

Austrian

Hungarian
Workshop

Florian Freistetter, 13 May 2002

- NEAs evolve on chaotic orbit
-therefore results for one individual object are „useless"
- one has to derive statistical values
-thus induces some sort of grouping

2 examples shall illustrate the problem \rightarrow

Body 001 A
$\cdot \mathrm{a}=0.7 \mathrm{AU}, \mathrm{e}=0.1, \mathrm{i}=1^{\circ}$

- CP $_{\text {EARTH }}=5,78 \mathrm{E}-08$
- $\mathrm{BCN}=0$

Pentium II Processor

Body 001 B

$-\mathrm{a}=0.7 \mathrm{AU}, \mathrm{e}=0.1, \mathrm{i}=1^{\circ}$

- CP $_{\text {EARTH }}=6,98 \mathrm{E}-08$
- $\mathrm{BCN}=38$

AMD 1800 Processor different Integratorstepsize

Body 002 A

- $a=1.35 \mathrm{AU}, \mathrm{e}=0.4, \mathrm{i}=1^{\circ}$
- CP $_{\text {Earth }}=4,21 \mathrm{E}-08$
- $\mathrm{BCN}=0$

Pentium II Processor

Body 002 B

- $a=1.35 \mathrm{AU}, \mathrm{e}=0.4, \mathrm{i}=1^{\circ}$
- CP $_{\text {earth }}=6,43 \mathrm{E}-08$
- $\mathrm{BCN}=58$

AMD 1800 Processor

Model 1 (Pentium II)

- Aten (264 bodies) : CP $_{\text {еаттн }}=7,85 \mathrm{E}-08$
- Apollo (348 bodies) : CP еаттн $=5,26 \mathrm{E}-08$
- Amor (54 bodies) : CP $_{\text {Еаттн }}=3,79 \mathrm{E}-09$

Model 2 (AMD 1800)

- Aten (88 bodies) : CP $_{\text {EARTH }}=7,52 \mathrm{E}-08$
- Apollo (116 bodies) : CP $_{\text {еаттн }}=5,20 \mathrm{E}-08$
- Amor (18 bodies) : CP $_{\text {Earth }}=1,48 \mathrm{E}-09$

If one deals with NEAs, one has to define groups.
The number of group members must be sufficient large!

The number of group members is NOT constant!
NEAs suffer under MIXING !

Dvorak and Freistetter (2001) :

720 fictitous asteroids :
Mean Percentageof $\begin{gathered}\text { em bersh ip }\end{gathered}$

Subaten	A ten	Apollo	A m or
$53,74 \%$	$70,99 \%$	$83,00 \%$	$90,43 \%$

Milani et al (1989) :

89 real asteroids :

| Mean Percentage ofM em bersh ị | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Geographos Toro | Kozai | A linda | Eros | Oljato | Com et | |
| $75,86 \%$ | $22,90 \%$ | $91,70 \%$ | $55,05 \%$ | $83,72 \%$ | $65,13 \%$ | $84,14 \%$ |

Example : The APOLLO Group has a mean collisionprobability with Earth of ~ 53 collisions in 10^{9} years. BUT : A „mean Apollo" spends 11% of its time as an Aten, 83% as an Apollo and 3% as an Amor ! (Dvorak and Freistetter, 2001)

Therefore : The grouping used for calculating statistical properties has to „sufficiently stable" during integration time.

-„Normal" classifications are not stable enough.

- A new attempt to classify NEAs is based on the existing classes \rightarrow „Meta Classification"
-Groups are also based on the dynamical properties \rightarrow should be more stable then existing ones.

Border Crossing Number (BCN) := Number of group changes in the Aten/Apollo/Amor Classification

Distribution of BCNs was checked for 720 asteroids \rightarrow

Mean

BCNs investigate the general properties of mixing. For a useful grouping some more details are needed :
-Direction of asteroidal flow in a-e plane - Speed of asteroidal flow in a-e plane

This information leads to a „fuzzy classification"

A fuzzy group needs a membership function that gives the grade of membership.
We want to establish a grouping, that gives, for a certain region in a-e space, that mean grade of membership to the classical Aten/Apollo/Amor classification.

This is done by calculation a „vector field" \rightarrow

How to construct a membership function for NEAs:

1) make copies of the classical border and place them outside the original one :

Because the choice of this borders was „intuitive" they have to be adjusted.

This is done by calculating the flow around the borders.

How to construct a membership function for NEAs:
2) calculate the direction and the velocity of the motion of an asteroid. This leads to a vector field that can be used to adjust the borders :

The fuzzy grouping can be refined by several additional properties of NEAs :
-BCNs
-Collision Propabilities

- Effect of Resonances
-....

- Obtaining a stable grouping of NEAS for long time -scales is very difficult
- One needs methods, that are based on the dynamics -of the asteroids
- A lot of work is still needing to understand the mixing -dynamics of planet crossing asteroids

