NEWTONX
A package for
Newtonian dynamics close to the crossing seam
Capabilities
Nonadiabatic
dynamics Dynamics on multiple BornOppenheimer surfaces using the fewestswitches surface hopping approach at MRCI, MCSCF,
ADC(2), CC2 and TDDFT levels.
Excitedstate adiabatic
dynamics Dynamics on a single (ground or excited state)
BornOppenheimer surface.
Direct
(onthefly) dynamics Energies, gradients and nonadiabatic couplings are
computed at each time step. It is not necessary to have precomputed potential energy surfaces.
UV/Vis
spectrum Simulation of absorption cross section and emission
spectra with the nuclear ensemble method.
Making
life easy Userfriend input via nxinp program.
Management of multiple trajectories.
Outputs for graphical programs.
Tools for statistical analysis of results.
Interfaces NX is interfaced to several quantum chemical packages,
including COLUMBUS, TURBOMOLE, DFTB, GAUSSIAN
and others.
QM/MM surfacehopping dynamics simulations using TURBOMOLE
or COLUMBUS
for the QM part and
TINKER
for the MM part is available.
NX can be easily extended to interface other quantum
chemistry programs and to use analytical models as well.
See movie examples
Initial
conditions / Spectrum
Dynamics
Program
Version
Method
Frequency
reading
Spectrum
simulation
Adiabatic
Nonadiabatic
(surface
hopping)
NAC
CIO
LD
Columbus
5.9
MRCI / MCSCF
7
MRCI / MCSCF
Turbomole
TDDFT
CC2 / ADC(2)
Dftb
TDDFTB
Gaussian
03
CASSCF
09
TDDFT
Tinker
MM
Dftmrci
DFTMRCI
Molden

Analytical
User defined
Available
features NAC – Based on nonadiabatic coupling
vectors.
CIO – Based on wavefunction overlaps.
LD – Based on local diabatization.
References and Examples
The NEWTONX program
M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci, M. Persico, H. Lischka, WIREs: Comp. Mol. Sci. 4, 26 (2014). doi:10.1002/wcms.1158
M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. EckertMaksic and H. Lischka, J.Photochem. Photobio. A 190, 288 (2007). doi:10.1016/j.jphotochem.2006.12.008
Spectrum simulations
R. CrespoOtero and M. Barbatti,Theor. Chem. Acc. 131, 1237 (2012). doi:10.1007/s0021401212374
M. Barbatti, A. J. A. Aquino, and H. Lischka, PCCP 12, 4959 (2010). doi:10.1039/B924956G
QM/MM surface hopping simulations
M. Ruckenbauer, M. Barbatti, T. Muller, and H. Lischka, J. Phys. Chem. A 114, 6757 (2010). doi:10.1021/jp103101t
Surface hopping with wavefunction overlap method
J. Pittner, H. Lischka, and M. Barbatti, Chem. Phys. 356, 147 (2009). doi:10.1016/j.chemphys.2008.10.013
Review of applications
M. Barbatti, M. Ruckenbauer, J. J. Szymczak, A. J. A. Aquino, and H. Lischka, PCCP 10, 482 (2008). doi:10.1039/b709315m
Review of methods
M. Barbatti, WIREs: Comp. Mol. Sci. 1, 620 (2011). doi:10.1002/wcms.64