

Nagy Imre

Research Group for Physical Geodesy and Geodynamics Department of Astronomy, Eötvös University

Contents

- Exoplanets
- Detectability of exomoons and transit timing effects
- Where can we find exomoons?
 - Hill sphere and Roche limit
 - The limit of existence of the exomoons
- Layout of the model for stability investigations
- Preliminary results
 - Stability of exomoons
 - Permissible range
- Further works

Exoplanets

- The first exoplanet (HD 114762 b) was discovered in 1989.
- Up to date 432 exoplanets are known in 365 systems (45 multiple planet systems).

• One can see, that many exoplanets are giant planet close to the host star, and some of them are Neptune size object.

Detectability of exomoons

• The mass and the diameter of exomoons are commonly supposed relatively small.

- The small mass causes small, almost invisible effects on radial velocity curve.
- The small diameter causes small effects on light curve, moreover these effects are not periodic (except resonant systems), which makes hard to detect an exomoon.
- Planet and its moon orbit around each other, which causes transit timing effects.
- Detecting the transit timing effects seems to be the most hopeful method.

Transit timing effects

- Planets and its moon orbit around their barycentre, which causes variations in the transit of the planet.
- Transit Time Variation (TTV):
 - Amplitude is proportional to m_{moon}a_{moon}
- Transit Duration Variation (TDV):
 - Amplitude is proportional to $m_{moon}(a_{moon})^{-1/2}$
- Detecting the TTV and TDV moon's mass and semi-major axis can be separately determined.
- Current ground-based telescopes could detect a $1\,M_\oplus$ exomoon in the habitable zone around a Neptune-like exoplanet.

Where can we find exomoons?

- Around giant exoplanets, since giant planets have moons in our Solar System,
- but there are some problem:
 - If the planet orbits too close to the star, the temperature is high. However this circumstance restricts just the composition of the moon.
 - Close to the star the shape of the planet is elongated, which can cause strong perturbations.
 - If the planet rotates too fast, its shape is flattened, which can cause strong perturbations.
 - If the planet orbits too close to the star, the Roche limit can extend over the Hill sphere.

Hill sphere and Roche limit

• Hill sphere: An astronomical body's Hill sphere is the region in which it dominates the attraction of satellites.

$$r_{Hill} \approx a(1-e) \sqrt[3]{\frac{m_{planet}}{3m_{star}}}$$

 Roche limit: It is the distance within which a celestial body (moon), held together only by its own gravity, will disintegrate due to a second celestial body's (planet) tidal forces exceeding the first body's gravitational selfattraction.

$$R_{Roche} = R_{planet} \sqrt[3]{2} \frac{\varrho_{planet}}{\varrho_{satellite}}$$

When the Roche limit grows over the Hill sphere, exomoons cannot exist further.

The limit of existence of the exomoons

• When the Roche limit grows over the Hill sphere, exomoons cannot exist further.

$$R_{R-H} \approx R_{moon} \frac{1}{1 - e_{planet}} \sqrt[3]{48} \frac{M_{star}}{m_{moon}}$$

$$R_{R-H} \approx \sqrt[3]{\frac{36}{\pi}} \frac{1}{\left(1 - e_{planet}\right)^{3}} \frac{M_{star}}{\varrho_{moon}}$$

For example Gliese 581:

$$\begin{split} M &= 0.3 \ M_{Sun} \\ \rho_{moon} &:= \rho_{Earth} \approx 6 \ g/cm^{3} \\ R_{R-H} &\approx 0.007 \ AU < a_{Gl581e} = 0.0285 \ AU \end{split}$$

Layout of the model

Stability of exomoons (Preliminary results)

Permissible range (Preliminary results)

Conclusions

• We can conclude that, ...

Further works

- We would like to calculate
 - perturbations from the shape of the planet, which are caused by:
 - fast rotation of the planet (J_2) ;
 - vicinity of the star (C_{22} , S_{22});
 - stability of inclined moon orbits;
 - more precisely the radius of the Hill sphere.
- We would like to use Pickard iteration calculating the effect of spherical perturbations. It is a Taylor-series method, similar to Lie integration, but more flexible, however very slow. (Renáta's task)

Thank you for you attention!