µ ∗ f − µk1 ∗ fk2)‖ ≤
‖(1− τ)‖‖(1− k1)µ ∗ f‖+ ‖k1µ ∗ (1− k2)f‖

≤ ‖(1− τ)‖‖(1− k1)µ‖M‖f‖+ ‖k1‖‖µ‖M‖(1− k2)f‖

6. The Fourier transform for L1(Rd)

The Fourier transform maps M (Rd) into Cub(Rd). It will be seen as a non-expansive
Banach algebra homomorphism from the closed ideal L1(Rd) into the closed ideal C0(Rd)
of Cub(Rd) (this result is usually known as Riemann-Lebesgue Lemma).

The range of the Fourier transform is a dense subalgebra (closed under complex con-
jugation), due to the “locally compact version” of the Stone-Weierstrass theorem.

Recall the standard version of the Stone-Weierstrass theorem:

stone-weierstr-thm Theorem 15. Let (A, ‖ · ‖A) be a Banach algebra within C(X), where X is some com-
pact topological space. Then A is dense with respect to the uniform norm if A contains
the constant functions, is closed under conjugation, and separates points, i.e., , if for any
pair of points x1, x2 ∈ X, with x1 6= x2 there exists some f ∈ A such that f(x1) 6= f(x2).

Since FL1 does not have a unit (for pointwise multiplication), due to the fact that
L1(Rd) does not contain a unit (the unit with respect to convolution is the Dirac measure
δ0, which do not cannot be approximated in (M(Rd), ‖ · ‖M ) from within Cc(Rd)), one
has to modify the above result to the locally compact case, by “adding” the constant
functions, and replacing Rd by its Alexandroff (one-point) compactification X of Rd.
Indeed, FL1(Rd) can be identified with a closed subalgebra of all continuous functions
vanishing “at infinity”. In fact, if C0 + h in C(X) is approximated by a sequence of the
form Cn + fn, then |Cn − C0| → 0 for n → ∞, so ‖fn − h‖∞ for n → ∞ (details left to
the reader).

For Rd one can of course use alternative arguments, e.g. by observing that certain
functions, such as the Schwartz functions, belong to the Fourier algebra, so there is
enough richness in the function space FL1(Rd) in order to show the density of FL1(Rd)
in
(
C0(Rd), ‖ · ‖∞

)
, but the above argument applies the general LCA groups.

On of the central statements concerning the Fourier transform is Plancherel’s theorem,
stating that the Fourier transform can be considered as a unitary linear automorphism of
the Hilbert space L2(Rd) onto itself. This is in complete analogy to the statement that
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the for the case of Cn the Discrete Fourier transform (often realized in the form of the
FFT) is a change of base from the orthonormal basis of unit vectors to the orthogonal
system of pure frequencies. Since the vectors representing the pure frequencies (which
are exactly the joint eigenvalues to all the translation operators) are of absolute value
one, they are all of norm

√
n the inverse FFT is essentially the conjugate (transpose) of

the Fourier matrix, with a compensating factor of the form 1/n. The advantage of our
normalization in the continuous case (with the factor 2π as part of the exponent) has the
advantage that the inverse Fourier transform will come in the form

inv-Fourdefinv-Fourdef (32) h(t) =

∫
Rd
f̂(s)e2πit·sdt

Since the integral definition of the FT of its inverse do not apply to general functions
f̂ ∈ FL1, part of the discussion of the Fourier-Plancherel Theorem is concerned with
technical questions around problems of this kind (how to overcome lack of integrability,
e.g., by applying so-called summability methods, which are a generalization of the idea of
an infinite integral, taken as limit of finite integrals).

Lemma 36. It is enough to verify that for some dense subspace B of L2(Rd) within

L1(Rd) ∩ C0(Rd) ∩ FL1(Rd) one can find that the mapping f 7→ f̂ is well defined and
isometric, and with dense range, in order to be able to extend the “classical” Fourier
transform and its inverse (given by the integral) to an isometry from L2(Rd) onto itself.

Proof. Since we assume that B ⊆ L1(Rd) ∩ C0(Rd) ∩ FL1(Rd) one can claim that the
direct and the inverse Fourier transform given via (absolutely convergent) Riemannian
integrals is valid. For the rest one only has to show that for an arbitrary f ∈ L2(Rd)
and any sequence fn, with fn ∈ B with ‖f − fn‖2 → 0 for n → ∞ one finds that

‖f̂ − f̂n‖2 = ‖f − fn‖2 → 0, so by the completeness of L2(Rd) the Cauchy sequence f̂n
must have a limit, which may be denoted (by a so-called abuse of language) as the Fourier

transform f̂ of f . The extended (still isometric) mapping has dense range according
to our assumptions, and therefore the same argument can be applied to the inverse
Fourier transform in order to realize that the extended mapping (often called the Fourier-
Planchere or just Plancherel transform defines an isometric automorphism of L2(Rd). Due
to the polarization identity

〈f, g〉 =
3∑

k=0

ik‖f + ikg‖2.

such a mapping also preserves scalar products in general. �

For the proof of Plancherel’s theorem one may use B = L1(Rd)∩C0(Rd)∩FL1(Rd) or
the linear span of all the time-frequency shifted and dilated version of a Gauss function
(we do not require any norm on B). Ideally one can or should use a space of functions
which is invariant under the Fourier transform. Details have been given in the FA (=
functional analysis) course WS0506 by HGFei.

Of course the extended Fourier transform is still compatible with convolution resp.
pointwise multiplication. In other words, convolution on one side of the FT goes into
pointwise product on the other side (and vice versa). As a consequence one obtains a
characterization of FL1(Rd): A function belongs to FL1(Rd) if and only if it can be
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written as a convolution product of two functions in L2(Rd), i.e. h ∈ FL1(Rd) if and
only if there exist two functions f, g ∈ L2(Rd) such that h = f ∗ g. The direct direction
(i.e. convolution products are in FL1(Rd)) is easy, because their Fourier transforms give
a function which is a pointwise product of two L2-functions, and hence according to the
Cauchy-Schwartz inequality ĥ = f̂ · ĝ ∈ L2 ·L2 ⊆ L1, or equivalently h ∈ FL1(Rd).

The easiest argument for the converse is again on the Fourier transform side. Write
ĥ ∈ L1(Rd) as a pointwise product of two L2-functions. If ĥ was non-negative there is a

natural solution to this problem, just take
√
ĥ. If ĥ is a complex-valued function, one can

apply this trick only to |ĥ|, and can assign the phase factor to one of the two non-negative
square roots (details are left to the reader).

7. Wiener’s algebra W (C0,L
1)(Rd)

Because it can be defined without the existence of a Haar measure the following space
plays an important role within Harmonic Analysis. We define W (G) as follows;

Then we define W (C0,L
1)(Rd) as follows:

WCdefphi Definition 29. Let ϕ be any non-zero, non-negative function on Rd.

WCdefphi1WCdefphi1 (33) W (C0,L
1) = { f ∈ C0(Rd) | ∃(ck)k∈N ∈ `1, (xk)k∈N in Rd, |f(x)| ≤

∑
k∈N

ckϕ(x−xk) }

We define

‖f |W (C0,L
1)(Rd)‖ := inf {‖c‖`1 =

∑
k∈N

|ck| }

where the infimum is taken over all “admissible dominations” of f as in (
WCdefphi1
33).

