Volume 12 · Number 3 · Pages 265–274

< Previous Paper · Next Paper >

Eigenforms, Interfaces and Holographic Encoding: Toward an Evolutionary Account of Objects and Spacetime

Chris Fields, Donald D. Hoffman, Chetan Prakash & Robert Prentner

Download the full text in
PDF (1315 kB)

> Citation > Similar > References > Add Comment

Abstract

Context: The evolution of perceptual systems and hence of observers remains largely disconnected from the question of the emergence of classical objects and spacetime. This disconnection between the biosciences and physics impedes progress toward understanding the role of the “observer” in physical theory. Problem: In this article we consider the problem of how to understand objects and spacetime in observer-relative evolutionary terms. Method: We rely on a comparative analysis using multiple formal frameworks. Results: The eigenform construct of von Foerster is compared to other formal representations of observer-environment interactions. Eigenforms are shown to be encoded on observer-environment interfaces and to encode fitness consequences of actions. Space and time are components of observational outcomes in this framework; it is suggested that spacetime constitutes an error-correcting code for fitness consequences. Implications: Our results contribute to an understanding of the world in which neither objects nor spacetime are observer-independent. Constructivist content: The eigenform concept of von Foerster is linked to the concepts of decoherence and holographic encoding from physics and the concept of fitness from evolutionary biology.

Key words: Active inference, boundary, conscious agent, icon, Markov blanket, redundancy.

Citation

Fields C., Hoffman D. D., Prakash C. & Prentner R. (2017) Eigenforms, interfaces and holographic encoding: Toward an evolutionary account of objects and spacetime. Constructivist Foundations 12(3): 265–274. http://constructivist.info/12/3/265

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Fields C., Hoffman D. D., Prakash C. & Prentner R. (2017) Authors’ Response: Boundaries, Encodings and Paradox: What Models Can Tell Us About Experience

Urrestarazu H. (2012) Autopoietic Systems: A Generalized Explanatory Approach – Part 3: The Scale of Description Problem

Urrestarazu H. (2011) Autopoietic Systems: A Generalized Explanatory Approach – Part 2

References

Adams R. A., Friston K. J. & Bastos A. M. (2015) Active inference, predictive coding and cortical architecture. In: Casanova M. F. & Opris I. (eds.) Recent advances in the modular organization of the cortex. Springer, Berlin: 97–121. << Google Scholar

Arkani-Hamed N. & Trnka J. (2014) The amplituhedron. Journal of High Energy Physics 2014: 30. << Google Scholar

Ashby W. R. (1956) Introduction to cybernetics. Chapman and Hall, London. << Google Scholar

’t Hooft G. (1993) Dimensional reduction in quantum gravity. In: Ali A., Ellis J. & Randjbar-Daemi S. (eds.) Salamfestschrift. World Scientific, Singapore: 284–296. << Google Scholar

Baillargeon R. (2008) Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science 3(1): 2–13. << Google Scholar

Bargh J. A. & Chartrand T. L. (1999) The unbearable automaticity of being. American Psychologist 54(7): 462–479. << Google Scholar

Bateson G. (1987) Steps to an ecology of mind. Jason Aronson, London. Originally published in 1972. << Google Scholar

Bekenstein J. D. (1973) Black holes and entropy. Physical Review D 7(8): 2333–2346. << Google Scholar

Bennett C. H. (2003) Notes on Landauer’s Principle, reversible computation, and Maxwell’s Demon. Studies in the History and Philosophy of Modern Physics 34(3): 501–510. << Google Scholar

Bilson-Thompson S. O., Markopoulou F. & Smolin L. (2007) Quantum gravity and the standard model. Classical and Quantum Gravity 24(16): 3975–3993. << Google Scholar

Blackmore S. (2013) Consciousness: An introduction. Routledge, London. << Google Scholar

Bohr N. (1928) The quantum postulate and the recent developments of atomic theory. Nature 121: 580–590. << Google Scholar

Bohr N. (1958) Atomic physics and human knowledge. Wiley, New York. << Google Scholar

Bostrom N. (2003) Are we living in a computer simulation? Philosophical Quarterly 53(11): 243–255. << Google Scholar

