Universally reversible JC^*-triples and operator spaces

Richard M. Timoney

Trinity College Dublin

GPOTS, Berkeley, May 2013
Based on

A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell_2^d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P: A \to A$ a linear projection of norm 1 \Rightarrow $E = P(A)$ is (isometric to) a JB^*-triple with triple product $\{a, b, c\}_P = P(\{a, b, c\})$.

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$.
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell^2_d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P: A \rightarrow A$ a linear projection of norm 1 $\Rightarrow E = P(A)$ is (isometric to) a JB^*-triple with triple product

$$\{a, b, c\}_P = P(\{a, b, c\})$$

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell^2_d$ row or column Hilbert space in $M_d(\mathbb{C})$.

These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P: A \to A$ a linear projection of norm 1 $\Rightarrow E = P(A)$ is (isometric to) a JB^*-triple with triple product $\{a, b, c\}_P = P(\{a, b, c\})$.

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell^2_d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P : A \rightarrow A$ a linear projection of norm 1 $\Rightarrow E = P(A)$ is (isometric to) a JB^*-triple with triple product $
\{a, b, c\}_P = P(\{a, b, c\})$.

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell^2_d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) P: $A \to A$ a linear projection of norm 1

\[\Rightarrow E = P(A) \text{ is (isometric to) a } JB^*\text{-triple with triple product} \]

\[\{a, b, c\}_P = P(\{a, b, c\}). \]

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$.
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell^2_d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P : A \rightarrow A$ a linear projection of norm 1 $\Rightarrow E = P(A)$ is (isometric to) a JB^*-triple with triple product $\{a, b, c\}_P = P(\{a, b, c\})$.

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$
A (concrete) JC^*-triple is a closed $E \subseteq A$ (A C^*-algebra) such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \overset{\text{def}}{=} \frac{1}{2}(ab^*c + cb^*a) \in E$$

Examples: $E = A$, $E = \ell_2^d$ row or column Hilbert space in $M_d(\mathbb{C})$. These are all TROs ($a, b, c \in E \Rightarrow [a, b, c] \overset{\text{def}}{=} ab^*c \in E$).

$E = \{x \in M_d(\mathbb{C}) : x^t = x\}$. More generally E a JC^*-algebra ($a, b \in E \Rightarrow a^*, (ab + ba)/2 \in E$).

Theorem (W. Kaup 1984) $P : A \to A$ a linear projection of norm 1 $\Rightarrow E = P(A)$ is (isometric to) a JB^*-triple with triple product $\{a, b, c\}_P = P(\{a, b, c\})$.

Arazy-Friedman (1978): For $A = \mathcal{K}(H)$, described $P(A)$
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \xhookrightarrow{\alpha_E} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[
\begin{array}{ccc}
T^*(E) & \xrightarrow{\pi} & T \\
\uparrow{\alpha_E} & \swarrow{\tilde{\pi}} & \searrow{\pi} \\
E & \xrightarrow{\pi} & T
\end{array}
\]

where $\pi: E \to T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$, $\tilde{\pi}$ unique given π.)
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \xrightarrow{\alpha_E} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

$$
\begin{array}{c}
\alpha_E \\
\downarrow \tilde{\pi} \\
E \xrightarrow{\pi} T
\end{array}
$$

where $\pi: E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi}: T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$, $\tilde{\pi}$ unique given π.)
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \overset{\alpha_E}{\rightarrow} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

$$
\begin{array}{c}
T^*(E) \\
\uparrow \alpha_E \\
E \\
\downarrow \pi \\
T
\end{array}
$$

where $\pi : E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi} : T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π.

R. Timoney
Universally reversible JC^*-triples and operator spaces
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \overset{\alpha_E}{\rightarrow} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[
\begin{array}{ccc}
T^*(E) & \overset{\alpha_E}{\rightarrow} & \text{sub-JC}^* \text{-triple of } T^*(E) \\
\downarrow & \downarrow & \downarrow \\
E & \overset{\pi}{\rightarrow} & T
\end{array}
\]

where $\pi : E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi} : T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π.

R. Timoney

Universally reversible JC^*-triples and operator spaces
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \xrightarrow{\alpha_E} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[
\begin{array}{c}
T^*(E) \\
\alpha_E \\
\downarrow \\
E \\
\pi \\
\rightarrow \\
T
\end{array}
\]

where $\pi : E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi} : T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given $\pi.$
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \overset{\alpha_E}{\hookrightarrow} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[T^*(E) \xrightarrow{\alpha_E} E \xrightarrow{\pi} T \]

where $\pi : E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi} : T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π.

R. Timoney

Universally reversible JC^*-triples and operator spaces
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \overset{\alpha_E}{\hookrightarrow} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[
\begin{array}{ccc}
T^*(E) & \rightarrow & T \\
\alpha_E & \downarrow & \tilde{\pi} \\
E & \overset{\pi}{\rightarrow} & T
\end{array}
\]

where $\pi : E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi} : T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π.