It is obvious that W (C0,L
1)(Rd) is continuously embedded into

(
C0(Rd), ‖ · ‖∞

)
26

since ‖f‖∞ ≤ (
∑

k∈N |ck|)‖ϕ‖∞. By a similar argument we have a continuous embedding

of
(
W (C0,L

1)(Rd), ‖ · ‖W
)

into
(
L1(Rd), ‖ · ‖1

)
.

LEFT OVER MATERIAL

Kantorovich Theorem 16. [Kantorowich Lemma] Let Tα be a strongly convergent and bounded se-
quence of invertible operators between Banach spaces, with limit T0, which is assumed to
be invertible itself. Then the inverse operators are strongly convergent as well if the in-
verse operators are uniformly bounded. If we consider only sequences this is a criterion,
because then the strong convergence of T−1

n (y) → T−1
0 (y) for every y implies uniform

boundedness of the sequence T−1
n .

26by the same argument W (C0,L
1)(Rd) is also contained in many other Banach spaces of functions

with the property that translations are isometric and that the space is solid.
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QUESTION: For tight nets of bounded measures w∗−convergence implies pointwise
and uniform over compact convergence of their FTs. But also the converse is true!!!!
(Exercise). [for non-tight families this is not true, just think of the case δn, n→∞!

An elementary proof showing that the Gauss function g0(t) = e−π|t|
2

is mapped itself
by the Fourier transform has been given by Georg Zimmermann, see

http://www.univie.ac.at/NuHAG/FEICOURS/ws0607/efoft.pdf
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8. The Segal algebra S0(Rd) and Banach Gelfand triples

There are different ways of defining S0(Rd) = W (FL1, `1) should be renamed WFLili

instead of WFlili.
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Material for course October 2006

Given a Banach module (B, ‖ · ‖B) over a Banach algebra (A, ‖ · ‖A) with bounded
approximate units we define the essential part BA and the relative completion of A,
which is given as HA(A,B). Note that this is again in a natural way a Banach module
(with respect to the operator norm) over the original Banach algebra (A, ‖ · ‖A), and
that (B, ‖ · ‖B) can be mapped into this Banach module in a natural way as a closed
subspace (at least of B = BA and if (A, ‖ · ‖A) has bd. approx. units).

argument: One has to identify each element b ∈ B with the operator Tb ∈ HA(B)
obtained by something like the “right regular representation”, i.e., the operator Tb : a 7→
a • b. It is always true that ‖Tb‖op ≤ ‖b‖B, and by applying Tb to the elements of some
bounded approximate unit in A one finds the converse estimate, i.e., (B, ‖ · ‖B) can be
identified with a closed subspace of all bounded linear operators from A to B.

Note that one should not forget that one has to impose the “natural” A-module struc-
ture on HA(B1,B2), before making the claim that the A-module B can be embedded
via an A-module homomorphism (embedding) into the larger A-module BA.

Exercise: For the case of the pointwise algebra (A, ‖ · ‖A) =
(
C0(Rd), ‖ · ‖∞

)
one

finds that HA(A,A) =
(
Cb(Rd), ‖ · ‖∞

)
in a “natural way. Note that the “identity

operator always belongs to HA(A,A) (obviously it commutes with any other operator),
and therefore the “enlargement” from A to HA(A) also implies the adjunction of a unit
element to the Banach algebra A, but typically much more than this. So in a way the
(in this case isometric) embedding of C0(Rd) into Cb(Rd) (both with the sup-norm) can
be seen as an embedding of A = C0(Rd) into the maximal algebra “with the same norm”
(and a unit).

Plancherel’s theorem can be used (we skip those details) to identify HL1(L2,L2) (or
equivalently the set of all bounded linear operators from L2(Rd) into L2(Rd) which com-
mute with translation) with HA(L2,L2) (for A = FL1, i.e., the operators from L2(Rd)
into L2(Rd) which commute with pointwise multiplications with elements from A = FL1,
or equivalenty, just with the multitplication with pure frequencies resp. characters on Rd,
which are the functions x 7→ e2πis·x. These are again pointwise multiplication operators,
and it is not hard to find out that a pointwise multiplier h of L2(Rd) is has to be a
measurable function which is essentially bounded, i.e., h ∈ L∞(Rd).

Let us just sketch the basic idea behind this fact:

Lemma 37. Assume that B is a Banach module with respect to a pointwise Banach
algebar A (and assume that Ac(Rd) = Cc(Rd) ∩ A is dense in A), and assume that
A ∩ B contains arbitrary large plateau-functions, i.e., with the property, that for each
compact set K ⊆ Rd there exists some q ∈ B ∩A such that q(x) ≡ 1 on K. Then the
elements in HA(B,B) are pointwise multipliers with suitable functions h which belong
locally to A.

Proof. TO BE GIVEN LATER on! �
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For us an important Banach algebra is
(
L1(Rd), ‖ · ‖1

)
, endowed with convolution as

multiplication (which is commutative, due to the commutativity of addition in Rd). It
does not have any units, but we have shown earlier (?) that

(
L1(Rd), ‖ · ‖1

)
has bounded

approximate units. Typically such a family is obtained by taking any sequence fn (or
net) of functions, e.g. in Cc(Rd), with

∫
Rd fn(x)dx = 1 and “shrinking support”. This can

be obtained by choosing the shape of of fn arbitrarly, but assuming that fn(x) = 0 for
|x| ≥ δn for some null-sequence δn → 0 for n→∞. Alternatively one compresses a given
function f ∈ Cc(Rd) or even in L1(Rd) with

∫
Rd fn(x)dx = 1, and chooses fn = Stρnf , for

some sequence ρn → 0 for n→∞. The choice f(x) = e−πx
2

is a popular choice (which
also shows that it is not important for f to be compactly supported).

We will see shortly that HL1(L1) = HL1(L1,L1) can be identified with the space
(Mb(Rd), ‖ · ‖Mb

) of all bounded measures (resp. with
(
C0
′(Rd), ‖ · ‖M

)
). This result

is called “Wendel’s theorem” ( [
we52,la71-2
16, 27]). It has of course two parts: First of all one

has to show that convolution operators induced by elements from Mb(Rd) leave the
closed subspace L1(Rd) invariant. In the second part one has to verify that any abstract
(bounded and linear) operator on

(
L1(Rd), ‖ · ‖1

)
commuting with all the translation

must be such a convolution operator.

Proof. For the first part we have to verify that L1(Rd) is a closed ideal of Mb(Rd), i.e.,
that Mb(Rd) ∗L1(Rd) ⊆ L1(Rd). One way to do that is to check that

(
L1(Rd), ‖ · ‖1

)
is

a homogeneous Banach space, i.e., to show that the group Rd acts in a continuous and
isometric way on L1(Rd). This is easy to verify since ‖Txf‖1 = ‖f‖1 for all x ∈ Rd and
all f ∈ Cc(Rd) and also limx→0‖Txf − f‖1 = 0 for x→ 0, for any f ∈ Cc(Rd), hence (by
approximation for any f ∈ L1(Rd)).

