Pseudospectral Fourier reconstruction with IPRM

Karlheinz Gröchenig Tomasz Hrycak

European Center of Time-Frequency Analysis
Faculty of Mathematics
University of Vienna
http://homepage.univie.ac.at/karlheinz.groechenig/
Dagstuhl, December 2008

Outline

(1) What is IPRM?
(2) IPRM-Algorithm, Condition Number, Optimality
(3) Numerical Simulations
(4) Variations

IPRM I

- Gibbs phenomenon
- IPRM = Inverse polynomial reconstruction method (Jung and Shizgal, 2003-07)
- Goal: Construct an algebraic polynomial from Fourier coefficients
- Find an approximation of a piecewise smooth function from given Fourier coefficients
- How many Fourier coefficients are required for accurate construction of algebraic polynomial?
- Compression
- Relation between Fourier basis and other bases
- Gottlieb, Shu; Gelb, Tanner; Tadmore; etc.

IPRM II

Given function f on $[-1,1]$ and m consecutive Fourier coefficients

$$
\hat{f}(k)=\frac{1}{\sqrt{2}} \int_{-1}^{1} f(x) e^{-i \pi k x} d x, \quad-\left\lfloor\frac{m-1}{2}\right\rfloor \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor .
$$

Find a polynomial p of degree $n-1$ with these Fourier coefficients. Expand p into normalized Legendre polynomials $\widetilde{P_{k}}$

$$
p=\sum_{l=0}^{n-1} a_{l} \widetilde{P}_{l}
$$

IPRM: solve the system

$$
\sum_{l=0}^{n-1} a_{l} \widehat{\tilde{P}}_{l}(k)=\widehat{f}(k) \quad k=-\left\lfloor\frac{m-1}{2}\right\rfloor, \ldots,\left\lfloor\frac{m}{2}\right\rfloor .
$$

IPRM-Algorithm

Input: m Fourier coefficients $\widehat{f}(k)$,
Let $A_{m, n}$ be $m \times n$ matrix $A_{m, n}$ with entries

$$
\begin{gathered}
a_{k l}=\widehat{\widetilde{P}_{l}}(k)=\sqrt{2}(-\imath)^{\prime} \sqrt{I+\frac{1}{2}} j_{l}(k \pi), \\
k=-\left\lfloor\frac{m-1}{2}\right\rfloor, \ldots,\left\lfloor\frac{m}{2}\right\rfloor, I=0, \ldots, n-1 .
\end{gathered}
$$

(1) Solve overdetermined least squares problem for approximate Legendre coefficients $\mathbf{c}=\left[c_{0}, \ldots, c_{n-1}\right]^{t}$

$$
\begin{equation*}
\left.\min _{\mathbf{c} \in \mathbb{C}^{n}} \| A_{m, n} \mathbf{c}-\widehat{f}(d), \ldots, \widehat{f}(D)\right]^{t} \|_{2} \tag{2}
\end{equation*}
$$

where $d=-\left\lfloor\frac{m-1}{2}\right\rfloor, D=\left\lfloor\frac{m}{2}\right\rfloor$.
(2) Approximate f by truncated Legendre series

$$
\begin{equation*}
f_{n}=\sum_{l=0}^{n-1} c_{l} \widetilde{P}_{l} \tag{3}
\end{equation*}
$$

Existence of a Reconstruction

Theorem

Let d and D be integers such that $d \leq 0 \leq D$, and let $p \in \mathcal{P}_{M}$ have vanishing $D-d+1$ consecutive Fourier coefficients

$$
\begin{equation*}
\widehat{p}(d)=\widehat{p}(d+1)=\ldots=\widehat{p}(D-1)=\widehat{p}(D)=0 . \tag{4}
\end{equation*}
$$

If $D-d+1 \geq M+1$, then $p=0$ identically.
REMARK: $A_{n, n}$ is invertible, and for $m>n A_{m, n}$ has full rank. P_{M} is the space of algebraic polynomials of degree at most M.

Stability of the Reconstruction

Theorem

For every $\alpha>1$, every $n=1,2, \ldots$, and every integer $m>\alpha n^{2}$, the condition number of the matrix $A_{m, n}$ does not exceed $\sqrt{\frac{\alpha}{\alpha-1}}$.

REMARK: $\alpha>1$ can be pushed to $\alpha>c$ for some $c \approx 1 / 2$.

Convergence Rates

Theorem

Let $f=\sum_{l=0}^{\infty} a_{l} \widetilde{P}_{l}$ with Legendre coefficients

$$
\begin{equation*}
\left|a_{\mid}\right| \leq c e^{-\beta \mid}, \tag{5}
\end{equation*}
$$

where $c>0$ and $\beta>0$, and let f_{n} be the reconstruction by IPRM (3). If $m>n^{2}$, then

$$
\begin{equation*}
\left\|f-f_{n}\right\|_{\infty} \leq c^{\prime} n e^{-\beta n} \tag{6}
\end{equation*}
$$

for another constant $c^{\prime}>0$.