Bousso R. (2002) The holographic principle. Reviews of Modern Physics 74(3): 825–874. << Google Scholar

Chalmers D. (1995) Facing up to the problem of consciousness. Journal of Consciousness Studies 2(3): 200–219. << Google Scholar

Clark A. & Chalmers D. (1998) The extended mind. Analysis 58: 10–23. << Google Scholar

Coleman S. R., Preskill J. & Wilczek F. (1992) Quantum hair on black holes. Nuclear Physics B 378(1–2): 175–246. << Google Scholar

Conway J. & Kochen S. (2006) The free will theorem. Foundations of Physics 36(10): 1441–1473. << Google Scholar

Cook N. D. (2008) The neuron-level phenomena underlying cognition and consciousness: Synaptic activity and the action potential. Neuroscience 153(3): 556–570. << Google Scholar

Csibra G. & Gergely G. (2012) Teleological understanding of actions. In: Banaji M. R. & Gelman S. A. (eds.) Navigating the social world: What infants, children and other species can teach us. Oxford University Press, Oxford: 38–43. << Google Scholar

D’Ariano G. M. & Perinotti P. (2017) Quantum cellular automata and free quantum field theory. Frontiers in Physics 12: 120301. << Google Scholar

Dietrich E. & Fields C. (2015) Science generates limit paradoxes. Axiomathes 25(4): 409–432. << Google Scholar

Dietrich E. & Hardcastle V. (2005) Sisyphus’s boulder: Consciousness and the limits of the knowable. John Benjamins, New York. << Google Scholar

Dugíc M. & Jekníc-Dugíc J. (2008) What is “system”: The information-theoretic arguments. International Journal of Theoretical Physics 47(3): 805–813. << Google Scholar

Eibenberger S., Gerlich S., Arndt M., Mayor M. & Txen J. (2013) Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Physical Chemistry and Chemical Physics 15: 14696–14700. << Google Scholar

Fields C. (2012) A model-theoretic interpretation of environment-induced superselection. International Journal of General Systems 41(8): 847–859. << Google Scholar

Fields C. (2013) A whole box of Pandoras: Systems, boundaries and free will in quantum theory. Journal of Experimental and Theoretical Artificial Intelligence 25(3): 291–302. << Google Scholar

Fields C. (2014) Consistent quantum mechanics admits no mereotopology. Axiomathes 24(1): 9–18. << Google Scholar

Fields C. (2016) Building the observer into the system: Toward a realistic description of human interaction with the world. Systems 4: 32. << Google Scholar

Fields C. (2016) Decompositional equivalence: A fundamental symmetry underlying quantum theory. Axiomathes 26(3): 279–311. << Google Scholar

Foerster H. von (1960) On self-organizing systems and their environments. In: Yovits M. C. & Cameron S. (eds.) Self-organizing systems. Pergamon, London: 31–50. Reprinted in: Foerster (2003: 1–19 Available at http://cepa.info/1593

Foerster H. von (1970) Thoughts and notes on cognition. In: Gavin P. (ed.) Cognition: A multiple view. Spartan, New York: 25–48. Reprinted in: Foerster (2003: 169–189 Available at http://cepa.info/1637

Foerster H. von (1973) On constructing a reality. In: Preiser F. E. (ed.) Environmental design research. Volume II. Dowden, Hutchinson & Ross, Stroudsburg PA: 35–46. Reprinted in: Foerster (2003: 211–227 Available at http://cepa.info/1278

Foerster H. von (1976) Objects: Tokens for (eigen-) behaviors. ASC Cybernetics Forum 8(3–4): 91–96. Reprinted in Foerster H. von (2003) Understanding understanding. Springer, New York: 261–271 Available at http://cepa.info/1270

Foerster H. von (1979) Cybernetics of cybernetics. In: Krippendorf K. (ed.) Communication and control. Gordon & Breach, New York: 5–8. Reprinted in: Foerster (2003: 283–286 Available at http://cepa.info/1707

Foerster H. von (1981) Notes on an epistemology for living things. In: Foerster H. von, Observing Systems. Intersystems Publications, Seaside CA: 258–271. << Google Scholar

