Simulation and education

Evaluating the effectiveness of a strategy for teaching neonatal resuscitation in West Africa

Christabel Enweronu-Laryea, Cyril Engmann, Alexandra Osafo, Carl Bose

Aim: To evaluate the effectiveness of a strategy for teaching neonatal resuscitation on the cognitive knowledge of health professionals who attend deliveries in Ghana, West Africa.

Methods: Train-the-trainer model was used to train health professionals at 2–3 day workshops from 2003 to 2007. Obstetric Anticipatory Care and Basic Neonatal Care modules were taught as part of Neonatal Resuscitation Training package. American Neonatal Resuscitation Program was adapted to the clinical role of participants and local resources. Cognitive knowledge was evaluated by written pre- and post-training tests.

Results: The median pre-training and post-training scores were 38% and 71% for midwives, 43% and 81% for nurses, 52% and 90% for nurse anaesthetists, and 62% and 98% for physicians. All groups of the 271 professionals (18 nurse anaesthetists, 55 nurses, 68 physicians, and 130 midwives) who completed the course showed significant improvement \((p < 0.001)\) in median post-training test scores. Midwives at primary health care facilities were less likely to achieve passing post-test scores than midwives at secondary and tertiary facilities \(35/53\ vs. 24/26\ vs. 45/51\ \((p = 0.004)\) respectively.

Conclusion: Evidence-based neonatal resuscitation training adapted to local resources significantly improved cognitive knowledge of all groups of health professionals. Further modification of training for midwives working at primary level health facilities and incorporation of neonatal resuscitation in continuing education and professional training programs are recommended.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Perinatal asphyxia, a potentially modifiable cause of neonatal mortality and morbidity affects over four million newborns in developing countries annually. About 1.2 million of affected infants die and at least the same number develop severe consequences such as cerebral palsy.\(^1,2\) Perinatal asphyxia is a major cause of neonatal mortality in Ghana.\(^3\)–\(^6\)

Improving neonatal resuscitation skills of health professionals reduces neonatal mortality and morbidity.\(^7,8\) However, health professionals in sub-Saharan Africa feel professionally inadequate to provide neonatal resuscitation because they lack adequate knowledge, skills, and basic equipment for emergency perinatal care.\(^9,10\) These barriers could be reduced with training.

The American Academy of Paediatrics (AAP) and American Heart Association (AHA) Neonatal Resuscitation Program (NRP) is an effective training tool for improving knowledge and skills of health professionals,\(^11,12\) and the standard of care for preventing adverse outcome in asphyxiated newborns.\(^13\) Neonatal resuscitation training programs are non-existent in many west African countries. To improve the knowledge and skills of health professionals who care for the newborn, we started multi-component workshops in Ghana in 2003. We report the strategy used to implement training and the effect of training on cognitive knowledge.

2. Methods

The workshops were organized by Department of Child Health, Korle Bu Teaching Hospital (KBTH), Accra from October 2003 to September 2007. Each workshop lasted 2–3 days and comprised of 3 modules: (a) Obstetric Anticipatory Care for identifying the foetus at risk, (b) Basic Neonatal Care based on the World Health Orga-
Table 1
Place of work of health professionals.

<table>
<thead>
<tr>
<th></th>
<th>Tertiary level health facility</th>
<th>Secondary level health facility</th>
<th>Primary level health facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwives (n = 130)</td>
<td>51</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>Nurse (n = 55)</td>
<td>20</td>
<td>35</td>
<td>–</td>
</tr>
<tr>
<td>Nurse anaesthetists (n = 18)</td>
<td>–</td>
<td>18</td>
<td>–</td>
</tr>
<tr>
<td>Physicians (n = 68)</td>
<td>46</td>
<td>22</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>117</td>
<td>101</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 2
Neonatal Resuscitation Program (NRP) median (interquartile range) test scores of participants.

<table>
<thead>
<tr>
<th></th>
<th>Midwives (n = 130)</th>
<th>Nurse (n = 55)</th>
<th>Nurse anaesthetists (n = 18)</th>
<th>Physicians (n = 68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRP tests (maximum score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-test (21)</td>
<td>8 (7–11)</td>
<td>9 (7–12)</td>
<td>11 (10–13)</td>
<td>13 (12–15)</td>
</tr>
<tr>
<td>Lesson 1 (13)</td>
<td>8 (7–10)</td>
<td>10 (8–11)</td>
<td>9.5 (8–10)</td>
<td>11 (10–12.5)</td>
</tr>
<tr>
<td>Lesson 2 (13)</td>
<td>7 (6–9)</td>
<td>9 (7–11)</td>
<td>10 (9–11)</td>
<td>10 (8–11)</td>
</tr>
<tr>
<td>Lesson 3 (19)</td>
<td>11 (9–13)</td>
<td>12 (11–14)</td>
<td>13 (12–14)</td>
<td>14 (10.5–16)</td>
</tr>
<tr>
<td>Lesson 4 (14)</td>
<td>11 (8–13)</td>
<td>12 (12–13)</td>
<td>12 (10–13)</td>
<td>12 (8.5–14)</td>
</tr>
<tr>
<td>Lesson 5 (13)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12 (11–13)</td>
</tr>
<tr>
<td>Lesson 6 (13)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12 (10–13)</td>
</tr>
<tr>
<td>Lesson 7 (13)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Post-test (21)</td>
<td>15 (13–17)</td>
<td>17 (15–19)</td>
<td>19 (17–19)</td>
<td>20.5 (19–21)</td>
</tr>
</tbody>
</table>

2.3. Evaluation of effect of training on cognitive knowledge and practical skills

The NRP evaluation multiple choice and fill-in questions were administered for each lesson taught. The results of the 21-question pre- and post-tests which cover all aspects of the module were used to assess change in cognitive knowledge. Physicians were taught the entire NRP and the passing score was 85% which is consistent with the NRP in USA. We defined passing score among non-physicians as 60%; this is equivalent to 85% of the pre- and post-test questions relating to lessons they had formal presentations on. Practical skills were assessed by direct observation of mock clinical scenarios using a performance checklist. However, effect of training on practical skills was not analysed because it was logistically difficult to do it formally on all participants.