That (Mb(Rd), ‖ · ‖Mb
) (viewed as a Banach algebra with respect to convolution) is

acting boundedly on any homogeneous Banach space will be discussed separately.
Alternatively one can even describe L1(Rd) as the subset of all bounded measures

which have continuous translation, in other words, one can show (see a classical paper
by Plessner, 1929) that ‖Txµ − µ‖Mb

→ 0 for x → 0 implies that µ is an “absolutely
continuous” measure, i.e., belongs to L1(Rd).

The argument for this result typically relies on a compactness argument (w∗− compact-
ness of the unit ball in the dual Banach space Mb(Rd) =

(
C0
′(Rd), ‖ · ‖M

)
). One applies

the given operator T ∈ HL1(L1) to any Dirac- sequence fn which forms a bounded approx-
imate unit in L1(Rd). By the boundedness of (fn) and the operator T the image sequence
T (fn) is also bounded in L1(Rd), hence in the larger (dual) space (Mb(Rd), ‖ · ‖Mb

)). By
the w∗-compactness of bounded balls in this space we obtain a w∗-convergent subnet,
with some limit µ ∈Mb(Rd). It remains to show that this limit is inducing the operator,
i.e., one has to verify that T = Cµ. �

Material of Nov. 9-th is partially covered by the paper “Banach spaces of distributions
having two module structures J. Funct. Anal. (1983)” ( [

brfe83
2]). The main result of this

paper is a “chemical diagram” that can be attached to each of the spaces in >>> standard
situation:
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Some comments on the classical Riemann-Stieltjes integral (in German)

http://de.wikipedia.org/wiki/Stieltjes-Integral

http://de.wikipedia.org/wiki/Beschr%C3%A4nkte_Variation

http://de.wikipedia.org/wiki/Absolut_stetig

http://de.wikipedia.org/wiki/Satz_von_Radon-Nikodym

http://de.wikipedia.org/wiki/Lebesgue-Integral

Some of the material in this course has been already given in courses in Heidelberg
(1980), Maryland (1989/90) or at the university of Vienna in the last 20 years.

The material concerning the Segal algebra S0(G) is going back to various original
publications by the author, see for example [

fe81-3
6], where this particular Segal algebra has

been introduced and where it is shown that it is the minimal TF-isometric homogeneous
Banach space (and many other properties). The role of the dual space has been described
already in [

fe80
5] (both papers downloadable from the NuHAG site). The double module view-

point is described in much detail in [
brfe83
2] (Banach spaces of distributions having two module

structures, J. Funct. Anal.). A detailed account of notions of compactness (and also a
clean description of tightness, etc.) is given in [

fe84
7]. The first atomic characterization of

modulation spaces (S0(Rd) is among them) has been given at a conference in Edmonton
in 1986 (published then in [

fe89-1
8]).

There are many places where especially the role of the Segal algebra S0(G) for the dis-
cussion of basic questions in Gabor Analysis has been described. The very first systematic
discussion as been probably given in the Chapter by Feichtinger and Zimmermann in the
first Gabor book of 1998 ( [

fezi98
11]). Another relevant paper is the one by Feichtinger and

Kaiblinger ( [
feka04
9]) where it is shown, that (in the S0(Rd) context) the dual window is de-

pending continuously on the lattice constants in the case of Gabor frames resp. Gabor
Riesz bases.

Preview: In order read about Gabor multipliers the best source is probably the survey
article in the second (blue) Gabor book, “Advances in Gabor Analysis”, by Feichtinger
and Nowak ( [

feno03
10]).

General references are: Hans Reiter’s book on Harmonic Analysis (including a very
fine and compact introduction to Integration Theory over Locally Compact Groups, but
without the proof of the existence of the Haar measure) [

re68
18]. An updated version (edited

by his former PhD student Ian Stegeman is [
rest00
20]). The book describes (see also [

re71
19]) the

concepts of Segal algebras (such as S0(G)), and Beurling algebras L1
w(G) (with respect

to multiplicative weights). Both books are available in the NuHAG library.
A nice introduction into ”abstract harmonic analysis” is that of Deitmar ( [

de02
4]), and of

course always Katznelson (starting with classical Fourier series, but also talking about
the Gelfand theory for commutative C∗-algebras) is [

ka04-1
15]. It also contains the first “prop-

agation” of the concept of homogeneous Banach spaces. A similar unifying viewpoint
is taken in the book of Butzer and Nessel ( [

bune71
3]) and of course several of the books of

Hans Triebel (see BIBTEX collection and book-list). These two mathematicians can also
be seen as pioneers of interpolation theory and the so-called theory of function spaces.
(Abstract) Homogeneous Banach spaces are also treated in the Lecture Notes by H. S.
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Shapiro ( [
sh71
23]), having approximation theoretic questions in mind (he makes the associa-

tivity of the action of bounded measures an axiom, obviously because he could proof it
only in concrete cases).

Solid Banach spaces of function (under the name of Banach function spaces) appear in
the work of Zaanen: [

za53
28] (or [

za67
29]), both books should be available in the NuHAG library

(Alserbachstrasse 23, Room 8)
A very good source to learn about Besov spaces is Jaak Peetre’s book entitled “New

Thoughts on Besov Spaces” ( [
pe76
17]).

Banach modules: Rieffel’s work [
ri69-1
22] [some tex-nical problem with BIBTEX]

Generally interesting references about ”mathematics and signal processing”: Richard
Holmes: [

ri79
21]

Protocol for the course: Nov 9th, 2006 HGFei
TOPIC: Standard Spaces
What are standard spaces?? Banach spaces of functions or distributions which allow

sufficiently many regularization operators, e.g. localization (by pointwise multiplication)
and regularization (by convolution).

Definition 30. A Banach space (B, ‖ · ‖B) is called a (restricted) standard space if

(1)
(
S0(Rd), ‖ · ‖S0

)
↪→ (B, ‖ · ‖B) ↪→ (S0

′(Rd), ‖ · ‖S0
′) (continuous embeddings);

(2) FL1(Rd) ·B ⊆ B, with ‖h · f‖B ≤ ‖h‖FL1‖f‖B ;
(3) L1(Rd) ∗B ⊆ B with ‖g ∗ f‖B ≤ ‖g‖L1‖f‖B; for g ∈ L1(Rd), f ∈ B ;

It is clear that almost all the spaces used “normally” in Fourier analysis are such
“standard spaces”. It is sufficient that a space (of locally integrable functions or Radon
measures) is isometrically invariant under the time-frequency shifts π(λ) = MωTt for

λ = (t, ω) ∈ Rd × R̂d and that e.g. the Schwartz space S(Rd) is contained in B as a dense
subspace, to ensure that the above conditions are satisfied. Let us formulate this claim
as a lemma:

standardonRd1 Lemma 38. ? DUPLICATE!? Assume that BspN is a Banach space of locally inte-
grable functions on Rd such that S(Rd) is contained in B as a dense subspace and that

‖MωTtf‖B = ‖f‖B for all λ = (t, ω) ∈ Rd× R̂d. Then it is a standard space.

Which kind of objects do we want: Banach spaces of continuous functions? Banach
spaces of locally (Lebesgue-) integrable functions? Banach spaces of Radon measures, or
(tempered?) distributions? Should we allow even ultra-distributions?

Wishes: We would like to be able to do functional analysis, so with each spaces we
would like to have the dual space in the same family (as long as it can be viewed as a
Banach space of distributions, hence only if it can be completely characterized by the
sum of the local actions).