R. Timoney Universally reversible JC^*-triples and operator spaces
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \overset{\alpha_E}{\hookrightarrow} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

\[T^*(E) \overset{\alpha_E}{\leftarrow} E \overset{\pi}{\rightarrow} T \]

where $\pi: E \rightarrow T$ is any given triple morphism (i.e. $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi}: T^*(E) \rightarrow T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π.
Theorem. Given an abstract JC^*-triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \xrightarrow{\alpha_E} T^*(E)$ onto a sub-JC^*-triple of a TRO $T^*(E)$ with the universal property

$$
\begin{array}{c}
T^*(E) \\
\uparrow \alpha_E \quad \qua
Consider $E \subset A$ a JC^*-triple also as an operator space.

Corollary. There exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that E is completely isometric to $E_\mathcal{I}$, the operator space structure on E determined by the isometric embedding $E \to T^*(E)/\mathcal{I}$ ($x \mapsto \alpha_E(x) + \mathcal{I}$)

$$
\begin{array}{c}
T^*(E) \\
\alpha_E \\
E \\
\pi \\
\end{array} \xleftarrow{\tilde{\pi}} \xrightarrow{\pi} \text{TRO}(E)
$$

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

We have a surjective map from such ideals \mathcal{I} to JC-operator space structures on E.
Consider $E \subset A$ a JC^*-triple also as an operator space.

Corollary. There exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that E is completely isometric to $E_{\mathcal{I}}$, the operator space structure on E determined by the isometric embedding $E \rightarrow T^*(E)/\mathcal{I}$ ($x \mapsto \alpha_E(x) + \mathcal{I}$)

\[\xymatrix{ & T^*(E) \ar[dl]_{\alpha_E} \ar[dr]^\tilde{\pi} & \\
E \ar[r]_\pi & \text{TRO}(E) } \]

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

We have a surjective map from such ideals \mathcal{I} to JC-operator space structures on E.
Consider $E \subset A$ a JC^*-triple also as an operator space.

Corollary. There exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that E is completely isometric to $E_\mathcal{I}$, the operator space structure on E determined by the isometric embedding $E \to T^*(E)/\mathcal{I}$ ($x \mapsto \alpha_E(x) + \mathcal{I}$)

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

We have a surjective map from such ideals \mathcal{I} to JC-operator space structures on E.
Consider $E \subset A$ a JC^*-triple also as an operator space.

Corollary. There exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that E is completely isometric to $E_\mathcal{I}$, the operator space structure on E determined by the isometric embedding $E \rightarrow T^*(E)/\mathcal{I}$, $(x \mapsto \alpha_E(x) + \mathcal{I})$

$T^*(E)$

α_E

$\tilde{\pi}$

\mathcal{I}

π

$E \rightarrow TRO(E)$

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

We have a surjective map from such ideals \mathcal{I} to JC-operator space structures on E.
Consider $E \subset A$ a JC^*-triple also as an operator space.

Corollary. There exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that E is completely isometric to $E_\mathcal{I}$, the operator space structure on E determined by the isometric embedding $E \to T^*(E)/\mathcal{I}$ ($x \mapsto \alpha_E(x) + \mathcal{I}$).

$$
\begin{array}{ccc}
T^*(E) & \xrightarrow{\pi} & \text{TRO}(E) \\
\alpha_E & \downarrow & \\
E & \xrightarrow{\pi} & \\
\end{array}
$$

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

We have a surjective map from such ideals \mathcal{I} to JC-operator space structures on E.

R. Timoney
Universally reversible JC^*-triples and operator spaces
A (concrete) JC^*-triple $E \subseteq A$ is called reversible if

$$n \geq 2, a_1, \ldots, a_{2n+1} \in E \Rightarrow a_1 a_2^* a_3 \cdots a_{2n}^* a_{2n+1} + a_{2n+1} a_{2n}^* \cdots a_3 a_2^* a_1 \in E$$

E is called universally reversible if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \to A$.

It is known that $E = A = aC$ algebra considered as a JC^*-triple is universally reversible, but ℓ_3^2 is not.

ℓ_3^2 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihilation operators in $B(\Lambda^2 \ell_3^2, \Lambda^1 \ell_3^2)$ which is not reversible.
A (concrete) JC^*-triple $E \subseteq A$ is called reversible if

$$n \geq 2, a_1, \ldots, a_{2n+1} \in E \Rightarrow a_1 a_2^* a_3 \cdots a_{2n}^* a_{2n+1} + a_{2n+1} a_{2n}^* \cdots a_3 a_2^* a_1 \in E$$

E is called universally reversible if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \to A$.

It is known that $E = A = a C^*$-algebra considered as a JC^*-triple is universally reversible, but ℓ^2_3 is not.