REMARK: Measured by number of Fourier coefficients $m=\alpha n^{2}$, the convergence is root-exponential: $\left\|f-f_{n}\right\|_{\infty} \leq c^{\prime} \sqrt{m} e^{-\beta \sqrt{m}}$.

Figure: Condition numbers of the square matrix $A_{n, n}$ for $n=1, \ldots, 150$.

Computation versus Proof

Experimentally: Smallest singular value $\lambda_{\min }(n)$ of $A_{n, n}$ decays exponentially (equivalently: condition number of the square matrix grows exponentially)

Current estimate: $\lambda_{\min } \leq 0.65$
Needed: Behavior of Bessel functions J_{ν} in the non-asymptotic region $\nu \leq x \leq \nu^{2}$.

Figure: Condition numbers of the matrix $A_{\left[n^{\frac{3}{2}} 7, n\right.}$ for $n=1, \ldots, 100$.

Figure: Condition numbers of the matrix $A_{\left[\alpha n^{2}\right\rceil, n}$ for $\alpha=\frac{1}{20}, \frac{1}{40}, \frac{1}{60}$.

Figure: Condition numbers of the matrix $A_{n^{2}, n}$ for $n=1, \ldots, 100$.

Figure: Condition numbers of the matrix $A_{m, 20}$ with m Fourier coefficients for $m=1, \ldots, 100$.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-0.3 \imath}$ on the interval $[-1,1]$ with the two versions of IPRM.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-1.02}$ on the interval $[-1,1]$ with the two versions of IPRM.

Figure: Relative maximum reconstruction errors for the function $\frac{1}{x-1.02}$ on the interval $[-1,1]$ with the two versions of IPRM.

Piecewise Polynomials from Fourier Coefficients

Fix nodes

$$
\begin{equation*}
-1=a_{0}<a_{1}<\ldots<a_{L-1}<a_{L}=1 \tag{7}
\end{equation*}
$$

and consider

$$
\begin{gathered}
\mathcal{P}_{M, \mathbf{a}}=\left\{f:\left.f\right|_{\left(a_{j-1}, a_{j}\right)} \text { is polynomial of degree } M\right\} \\
\operatorname{dim} \mathcal{P}_{\mathbf{a}, M}=L(M+1)
\end{gathered}
$$

Theorem

Let d and D be integers such that $d \leq 0 \leq D$, and let $p \in \mathcal{P}_{M, \mathrm{a}}$ have vanishing $D-d+1$ consecutive Fourier coefficients

$$
\begin{equation*}
\widehat{p}(d)=\widehat{p}(d+1)=\ldots=\widehat{p}(D-1)=\widehat{p}(D)=0 \tag{8}
\end{equation*}
$$

If $D-d+1 \geq L(M+1)$, then $p=0$ identically.

Piecewise Constant Functions with free nodes

$$
\begin{equation*}
p=\sum_{j=1}^{L} p_{j} \chi_{\left(t_{j-1}, t_{j}\right)} \tag{9}
\end{equation*}
$$

Theorem

Let p a step function on $[-1,1]$ with at most $L-1$ points of discontinuity, and let d, and $D \in \mathbb{Z}$ be such that $d \leq 0 \leq D$. If $D-d+1 \geq 2 L-1$, then p is uniquely determined by its $D-d+1$ consecutive Fourier coefficients $\widehat{p}(d), \widehat{p}(d+1), \ldots, \widehat{p}(D-1), \widehat{p}(D)$.

Reconstruction by Prony's spectral estimator, Used in compressed sensing by M. Vetterli as "Occam's razor"

To Do List

- Optimality of order of condition number
- Open question: Is

$$
\lim _{n \rightarrow \infty} \kappa\left(A_{\alpha n^{2}, n}\right)=e^{\beta / \alpha}
$$

- Condition numbers for piecewise polynomials with fixed nodes
- Variable degrees for piecewise polynomials with fixed nodes
- Method for piecewise polynomials with free nodes
- Reconstruction from arbitrary frequencies, from random frequencies

Summary

- Rigorous convergence analysis of IPRM
- First proof of existence of the square IPRM (invertibility of $A_{n, n}$)
- $n \times n$ IPRM is acceptable for entire functions
- $n^{2} \times n$ IPRM is reliable for meromorphic functions
- $n^{2} \times n$ IPRM useful in applications because it handles noisy signals and uses all available Fourier coefficients

Thank you!

Further questions also to tomasz.hrycak@univie.ac.at