With each space the Fourier transform of the space should be in the same family, etc.
etc.
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Formal suggestion in this direction is given by the following definition, which describes
at “reasonable” generality a family of Banach spaces which is not restricted to Banach
spaces of functions, because such a family will typically not be closed under duality
(an exception is the family of Lp-classes, but already the dual space of C0(Rd) contains
discrete measures which are not represented by (integrals against measurable) functions.

Definition 31. A Banach space (B, ‖ · ‖B) is called a (restricted) standard space if

(1)
(
S0(Rd), ‖ · ‖S0

)
↪→ (B, ‖ · ‖B) ↪→ (S0

′(Rd), ‖ · ‖S0
′) (continuous embeddings);

(2) FL1(Rd) ·B ⊆ B, with ‖h · f‖B ≤ ‖h‖FL1‖f‖B ;
(3) L1(Rd) ∗B ⊆ B with ‖g ∗ f‖B ≤ ‖g‖L1‖f‖B; for g ∈ L1(Rd), f ∈ B ;

Remark 15. The main idea behind this specific definition (also the reason why it is called
for a while the “restricted standard situation” is the fact that the fact that S0(Rd) and
its dual S0

′(Rd), or that the whole Banach algebra L1(Rd) is acting on (B, ‖ · ‖B) via
convolution, can be seen as a matter of convenience. In this way we avoid a number of
technical conditions involving weights and still have a fairly large collection of examples
available. We will be able to demonstrate the roles of pointwise multiplication and con-
volutive action in the present context, and it will be easy for the reader to generalize the
observations to more general situations.

A typical alternative view in the context of G = Rd is the following setting:

Definition 32 (convenient description). A Banach space (B, ‖ · ‖B) is called a tempered
standard space on Rd if

(1) S(Rd) ↪→ (B, ‖ · ‖B) ↪→ S ′(Rd) (continuous embeddings);
(2) S(Rd) ·B ⊆ B
(3) S(Rd) ∗B ⊆ B

Aside from the fact that one needs some functional analytic argument in order to es-
tablish the equivalence between this “convenient” and another more technical one (which
is however what one needs in order to make those concepts useful). It will be conve-
nient for this purpose to make use of polynomial (submultiplicative) weights ws, given by
wx : x 7→ (1 + |z|2)s/2:

Definition 33 (technical definition). A Banach space (B, ‖ · ‖B) is called a tempered
standard space on Rd if

(1) S(Rd) ↪→ (B, ‖ · ‖B) ↪→ S ′(Rd) (continuous embeddings);
(2) There s ≥ 0 such that L1

ws(R
d) acts on (B, ‖ · ‖B) by convolution and

‖g ∗ f‖B ≤ Cs‖g‖1,ws‖f‖B; for g ∈ L1
ws , f ∈ B, for some Cs > 0;

(3) S(Rd) ·B ⊆ B and there exists some constant ‖h · f‖B ≤ ‖ĥ‖1,wr‖f‖B ;

Remark 16. The typical examples of reduced standard spaces arise from Banach spaces of
say tempered distributions which are isometrically invariant under TF-shifts, i.e., which
satisfy

‖π(t, ω)f‖B = ‖f‖B ∀f ∈ B.

and which contain S(Rd) or S0(Rd) as a dense subspace. In fact, in such a case on can
argue that the isometric invariance of the space implies that the continuity of the mapping
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(t, ω) into S(Rd) resp. S0(Rd) implies that one can extend the strong continuity to all of
(B, ‖ · ‖B), in other words, one obtains a so-called time-frequency homogeneous Banach
space (B, ‖ · ‖B) in this case, and the mapping (t, ω) to π(t, ω)(f) is continuous for every
f ∈ B.

One can also discuss from a technical side the need of assuming that the embedding
from S(Rd) into (B, ‖ · ‖B) should be a continuous one with respect to the occurring
natural tolopogies. In fact, it should be enough, for example, to verify that (B, ‖ · ‖B)
itself is continuously embedded into the space of all locally integrable functions and that
for each norm convergent sequence (fn) in (B, ‖ · ‖B) there exists a subsequence (fnk)
which is pointwise convergent almost everywhere. etc. . . .

Starting from the observation that for any of the module actions, arising from the
pointwise algebra A = FL1 and the convolutional Banach module structure over L1

one can build two types of completions and also two typos of “essential parts”. We will
write BA for the A−completion of B, and BA for the essential part with respect to the
pointwise module action. It is easy to verify that an element is in BA if and only if it
can be approximated by elements with compact support, or if and only if any bounded
sequence of plateau-like functions (forming a bounded approximate unit in FL1) acts as
approximation to the identity operator on the given element.

Analogously we define the completion and the essential part with respect to the Banach
algebra L1. Since the action of this algebra usually comes from the group action (by
translation), we will use the symbols BG and BG.

Combining those four operations in a serial way we can come up with a large number
of new spaces, derived from any of those spaces. Since the operations of completion and
essential part with respect to the same algebra action are canceling each other (similar
to the operation of taking a closure resp. the interior of a “nice set”) we can concentrate
in our discussion on “mixed series”, such as: BG

A
G, or even longer chains of operations

of a similar kind.
The result that has been derived in [

brfe83
2] can be summarized in the following way: JUST

the LAST OCCURRENCE of each algebra operation counts, i.e., the last occurrence of
the symbol G and the last occurrence if A. So we have BG

A
G = BA

G or BG
A
GA

= BGA.
The most important spaces in this family are the minimal space, which turns out to

be the “double essential part”, where the order of algebra operations does not play a role
anymore. It coincides with the closure of the test functions in the standard spaces. So
we have

doubesspartdoubesspart (34) BAG = S0
B

= BGA

On the other hand here is a (single) double completion, which coincides with the w∗-
relative completion of B within S0

′ (details to be presented at another time).

doublcompldoublcompl (35) BAG = B̃ = BGA
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where we define the vague or w∗-relative completion of (B, ‖ · ‖B) in S0
′ as follows:

rel-completrel-complet (36) B̃ = {σ ∈ S0
′ |σ = w∗ − limαfα, sup

α
‖fα‖B <∞}

The infimum over all the bounds supα ‖fα‖B makes B̃ into a standard space, which
contains (B, ‖ · ‖B) as a closed subspace.

Example:
Starting from C0(Rd) one can find that is relative completion is just

(
L∞(Rd), ‖ · ‖∞

)
.

A WIKIPEDIA contribution:

http://en.wikipedia.org/wiki/Harmonic_analysis

http://en.wikipedia.org/wiki/Tempered_distribution

http://en.wikipedia.org/wiki/Fourier_analysis

http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform

http://en.wikipedia.org/wiki/Colombeau_algebra
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Next we are going to show that the convolution action of bounded discrete measures on
a homogenous Banach space can be extended to all of the measures in order to generate
an action of MGN on such a Banach space (B, ‖ · ‖B).

conv-meas-homBR0 Theorem 17. Assume that (B, ‖ · ‖B) is a homogeneous Banach-space with respect to
some “abstract” group action ρ, i.e. we assume that x→ ρ(x)f is continuous from G into
(B, ‖ · ‖B), isometric in the sense that ‖ρ(x)f‖B = ‖f‖Bsp for all x ∈ G and f ∈ B,
and that ρ(x1x2) = ρ(x1)ρ(x2). Of course we can define µ•ρf to be the (unique) limit of
this Cauchy net in (B, ‖ · ‖B). Then one has

meas-onB1meas-onB1 (37) ‖µ•ρf‖B ≤ ‖µ‖M‖f‖B, for all f ∈ B.