Foerster H. von (1984) On constructing a reality. In: Watzlawick P. (ed.) The invented reality. W. W. Norton, New York: 41–62. << Google Scholar

Foerster H. von (2003) Understanding understanding. Springer, New York. << Google Scholar

Friston K. (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11: 127–138. << Google Scholar

Friston K. (2013) Life as we know it. Journal of the Royal Society: Interface 10: 20130475. << Google Scholar

Friston K., Levin M., Sengupta B. & Pezzulo G. (2015) Knowing one’s place: A free-energy approach to pattern regulation. Journal of the Royal Society: Interface 12: 20141383. << Google Scholar

Fuchs C. (2010) QBism: The perimeter of quantum Bayesianism. arXiv: 1003.5209. << Google Scholar

Fuchs C. A. & Stacey B. C. (2016) Some negative remarks on operational approaches to quantum theory. In: Chiribella G. & Spekkens R. W. (eds.) Quantum theory: Informational foundations and foils. Springer, Berlin: 283–305. << Google Scholar

Geisler W. S. & Diehl R. L. (2003) A Bayesian approach to the evolution of perceptual and cognitive systems. Cognitive Science 27(3): 379–402. << Google Scholar

Ghirardi G. C., Rimini A. & Weber T. (1986) Unified dynamics for microscopic and macroscopic systems. Physical Review D 34(2): 470–491. << Google Scholar

Gibson J. J. (1979) The ecological approach to visual perception. Houghton-Miffin, Boston. << Google Scholar

Glanville R. (1982) Inside every white box there are two black boxes trying to get out. Behavioral Science 27(1): 1–11 Available at http://cepa.info/2365

Glasersfeld E. von (1981) The concepts of adaptation and viability in a constructivist theory of knowledge. In: Sigel I. E., Brodzinsky D. M. & Golinkoff R. M. (eds.) New directions in Piagetian theory and practice. Erlbaum, Hillsdale NJ: 87–95 Available at http://cepa.info/1357

Goodale M. A. & Milner A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15(1): 20–25. << Google Scholar

Harshman N. L. & Ranade K. S. (2011) Observables can be tailored to change the entanglement of any pure state. Physical Review A 84(1): 012303. << Google Scholar

Hawking S. W. (2015) The information paradox for black holes. arXiv: 1509.01147. << Google Scholar

Hawking S. W., Perry M. J. & Strominger A. (2016) Soft hair on black holes. Physical Review Letters 116(23): 231301. << Google Scholar

Hensen B., Bernien H., Dréau A. E., Reiserer A., Kalb N., Blok M. S., Ruitenberg J., Vermeulen R. F. L., Schouten R. N., Abellán C. & Amaya W. (2015) Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526: 682–686. << Google Scholar

Hickok G. & Poeppel D. (2007) The cortical organization of speech processing. Nature Reviews Neuroscience 8: 393–402. << Google Scholar

Hoffman D. D. & Prakash C. (2014) Objects of consciousness. Frontiers in Psychology 5: 577. << Google Scholar

Hoffman D. D., Singh M. & Prakash C. (2015) The interface theory of perception. Psychonomic Bulletin & Review 22(6): 1480–1506. << Google Scholar

Husserl E. (1982) Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. First book: General introduction to a pure phenomenology. Translated by Fred Kersten. Nijhoff, The Hague. German original published in 1913. << Google Scholar

Husserl E. (2012) Ideas: General introduction to pure phenomenology. Routledge, London. German original published in 1913. << Google Scholar

James W. (1892) Psychology. University of Notre Dame Press, Notre Dame IN. Reprinted 2001 by Dover Press, Mineola NY. << Google Scholar

Kauffman L. H. (2003) Eigenforms – Objects as tokens for eigenbehaviors. Cybernetics and Human Knowing 10(3–4): 73–90 Available at http://cepa.info/1817

Kauffman L. H. (2009) Reflexivity and eigenform: The shape of process. Constructivist Foundations 4(3): 121–137 Available at http://constructivist.info/4/3/121