2.4. Statistical analysis

Data were analysed with Sigma Stat for Windows Version 3.11 (Systat Software Inc., USA). We used Wilcoxon signed rank test to compare the difference between pre- and post-test scores for health professional groups, and Chi-square analysis to compare the performance of midwives at different health facility levels.

3. Results

Of the 314 participants at 7 workshops; 271 (18 nurse anaesthetists, 55 nurses, 68 physicians, and 130 midwives) completed the lessons. We excluded 43 participants (28 physicians and 14 midwives from KBTH, and 1 nurse from secondary health facility) who partially attended the workshops. Most (38/43) excluded participants had to leave the workshop to attend emergencies. Table 1 shows the levels of health facilities of participants. Most midwives...
were from primary (41%) and tertiary (39%) facilities while majority of nurses (64%) were from secondary health facilities.

Table 2 shows evaluation test scores. Midwives had the lowest scores for all lessons; the performance of physicians was similar to nurse anaesthetists. Table 3 shows the effect of training on cognitive knowledge based on the difference between pre- and post-test scores for each professional group. Nurses and midwives demonstrated the least cognitive knowledge before training, but also the highest improvement in cognitive knowledge following training. Thirty one participants (1 midwife, 5 nurses and 25 physicians) with high test scores and good practical skills volunteered to be trained as trainers; 10 at the first workshop (core trainers) and 21 at subsequent workshops.

Twenty percent (26/130) of midwives failed to achieve the post-test passing score after the initial training; 68% (18/26) of these were from primary health facilities. Midwives from primary health facilities were less likely to achieve a passing score compared to midwives from secondary and tertiary facilities [35/53 (66%) vs. 24/26 (92%) vs. 45/51 (88%), p = 0.004, 95% CI 3.81–21.92] respectively. Although not formally assessed, we observed that participants with low test scores were slower at acquiring practical skills.

4. Discussion

We have shown that AAP/AHA NRP can be used to improve the cognitive knowledge of health professionals on neonatal resuscitation in Ghana. The highest improvement occurred in nurses and midwives, but the performance of midwives at primary health facilities was significantly lower than those at secondary and tertiary facilities. The train-the-trainer model sustained the program.

Our holistic approach to incorporate the 3 modules was to enable participants understand the complex relationship between obstetrics and newborn care and modern concepts of neonatal resuscitation. We minimized emphasis on endotracheal intubation and medications for non-physicians because these were not applicable to their professional roles. This adaptation is consistent with NRP recommendations of targeting training to conform to the professional roles of learners.

The improvement in cognitive knowledge we observed is similar to data from other developing countries. An important finding in our cohort is that nurses and midwives who are the vanguard of acute obstetric and neonatal care in west Africa had the highest percentage increase in cognitive knowledge. We speculate that concerted effort to train them in emergency perinatal care will improve clinical skills that save newborn lives.

The performance of midwives at primary health facilities may have resulted from the extensive information we presented in a relatively short period of time. Many of these midwives were not familiar with current newborn resuscitation principles and some had never used a resuscitation bag; however, 66% achieved pass post-test scores after one workshop. We ensured that all participants had satisfactory practical skills irrespective of their test score. Longer training periods and alternate educational techniques (e.g. further simplification of NRP) should be explored for this group of midwives.

Train-the-trainer model increases knowledge, promotes ownership, builds capacity and enables sustainability of programs. These qualities are important for sustaining clinical skills in west African health professionals. Midwives and nurse anaesthetists were under-represented in our cohort of volunteer trainers partly because of their clinical workload. Nurse anaesthetists are principal providers of anaesthesia for operative obstetric care in secondary health facilities in west Africa and most midwives are sole practitioners in their primary health facility. Training midwives and nurse anaesthetists as trainers will promote a sustainable program and build capacity for skilled neonatal resuscitation at all levels of perinatal care.

Our work has some limitations. Although we used validated materials for NRP and Newborn Care modules, the Obstetric Anticipatory Care module content was not validated. Validation and exploration of the benefits of this module appear warranted. We evaluated the effectiveness of training on only cognitive knowledge; it would have been preferable to also evaluate practical skills. However, the real test is whether the knowledge and skills are retained over time to improve practices that save newborn lives in labour rooms.

5. Conclusion

Sustaining evidence-based neonatal resuscitation training program is feasible in west Africa; however, scaling up requires the involvement of Ministry of Health. Training programs should be adapted to the local human and infrastructural resources to ensure effectiveness. Incorporating neonatal resuscitation in continuing education and professional training programs is recommended.

Conflict of interest statement

Authors have no conflict of interest to declare.

Acknowledgements

We wish to acknowledge Dr Richard Bell MD, Northbay Medical Centre, Fairfield, California the leader of NRP instructors who organized the first workshop and provided the Department of Child Health, KBTH with training equipment. We wish to acknowledge volunteer instructors from Kybele Incorporated, University of North Carolina, and Pediatrix group of Texas for their help in providing free resuscitation bags for the health facilities and training the trainers.

References