In fact, (B, ‖ · ‖B) becomes a Banach module over (Mbsp(G), |ebbes|Mbsp) in this way.

Proof. We are going first to define the action of µ ∈ M (G) on an individual element
f ∈ B, by verifying that the net

DΨ(µ)•ρf :=
∑
i∈I

µ(ψi)ρ(xi)f

is convergent, as |Ψ| → 0.
�

Proof. The idea is to consider the action of DΨµ on f as Riemann-type sums for the
integral

∫
G ρ(x)fdµ(x). Therefore it is natural to check that the action of bounded discrete

measures is OK (this is an easy consequence of the assumptions) and then to compare two
such expressions, namelyDΨ(µ)•ρf andDΦ(µ)•ρf by making use of their joint refinement,
constituted by the (double indexed family) (ψiφj).

Let us first estimate the norm of DΨ(µ)•ρf . Using the isometry of the action of ρ on
(B, ‖ · ‖B) one has, independently from Ψ:

discrmeasconv1discrmeasconv1 (38) ‖DΨ(µ)•ρf‖B ≤
∑
i∈I

|µ(ψi)|‖ρ(xi)f‖B ≤ ‖f‖B
∑
i∈I

|µ(ψi)| ≤ ‖µ‖M‖f‖B.

Assume next that there are two families Ψ = (ψi)i∈I and Φ = (φj)j∈J are given, with
central points (xi)i∈I and (yj)j∈. Then we can define the joint refinement Ψ − Φ as the
family (ψiφj)(i,j)∈I�J , where we can agree to call I � J the family of all index pairs such
that ψi · φj 6= 0 (because all the other products are trivial and should be neglected). In
fact, if both Ψ and Φ are sufficiently “fine” BUPUs one has: 27

Riemann-estim1Riemann-estim1 (39) ‖DΨµ•ρf −DΦ(µ)•ρf‖B =
∑

(i,j)∈I�J

‖ρ(xi)f − ρ(yj)f‖B|µ(ψiφj)| ≤

sup
(i,j)∈I�J

‖ρ(xi)[f − ρ(yj − xi)f ]‖B
∑

(i,j)∈I�J

‖(ψiφj)µ‖M ≤ ε‖µ‖M ,

if only Ψ resp. Φ are fine enough. Due to the completeness of (B, ‖ · ‖B) one finds that
there is a uniquely determined limit, which we will call µ•ρf . It is then obvious that

muastf-estim1muastf-estim1 (40) ‖µ•ρf‖B = lim
|Ψ|→0

‖DΨµ•ρf‖B ≤ lim sup ‖DΨµ‖M‖f‖B = ‖µ‖M‖f‖B.

27Using that ψi =
∑
j∈j ψiφj , hence

∑
(i,j)∈I�J ψiφj ≡ 1 and

∑
(i,j)∈I�J ‖(ψiφj)µ‖M = ‖µ‖M .
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Of course it remains to show that the so defined action is associative, i.e. that

assocatassocat (41) (µ ∗ µ2)•ρf = (µ1)•ρ(µ2•ρf), µ1, µ2 ∈M (G), f ∈ B,

but his is clear because the associativity is valid for the discrete measures DΨµ and DΦ(µ).
28

Remark 17. In the derivation above we have used the isometric property and the fact
that ρ(x1x2) = ρ(x1)◦ρ(x2). It would have been no problem if this identity was only true
“up to some constant of absolute value one”, i.e. if one has a projective representation of

G only, such as the mapping λ = (t, ω) 7→ π(λ) = MωTt from Rd× R̂d into the unitary
operators on the Hilbert space

(
L2(Rd), ‖ · ‖2

)
.

For the next step we need a simple observation from abstract Hilbert space theory.

Lemma 39. Assume that a (complex) linear mapping between two Hilbert space over the
complex numbers, H1 →H2 is isometric, i.e. satisfies

isom-embed1isom-embed1 (42) ‖T (h)‖H2 = ‖h‖H1 ∀h1 ∈H1.

Then the adjoint mapping T ′ : H2 → H1 is the inverse on the range, i.e. one has
T ′(Tf) = f ∀h1 ∈H1.

Proof. The claim follows from the fact that an isometric embedding also preserves scalar
products, as a consequence of the polarization identity

polarizationpolarization (43) 〈f, g〉 =
1

4

3∑
k=0

ik〈f + kg, f + ikg〉 =
1

4

3∑
k=0

ik‖f + ikg‖2

Hence

isom-adjinvisom-adjinv (44) 〈T ′(Tf), g〉 = 〈Tf, Tg〉 = 〈f, g〉 ∀f, g ∈H1.

Since this is true for every g ∈ H1 the required claim is valid. Usually one says that
T ′(h2) is defined in the weak sense for h2 ∈H2, through the identity

weak-Tadjweak-Tadj (45) 〈T ′h2, h1〉H1 = 〈h2, T (h1)〉H2 , h1 ∈H1, h2 ∈H2.

�

Application:
(
S0(Rd), ‖ · ‖S0

)
is defined via its STFT: f ∈ L2(Rd) belongs to S0(Rd)

if and only if Vg0f ∈ L1(R2d), where g0 is the Gauss-function (or any other nonzero
Schwartz-function). Since f 7→ Vgf is isometric (assuming that ‖g0‖2 = 1) we have
according to the above lemma the (weak) reconstruction formula

f =

∫
Rd×R̂d

Vg0f(λ)π(λ)g0 dλ,

28Note that H.S.Shapiro (cf. [
sh71
23]) is making this associativity an extra axiom, apparently because he

could not proof it directly for technical reasons, because he defines the action of the bounded measures
on an “abstract homogeneous Banach space”. H.C. Wang exhibits in [

wa77
26] an example of what he calls

a semi-homogeneous Banach space (without strong continuity of the action of G on (B, ‖ · ‖B), which
does not allow the extension to all of the bounded measures. Indeed, it is a Banach space of measurable
and bounded functions on R which is non-trivial, but which does not contain any non-zero continuous
function!
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but if Vg0f ∈ L1(R2d) ⊂M(R2d) then we have

f = Vg0f •π g0

in the spirit of the above abstract statement (for ρ = π). It follows that one has for every
TF-homogeneous Banach space (B, ‖ · ‖B), i.e. for every Banach space (B, ‖ · ‖B) such
that ‖π(λ)f‖B = ‖f‖B and ‖π(λ)f − f‖B → 0 for λ→ 0:

so-minimal1so-minimal1 (46) ‖f‖B = ‖Vg0f •π g0‖B ≤ ‖Vg0f‖L1(R2d)‖g0‖B = ‖f‖S0‖g0‖B.