Kauffman L. H. (2011) Eigenforms and quantum physics. Cybernetics and Human Knowing 18(3–4): 111–121 Available at http://cepa.info/1818

Kordeš U. (2016) Going beyond theory. Constructivist Foundations 11(2): 375–385 Available at http://constructivist.info/11/2/375

Kordeš U. (2016) Where is consciousness? Constructivist Foundations 11(3): 552–554. http://constructivist.info/11/3/552

Landauer R. (1961) Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3): 183–195. << Google Scholar

Landauer R. (1999) Information is a physical entity. Physica A 263(1–4): 63–67. << Google Scholar

Landsman N. P. (2007) Between classical and quantum. In: Butterfield J. & Earman J. (eds.) Handbook of the philosophy of science: Philosophy of physics. Elsevier, Amsterdam: 417–553. << Google Scholar

Levin M. A. & Wen X.-G. (2005) String-net condensation: A physical mechanism for topological phases. Physical Review B 71(4): 045110. << Google Scholar

Libet B., Gleason C. A., Wright E. W. & Pearl D. K. (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness–potential) Brain 106(3): 623–642. << Google Scholar

Luo Y. & Baillargeon R. (2010) Toward a mentalistic account of early psychological reasoning. Current Directions in Psychological Science 19(5): 301–307. << Google Scholar

Mandelbrot B. (1982) The fractal geometry of nature. Freeman, San Francisco. << Google Scholar

Manning A. G., Khakimov R. I., Dall R. G. & Truscott A. G. (2015) Wheelers’ delayed-choice gedanken experiment with a single atom. Nature Physics 11: 539–542. << Google Scholar

Mark J. T., Marion B. B. & Hoffman D. D. (2010) Natural selection and veridical perceptions. Journal of Theoretical Biology 266(4): 504–515. << Google Scholar

Marr D. (1982) Vision. Freeman, San Francisco. << Google Scholar

Martin A. (2007) The representation of object concepts in the brain. Annual Review of Psychology 58: 25–45. << Google Scholar

Maturana H. R. & Varela F. J. (1980) Autopoiesis and cognition: The realization of the living. Reidel, Boston. << Google Scholar

Misner C., Thorne K. & Wheeler J. A. (1973) Gravitation. W. H. Freeman, San Francisco. << Google Scholar

Moore E. F. (1956) Gedankenexperiments on sequential machines. In: Shannon C. W. & McCarthy J. (eds.) Automata studies. Princeton University Press, Princeton NJ: 129–155. << Google Scholar

Nagel T. (1989) The view from nowhere. Oxford University Press, Oxford. << Google Scholar

Neumann J. von (1955) Mathematical foundations of quantum mechanics. Princeton University Press: Princeton NJ. German original published in 1935. << Google Scholar

Ollivier H., Poulin D. & Zurek W. H. (2004) Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters 93: 220401. << Google Scholar

Ollivier H., Poulin D. & Zurek W. H. (2005) Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A 72: 042113. << Google Scholar

Palmer S. E. (1999) Vision science: Photons to phenomenology. MIT Press, Cambridge MA. << Google Scholar

Pastawski F., Yoshida B., Harlow D. & Preskill J. (2015) Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. Journal of High Energy Physics 2015: 149. << Google Scholar

Pattee H. H. (2001) The physics of symbols: Bridging the epistemic cut. Biosystems 60(1–3): 5–21. << Google Scholar

Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo CA. << Google Scholar

Peil Kauffman K. (2015) Emotional sentience and the nature of phenomenal experience. Progress in Biophysics and Molecular Biology 119(3): 545–562. << Google Scholar

Penrose R. (1996) On gravity’s role in quantum state reduction. General Relativity and Gravitation 28(5): 581–600. << Google Scholar

Pizlo Z., Li Y., Sawada T. & Steinman R. M. (2014) Making a machine that sees like us. Oxford University Press, New York. << Google Scholar

Quine W. V. O. (1960) Word and object. MIT Press, Cambridge MA. << Google Scholar

Quine W. V. O. (1970) On the reasons for the indeterminacy of translation. Journal of Philosophy 67(6): 178–183. << Google Scholar