ℓ^2_3 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihilation operators in $B(\Lambda^2 \ell^2_3, \Lambda^1 \ell^2_3)$ which is not reversible.
Reversible subtriples

A (concrete) JC^*-triple $E \subseteq A$ is called reversible if

\[n \geq 2, a_1, \ldots, a_{2n+1} \in E \Rightarrow a_1a_2^*a_3 \cdots a_{2n}^*a_{2n+1} + a_{2n+1}a_2^* \cdots a_3a_2^*a_1 \in E \]

E is called universally reversible if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \rightarrow A$.

It is known that $E = A = a^\ast$ algebra considered as a JC^*-triple is universally reversible, but ℓ_3^2 is not.

ℓ_3^2 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihilation operators in $B(\Lambda^2 \ell_3^2, \Lambda^1 \ell_3^2)$ which is not reversible.
A (concrete) JC^*-triple $E \subseteq A$ is called reversible if

$$n \geq 2, a_1, \ldots, a_{2n+1} \in E \Rightarrow a_1 a_2^* a_3 \cdots a_{2n}^* a_{2n+1} + a_{2n+1} a_{2n}^* \cdots a_3 a_2^* a_1 \in E$$

E is called universally reversible if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \to A$.

It is known that $E = A = a C^*$algebra considered as a JC^*triple is universally reversible, but ℓ_2^3 is not.

ℓ_2^3 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihalation operators in $B(\Lambda^2 \ell_2^3, \Lambda^1 \ell_3^2)$ which is not reversible.
A (concrete) JC^*-triple $E \subseteq A$ is called **reversible** if

$$n \geq 2, a_1, \ldots, a_{2n+1} \in E \Rightarrow a_1a_2^*a_3 \cdots a_{2n}^*a_{2n+1} + a_{2n+1}a_{2n}^* \cdots a_3a_2^*a_1 \in E$$

E is called **universally reversible** if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \to A$.

It is known that $E = A = \mathbb{C}$ is a C^*-algebra considered as a JC^*-triple is universally reversible, but ℓ_3^2 is not.

ℓ_3^2 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihilation operators in $B(\Lambda^2 \ell_3^2, \Lambda^1 \ell_3^2)$ which is not reversible.
A (concrete) JC^*-triple $E \subseteq A$ is called reversible if
\[n \geq 2, a_1, \ldots, a_{2n+1} \in E \implies a_1 a_2^* a_3 \cdots a_{2n}^* a_{2n+1} + a_{2n+1} a_{2n}^* \cdots a_3 a_2^* a_1 \in E. \]

E is called universally reversible if $\pi(E)$ is reversible for all triple homomorphisms $\pi : E \to A$.

It is known that $E = A = a_1C^*$ algebra considered as a JC^*-triple is universally reversible, but ℓ_3^2 is not.

ℓ_3^2 has isometric representations as TROs (row or column in M_3) — clearly reversible — but also has a representation as annihilation operators in $B(\Lambda^2 \ell_3^2, \Lambda^1 \ell_3^2)$ which is not reversible.
Suppose E is a universally reversible abstract JC^*-triple [linear isometric class].

Then $\mathcal{I} \mapsto E_{\mathcal{I}}$ is a bijective correspondence between the operator space ideals of $T^*(E)$ and the JC-operator space structures of E (operator space structures induced by linear isometries onto concrete JC^*-subtriples of some A).

If in addition E has no ideals linearly isometric to a nonabelian TRO, then the only operator space ideal of $T^*(E)$ is $\mathcal{I} = \{0\}$.

R. Timoney
Universally reversible JC^*-triples and operator spaces
Suppose E is a universally reversible abstract JC^*-triple [linear isometric class].

Then $\mathcal{I} \mapsto E_\mathcal{I}$ is a bijective correspondence between the operator space ideals of $T^*(E)$ and the JC-operator space structures of E (operator space structures induced by linear isometries onto concrete JC^*-subtriples of some A).

If in addition E has no ideals linearly isometric to a nonabelian TRO, then the only operator space ideal of $T^*(E)$ is $\mathcal{I} = \{0\}$.
Suppose E is a universally reversible abstract JC^*-triple [linear isometric class].

Then $\mathcal{I} \mapsto E_{\mathcal{I}}$ is a bijective correspondence between the operator space ideals of $T^*(E)$ and the JC-operator space structures of E (operator space structures induced by linear isometries onto concrete JC^*-subtriples of some A).

If in addition E has no ideals linearly isometric to a nonabelian TRO, then the only operator space ideal of $T^*(E)$ is $\mathcal{I} = \{0\}$.

R. Timoney
Universally reversible JC^*-triples and operator spaces
Suppose E is a universally reversible abstract JC^*-triple [linear isometric class].

Then $\mathcal{I} \mapsto E_{\mathcal{I}}$ is a bijective correspondence between the operator space ideals of $T^*(E)$ and the JC-operator space structures of E (operator space structures induced by linear isometries onto concrete JC^*-subtriples of some A).

If in addition E has no ideals linearly isometric to a nonabelian TRO, then the only operator space ideal of $T^*(E)$ is $\mathcal{I} = \{0\}$.