Proof. The proof relies on the fact that for any net of convergent nets Ψβ (all sufficiently
“fine”) the overall family (DΨβµα is still bounded and uniformly tight! 29 Moreover it is
clear that for each fixed β the net DΨβµα is w∗-convergent to DΨβµ0. Given the tightness

of the family only a finite number of indices of the family (ψβi )i∈I is relevant for the

convergence, hence µα(ψβi )→ µ0(ψβi ) implies that

DΨβµα•ρf → DΨβµ0•ρf.
FURTHER details have to be checked in a clean form later on!

Requiring the argument that one has for any µ ∈M (G): http://www.univie.ac.at/nuhag-
php/cm/package.php

‖µ•ρf −DΨµ•ρf‖B ≤ ε‖µ‖M
depending only on the element f ∈ B and the level of “refinement” of Ψ but NOT on
the individual choice of µ. �

Next we want to show that there is an important form of continuity from in this action
from M (G)×B → B, with respect to the w∗-topology on M (G).

wst-to-norm Theorem 18. Assume that (µα)α∈I is a bounded and tight net of bounded measures,
which is w∗-convergent to some limit measure µ0 ∈ M(Rd). Then one has for every
f ∈ B:

wst-to-norm1wst-to-norm1 (47) ‖µα•ρf − µ0•ρf‖B → 0 for α→∞.

�

29It is a good exercise to check the technical details yourself!
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Some pointwise estimates

Pointwise estimates: Convolution preserves monotonicity We have to define |µ| for a
given measure, and have to show that ‖ |µ| ‖M = ‖µ‖M for each µ ∈Mb(Rd).

point-convpoint-conv (48) |µ ∗ f | ≤ |µ| ∗ |f |

point-conv1point-conv1 (49) |f | ≤ |g| ⇒ |µ| ∗ |f | ≤ |µ| ∗ |g|

ost-estim1ost-estim1 (50) [(DΨf − f) ∗ g](x) ≤ [|f | ∗ oscδ(g)](x), ∀x ∈ Rd.

or in short, a pointwise estimate of the form

ost-estim1bost-estim1b (51) [(DΨf − f) ∗ g] ≤ [|f | ∗ oscδ(g)].

MAIN ESTIMATE

main-estim11main-estim11 (52) |DΨµ ∗ f − µ ∗ f | ≤ |µ| ∗ | SpΨ f − f | ≤ |µ| ∗ oscδ f

if diam(ψ) ≤ δ.
It relies on a couple of “simple” estimates, such as

oscδ f̌ = (oscδ f )̌

and
oscδ(Txf) = Tx(oscδ f)

Obviously
| SpΨ f(x)− f(x)| ≤ oscδ f(x), ∀x ∈ Rd.

Moreover the fact that the discretization operator DΨ : Mb(Rd) 7→Mb(Rd) is the adjoint
of the spline operator SpΨ : C0(Rd) 7→ C0(Rd), implies also that we have:

conv-Dpsiconv-Dpsi (53) DΨµ ∗ f = µ ∗ SpΨ f

Lemma 40. If f ∈W (C0, `
p) then also oscδ f ∈W (C0, `

p).

Lemma 41. A function f ∈ Cb(Rd) belongs to W (C0, `
p) if and only if f ∈ Lp(Rd) and

oscδ f ∈ Lp(Rd).
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9. Discretization and the Fourier transform

TEST: We shall define here tt a :=
∑

k δak and tt a = 1
a

∑
n δna . Then Ftt a = tt a.

In fact, one has for a = 1 according to Poisson’s formula Ftt 1 = tt 1, and the general
formula follows from this by a standard dilation argument: Mass preserving compression
Stρ is converted into “value-preserving” dilation Dρ on the Fourier transform side, and
Dρtt 1 = tt 1/ρ.

Let us put a few observations of importance at the beginning of this section:

• The periodic and discrete (unbounded) measures are exactly those which arise as

periodic repetitions of a fixed finite sequence of the form
∑N−1

k=0 akδk.
• The Fourier transform of such a sequence can be calculated directly using the

FFT
• for any (sufficiently nice) function f (e.g. f ∈W (C0,L

1)(Rd)) one has for b = 1/a:

frepper1frepper1 (54) F
[
tt aN ∗ (tt a · f)

]
= ttNb · (tt b ∗ f̂) = tt b ∗ (ttNb · f̂)

The last step in the proof of formula
frepper1
54 is easily verified directly: sampling and periodiza-

tion commute if (and only if) the periodization constant (bN in our case) is a multiple of
the sampling period (in our case b).

The question of approximately obtaining the continuous Fourier transform f̂ of a “nice
function” f from the FFT of it’s sampled version can be derived from this fact.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Given h > 0 and some prescribed function ψ on Rd, such as a cubic B-spline, the

quasi-interpolation Qhf = Qψ
hf of a continuous function f on Rd is defined by

eqdefQheqdefQh (55) Qhf(x) =
∑
k∈Z

f(hk)ψ(x/h− k), x ∈ Rd.

For suitable ψ, this formula describes an approximation to f from its samples on the fine
grid hZd ⊂ Rd.

theoSO Theorem 19. Assume that ψ ∈ S0(Rd) satisfies
∑

k∈Zd ψ(x−k) ≡ 1, i.e., that the family
(Tkψ)k∈Zd forms a partition of unity. Then for all f ∈ S0(Rd) we have ‖Qhf − f‖S0 → 0
as h→ 0.

Note, that under the same restrictions on ψ one also has convergence of the quasi-
interpolation scheme in the Fourier algebra FL1 for all f ∈ FL1(Rd).

Consequently one has Q∗hσ → σ in the weak∗-sense for each σ ∈ S0
′(Rd). But Q∗hσ =∑

k σ(ψk)δhk. Hence the discrete measures are w∗−dense in S0
′(Rd).
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10. Quasi-Interpolation

The piecewise linear interpolation operator for data available on the lattice of integers Z,
say (ck)k∈Z, can be described as a sum of shifted triangular functions ∆(0) = 1,∆(k) = 0
for k /∈ Z. Hence it can be written as a convolution product of the form(∑

k∈Z

ckδk
)
∗∆.

It is easy to show that the resulting sum (the interpolant) belongs to Lp(R) if the sequence
c is from `p(Z). But this is true for much more general functions than then triangular
function. It suffices to have ϕ ∈W (C0, `

1)(R) in order to find out that
∑

k∈Z Tkϕ belongs
to W (C0, `

p)(R) for c ∈ `p(Z). In fact, this assumption implies
∑

k ckδk ∈ W (M , `p)
and hence the convolution relations for Wiener amalgam spaces imply:

f =
∑
k∈Z

Tkϕ =
(∑
k∈Z

ckδk
)
∗ ϕ ∈W (C0, `

p)(R).

As a consequence f is a continuous function and can be sampled, e.g., over the integers,
but in most cases f(k) will be perhaps close to, but different from the original sequence
(ck)k∈Z, hence the name quasi-interpolation. 30

The so-called quasi-interpolation operators make sense for functions from W (C0, `
p)(Rd),

to choose the appropriate generality from now on. For those functions one can guarantee
that for some C > 0 and all p ∈ [1,∞] one has:

‖(f(k))k∈Zd‖p ≤ C‖f |W (C0, `
p)‖ ∀f ∈W (C0, `

p)(Rd).

The same is true for any other lattice ΛC Rd, with

‖(f(λ))λ∈Λ‖p ≤ CΛ‖f |W (C0, `
p)‖ ∀f ∈W (C0, `

p)(Rd).