Riegler A. (2012) Constructivism. In: L’Abate L. (ed.) Paradigms in theory construction. Springer, New York: 235–255 Available at http://cepa.info/446

Roederer J. (2005) Information and its role in nature. Springer, Berlin. << Google Scholar

Rovelli C. (2004) Quantum gravity. Cambridge University Press, Cambridge. << Google Scholar

Rubino G., Rozema L. A., Feix A., Araújo M., Zeuner J. M., Procopio L. M., Brukner Č. & Walther P. (2017) Experimental verification of an indefinite causal order. Science Advances 3(3): E1602589. << Google Scholar

Saini A. & Stojkovic D. (2015) Radiation from a collapsing object is manifestly unitary. Physical Review Letters 114: 111301. << Google Scholar

Schlosshauer M. (2006) Experimental motivation and empirical consistency of minimal no-collapse quantum mechanics. Annals of Physics 321(1): 112–149. << Google Scholar

Schlosshauer M. (2007) Decoherence and the quantum to classical transition. Springer, Berlin. << Google Scholar

Smith B. (1996) Mereotopology: A theory of parts and boundaries. Data and Knowledge Engineering 20(3): 287–303. << Google Scholar

Smith J. E. & Nair R. (2005) The architecture of virtual machines. IEEE Computer 38(5): 32–38. << Google Scholar

Spelke E. S. (1994) Initial knowledge: Six suggestions. Cognition 50(1–3): 431–445. << Google Scholar

Spencer Brown G. (1969) Laws of form. Allen & Unwin, London. << Google Scholar

Strominger A. (2017) Black hole information revisited. Preprint arxiv: 1706.07143v1 (hep-th) << Google Scholar

Susskind L. (1995) The world as a hologram. Journal of Mathematical Physics 36: 6377–6396. << Google Scholar

Susskind L. (2016) Computational complexity and black hole horizons. Fortschritte Physik 64(1): 24–43. << Google Scholar

Swingle B. (2012) Entanglement renormalization and holography. Physical Review D 86: 065007. << Google Scholar

Tarski A. (1944) The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research 4(3): 341–376. << Google Scholar

Tegmark M. (2012) How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem. Physical Review D 85: 123517. << Google Scholar

Thompson D’A. W. (1945) On growth and form. Cambridge University Press, Cambridge. Originally published in 1917. << Google Scholar

Trivers R. L. (2011) The folly of fools. Basic Books, New York. << Google Scholar

Varela F. J., Thompson E. & Rosch E. (1991) The embodied mind: Cognitive science and human experience. MIT Press, Cambridge MA. << Google Scholar

Wallace D. (2008) Philosophy of quantum mechanics. In: Rickles D. (ed.) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot: 16–98. << Google Scholar

Wegner D. M. (2003) The mind’s best trick: How we experience conscious will. Trends in Cognitive Sciences 7(2): 65–69. << Google Scholar

Weinberg S. (2012) Collapse of the state vector. Physical Review A 85: 062116. << Google Scholar

Wheeler J. A. (1990) Information, physics, quantum: The search for links. In: Zurek W. (ed.) Complexity, entropy and the physics of information. Westview, Boulder CO: 3–28. << Google Scholar

Wigner E. P. (1962) Remarks on the mind-body question. In: Good I. J. (ed.) The Scientist Speculates. Basic Books, New York: 284–302. << Google Scholar

Winograd T. & Flores F. (1986) Understanding computers and cognition: A new foundation for design. Ablex Publishing, Norwood. << Google Scholar

Zahavi D. (2004) Phenomenology and the project of naturalization. Phenomenology and the cognitive sciences 3(4): 331–347 Available at http://cepa.info/2375

Zanardi P. (2001) Virtual quantum subsystems. Physical Review Letters 87(7): 077901. << Google Scholar

Zeh D. (1970) On the interpretation of measurement in quantum theory. Foundations of Physics 1(1): 69–76. << Google Scholar

Zeh D. (1973) Toward a quantum theory of observation. Foundations of Physics 3(1): 109–116. << Google Scholar

Zurek W. H. (2003) Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75(3): 715–775. << Google Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.