NEWTON-X
 

NEWTON-X
A package for Newtonian dynamics close to the crossing seam

Capabilities


Nonadiabatic dynamics
Dynamics on multiple Born-Oppenheimer surfaces using the  fewest-switches surface hopping approach at MRCI, MCSCF, ADC(2), CC2 and TDDFT levels. 

Excited-state adiabatic dynamics
Dynamics on a single (ground or excited state) Born-Oppenheimer surface.

Direct (on-the-fly) dynamics
Energies, gradients and non-adiabatic couplings are computed at each time step. It is not necessary to have pre-computed potential energy surfaces.

UV/Vis spectrum
Simulation of absorption cross section and emission spectra with the nuclear ensemble method.

Making life easy
User-friend input via nxinp program.
Management of multiple trajectories.
Outputs for graphical programs.
Tools for statistical analysis of results.

Interfaces
NX is interfaced to several quantum chemical packages, including  COLUMBUS, TURBOMOLE, DFTB, GAUSSIAN and others. QM/MM surface-hopping dynamics simulations using TURBOMOLE or COLUMBUS for the QM part and TINKER for the MM part is available. NX can be easily extended to interface other quantum chemistry programs and to use analytical models as well.




See movie examples
 

 

 

 

Initial conditions / Spectrum


Dynamics

 


Program

 


Version

 


Method

 


Frequency reading


Spectrum simulation


Adiabatic

 


Nonadiabatic

(surface hopping)


 

 

 

 

 

 

NAC


CIO


LD


Columbus

5.9

MRCI / MCSCF

 

 

 

 

 

 

 

7

MRCI / MCSCF

 

 

 

 

 

 

Turbomole

 

TD-DFT

 

 

 

 

 

 

 

 

CC2 / ADC(2)

 

 

 

 

 

 

Dftb

 

TD-DFTB

 

 

 

 

 

 

Gaussian

03

CASSCF

 

 

 

 

 

 

09

TDDFT

 

 

 

 

 

 

Tinker

 

MM

 

 

 

 

 

 

Dft-mrci

 

DFT-MRCI

 

 

 

 

 

 

Molden

 

-

 

 

 

 

 

 

Analytical

 

User defined

 

 

 

 

 

 

 Available features
NAC Based on nonadiabatic coupling vectors.
CIO Based on wavefunction overlaps.
LD Based on local diabatization.

 

References and Examples


The NEWTON-X program
M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci, M. Persico, H. Lischka, WIREs: Comp. Mol. Sci. 4, 26 (2014).
doi:10.1002/wcms.1158
M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksic and H. Lischka, J.Photochem. Photobio. A 190, 288 (2007).
doi:10.1016/j.jphotochem.2006.12.008

Spectrum simulations
R. Crespo-Otero and M. Barbatti, Theor. Chem. Acc. 131, 1237 (2012).
doi:10.1007/s00214-012-1237-4
M. Barbatti, A. J. A. Aquino, and H. Lischka, PCCP 12, 4959 (2010).
doi:10.1039/B924956G

QM/MM surface hopping simulations
M. Ruckenbauer, M. Barbatti, T. Muller, and H. Lischka, J. Phys. Chem. A 114, 6757 (2010).
doi:10.1021/jp103101t

Surface hopping with wavefunction overlap method
J. Pittner, H. Lischka, and M. Barbatti, Chem. Phys. 356, 147 (2009).
doi:10.1016/j.chemphys.2008.10.013

Review of applications
M. Barbatti, M. Ruckenbauer, J. J. Szymczak, A. J. A. Aquino, and H. Lischka, PCCP 10, 482 (2008).
doi:10.1039/b709315m

Review of methods
M. Barbatti, WIREs: Comp. Mol. Sci. 1, 620 (2011).
doi:10.1002/wcms.64 

www.newtonx.org