Hence the operator

f 7→
∑
λ∈Λ

f(λ)Tλϕ

is a well defined operator on W (C0, `
p)(Rd) (even uniformly bounded with respect to

the range p ∈ [1,∞]. We will call such an operator the quasi-interpolation operator with
respect to the pair (Λ, ϕ).

Among the quasi-interpolation operators those which arise from BUPUs, i.e., from
functions ϕ ∈W (C0, `

1)(Rd) satisfying∑
λ∈Λ

Tλϕ(x) ≡ 1

are the most important ones. We are going to show that quasi-interpolation operators
with respect to “fine lattices” Λ are good approximation operators.

The interesting phenomenon is the behaviour of piecewise linear interpolation over
lattices of the form αZd, for α→ 0.

30Note that SINC is not covered by this example, although for p ∈ (1,∞) it shares more or less all
the properties described above.
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Let us recall that (Tkϕ)k∈Λ is a BUPU for some ϕ ∈ W (C0, `
1)(Rd) if and only if ϕ̂

is a Lagrange interpolator over the orthogonal lattice Λ⊥ = {χ | 〈χ, λ〉 ≡ 1 ∀λ∈Λ}, i.e.,
that

Lagr-intp1Lagr-intp1 (56) ϕ̂(λ′) = δ0,λ′ ∀λ′ ∈ Λ⊥.

Proof. We can reinterpret the BUPU condition as ttH ∗ ϕ ≡ 1, which turns into

F(ttH) · ϕ̂ = F(1) = δ0.

Since F(ttH) = CHttH⊥ this condition reduces to (using f · δx = f(x)δx):

CHttH⊥ · ϕ̂ =
∑
h′∈H⊥

ϕ̂(h′)δh′ = δ0,

which in turn is true if and only if ϕ̂(h′) = 0 for h′ 6= 0 for all h′ ∈ H⊥.
�

Remark 18. The condition described above is invariant with respect to pointwise powers
on the Fourier transform side, i.e., ϕ̂ satisfies (

Lagr-intp1
56) then the same is true for ϕ̂2 = ϕ̂ ∗ ϕ.

The quasi-interpolation operator QΛ,ϕ can thus be described as the mapping

quasintquasint (57) f 7→ (ttH · f) ∗ ϕ)

Note that this operators is bounded on W (C0, `
p)(Rd) because ttH ·f ∈W (M , `∞)(Rd)·

W (C0, `
p)(Rd) ⊆W (M , `p)(Rd), hence

(f · ttH) ∗ ϕ ⊆W (M , `p) ∗W (C0, `
1) ⊆W (C0, `

p)(Rd).

It is of interest to check the behaviour of quasi-interpolation for the lattices hZd, with
h→ 0:

Given h > 0 and some prescribed function ψ on Rd, such as a B-spline, the quasi-
interpolation Qhf = Qψ

hf of a continuous function f on Rd is defined by

eqdefQheqdefQh (58) Qhf(x) =
∑
k∈Z

f(hk)ψ(x/h− k), x ∈ Rd.

For suitable ψ, this formula describes an approximation to f from its samples on the fine
grid hZd ⊂ Rd.

theoSO Theorem 20. Assume that ψ ∈ S0(Rd) satisfies
∑

k∈Zd ψ(x−k) ≡ 1, i.e., that the family
(Tkψ)k∈Zd forms a partition of unity. Then for all f ∈ S0(Rd) we have ‖Qhf − f‖S0 → 0
as h→ 0.

Note, that under the same restrictions on ψ one also has convergence of the quasi-
interpolation scheme in the Fourier algebra FL1 for all f ∈ FL1(Rd).
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11. Advantages of a Distributional Fourier Transform

Whereas most books in the field of Fourier analysis describe the Fourier transform
at various levels, typically starting from the classical case of the Fourier transform for
periodic functions [

de02,ka76
4,14]. Sometimes the need of a generalized Fourier transform is moti-

vated by the fact, that certain objects (like the “pure frequencies”) do not have a Fourier
transform in the usual sense, because first of all the classical Fourier transform is bound
to diverge, while on the other hand the Fourier transform (which is in the generalized
calculus a Dirac measure) is not an ordinary function, but has to be a kind of generalized
function (in fact a bounded measure in that case), cf. [

be96
1].

In this section we want to emphasize (by demonstrating the situation, valid even for
locally compact groups in full generality, through the example G = Rd).

Not only does the distributional Fourier transform (and it suffices to know the S0
′-

theory for this purpose) allow to define the Fourier transform for decaying objects (like
functions in any of the Lp-spaces), but also for periodic objects (such as periodic functions
belonging locally to Lp), even with different periods (which brings us already close to the
discussion of almost periodic functions).

As a central topic let us therefore discuss the Fourier transform of periodic functions
(or measures, or distributions) as the “infinite limit” of it’s periodic repetitions. First of
let us recall that it is easy to find for each lattice Λ = A∗Zd, for some non-singular d×d-
matrix A a fundamental domain (equal to Q = A ∗ [0, 1)d) and also bounded partitions
of unity of the form (ϕλ)λ∈Λ = (Tλϕ)λ∈Λ, with ϕ ∈ Cc(Rd) or even in S(Rd). For the next
lemma we need ϕ ∈ S0(Rd), or even better, in S(Rd).

Lemma 42. A function f (or distribution in S0
′(Rd)) 31 is periodic with respect to Λ C Rd

if and only if it is of the form

(59) f =
∑
λ∈Λ

Tλf
◦
λ ,

for some compactly supported pseudo-measure f ◦ ∈ FL∞(Rd).

Proof. If f is Λ-periodic, i.e., if Tλf = f for all λ∈Λ, then we can choose f ◦ = fϕ, for a
function ϕ with compact support, generating a Λ-BUPU as described above, because

f =
∑
λ∈Λ

Tλ(T−λ(fϕλ)) =
∑
λ∈Λ

Tλf
λ =

∑
λ∈Λ

Tλf
◦.

because fλ = T−λ(f · ϕλ) = T−λf · T−λϕλ = f · ϕ =: f ◦ by the periodicity of f .
Conversely, let f ◦ a compactly supported pseudo-measure or even in W (FL∞, `1).

Since W (M , `∞) ∗W (FL∞, `1) ⊂ W (FL1, `∞) = S0
′ the partial sums of the peri-

odization are both uniformly in S0
′ as well as w∗-convergent, as can been seen from the

interpretation

lim
F→Λ

∑
λ∈F

Tλf
◦ = lim

F→Λ

(
(
∑
λ∈F

δλ) ∗ f ◦
)
.

31A distribution from S(Rd) which is Λ−periodic for any co-compact lattice Λ in Rd does in fact
belong automatically to S0

′(Rd)!
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In fact, one can reduce the general case of w∗-convergence to the case where (first of
all) f ◦ as compact support, but in testing that the action on arbitrary test functions
h ∈ S0(Rd) those in (S0)c = Ac(Rd) are sufficient.
probably some more details to be given �

We remark that a compactly supported pseudo-measure has the property that its Fourier
transform is indeed a bounded and continuous function. Indeed, we can find some ϕ ∈
S0(Rd) such that f ◦ · ϕ, hence F(f ◦ · ϕ) = f̂ ◦ ∗ ϕ̂ ∈ L∞ ∗ S0 ⊆ Cb(Rd). One can also

show that the Fourier coefficients of the periodic version are just the values f̂ ◦ over the
orthogonal lattice Λ⊥. Let us describe this in detail:

Using now the fact that the distributional FT of ttΛ coincides with a multiple of
ttΛ⊥ , i.e., FttΛ = CΛttΛ⊥ in the S0

′-sense, we find that for any periodic function or
distribution f we have

FTFT (60) Ff = F(ttΛ ∗ f ◦) = F(ttΛ) · f̂ ◦ = CΛttΛ⊥ · f̂ ◦.

Consequently we have supp(f̂) ⊆ supp(ttΛ⊥) = Λ⊥. In fact, we can give a more explicit

description of f̂ : by carrying out the pointwise multiplication ttΛ⊥ · f̂ ◦ we find that

f̂ =
∑

λ⊥∈Λ⊥

f̂ ◦(λ⊥) δλ⊥ .

But for f ◦ ∈W (FL∞, `1) (by the Hausdorff-Young principle for generalized amalgams)

we know that f̂ ◦ ∈W (FL1, `∞) ⊂W (C0, `
∞) ⊂ Cb(Rd). Hence we can even claim that

f̂ is a sum of Dirac measures located at the points of Λ⊥, with a bounded sequence of
coefficients in `∞(Λ).

In fact (this has to be shown separately), one can be shown that this is a complete
characterization all the tempered distributions σ ∈ S0

′(Rd) with supp(σ) ⊆ Λ⊥.

Lemma 43. (Characterization of distributions supported on discrete subgroups)
A distribution σ ∈ S0

′(Rd) satisfies supp(σ) ⊆ Λ if and only if it is of the form

σ =
∑
λ∈Λ

cλδλ

for some sequence c = (cλ)λ∈Λ ∈ `∞(Λ).

Summarizing we have a mapping from the periodic elements (in S0
′(Rd)) into `∞(Λ),

of the form f → (f̂ ◦(λ))λ∈Λ (which is of course independent of the choice of f ◦). Assume
we have a regular distribution, “coming from” some f ∈ L1(T). Let us discuss (for
simplicity) the situation for d = 1 and Λ = Z. Then we have Q = [0, 1) and we can
choose f ◦ = f · 1Q ∈ L1(R). Since Z⊥ = Z the Fourier transform of a periodic (local)

L1-function are a sequence on Z again: f̂ ◦(n) =
∫ 1

0
f(t)e−2πitdt which coincides with

the usual (“classical”) definition of Fourier coefficients for locally integrable, Z-periodic
functions.

Note that in our context local square (or generally p-) integrability corresponds to
additional properties on f ◦ which in such a case will belong locally to L2(R) (resp. Lp(R)),
resp. to L2(T) or Lp(T). In our terminology f ◦ ∈W (L2, `1)(R) resp. W (Lp, `1)(R), and
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again by the Hausdorff-Young principle we obtain that f̂ ◦ ∈ W (FL1, `∞)(R), or the

Fourier coefficients of f resp. the values of (f̂ ◦(n))n∈Z belong to `p
′
(Z).

A topic of interest in connection with standard spaces is the following one, which is
based on the fact that for any (restricted) standard space (B, ‖ · ‖B) we have the following
chain of continuous inclusion:

WB-incl0WB-incl0 (61) W (B, `1) ↪→ (B, ‖ · ‖B) ↪→W (B, `∞)

and the fact that we have

WB-incl2WB-incl2 (62) W (B, `p) ↪→W (B, `q) if p ≤ q.

low-uppindex Definition 34. Given a (restricted) standard space (B, ‖ · ‖B) we define the lower resp.
upper index as follows:

low-indexlow-index (63) lowind(B) := sup{ p |W (B, `p) ↪→ B}
and

upp-indexupp-index (64) uppind(B) := inf{ q |B ↪→W (B, `q)}

In most cases the supremum resp. infimum will not be attained. However, we will have
in any case

lowlequpplowlequpp (65) lowindB ≤ uppindB

The following condition is in general slightly stronger than the case of equality of indices:

Definition 35. A Banach space is called to be of global type p if one has

deftypepdeftypep (66) B = W (B, `p).

Aside from the trivial facts that Lp(Rd) is of course of type p for any p, one can check
that Mb(Rd) is of type 1, while the usual L2-Sobolev spaces are of type 2. They have
therefore been called `2-puzzles by P. Tchamitchian in [

tc84,tc87
24,25] (?)

One of the interesting and non-trivial facts (no proof is given here) is that one has (the
most interesting perhaps being the case p = 1), see [

gr92-2
12]:

Lemma 44. For 1 ≤ p ≤ 2 lowind(FLp) = p = lowind(FLp′) while uppind(FLp) =
p ′ = uppind(FLp′). Hence, except for the case p = 2 the space FLp is never of a
particular type.

Another interesting family of spaces is the set of all “multipliers” on Lp, for say 1 ≤ p <
∞, which we denote by HL1(Lp,Lp), which is indeed another (restricted) standard space.

It is well known that it coincides (by duality) withHL1(Lp ′ ,Lp ′), thatHL1(L1) = Mb(Rd)
andHL1(L2,L2) = FL∞(Rd). Hence one may conjecture that lowind and uppind of these
spaces equals p and p ′, but to my knowledge nothing is known about it for 1 < p < 2.

Another interesting question could be the upper and lower index for modulation spaces
(which can be shown to be of local type FLq). Since the space M p(Rd) = M s

p,q(Rd) for
p = q are Fourier invariant an coincide with W (FLp, `p) they are clearly of type p.
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12. Ideas on BUPUS, Wiener Amalgam and Spline-Type Spaces

BUPUs are a universal tool for many questions in the theory of function spaces, they
are quite useful in order to develop concepts for (conceptual) harmonic analysis, and they
are crucial for the definition of Wiener amalgam spaces.

Here is a short list of properties of these families that make them so important:

• They can be defined over arbitrary locally compact groups G. In fact, there use is
implicit in the construction of the Haar measure following Cartan resp. A. Weil;
• By means of BUPUs it is easy to show that the discrete measures are w∗-dense in

the space of bounded measures (Mb(G), ‖ · ‖Mb
).

• Obviously they are extremely useful in defining Wiener amalgam spaces (the dis-
crete description is much more general, at least in order to introduce the spaces,
than the “continuous” description);
• Spline-Type are quite important as well; they are obtained as “closed linear span”

of a set of function and their translates, within some larger function space, say(
Lp(Rd), ‖ · ‖p

)
. If we find a Riesz projection basis for such a space than typically

the discrete `p-norm on the coefficients, and the Lp(Rd) or also the W (C0, `
p)(Rd)-

norm are equivalent on the corresponding spline-type space.

For most purposes any result that is valid for regular BUPUs on Rd can be easily
transferred to general statements about arbitrary BUPUs over locally compact, or at
least locally compact Abelian groups.

13. Riesz Bases and Banach Frames

In the terminology introduced in XXX this means that R is injective, but not surjective,
and C is a left inverse of R. Thus we have the following commutative diagram.

X

X0 Y-C
�

R

?

P
@
@
@
@@R

C
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