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Abstract Arrival processes to service systems often displayfluctuations that are larger
than anticipated under the Poisson assumption, a phenomenon that is referred to as
overdispersion. Motivated by this, we analyze a class of discrete-time stochastic mod-
els for which we derive heavy-traffic approximations that are scalable in the system
size. Subsequently, we show how this leads to novel capacity sizing rules that acknowl-
edge the presence of overdispersion. This, in turn, leads to robust approximations for
performance characteristics of systems that are of moderate size and/or may not oper-
ate in heavy traffic.
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1 Introduction

One of the most prevalent assumptions in queueing theory is the assumption that the
number of arrivals over any given period is a Poisson random variable with deter-
ministic rate, whose variance equals its expectation. Although natural and convenient
from a mathematical viewpoint, the Poisson assumption often fails to be confirmed
in practice. Namely, a growing number of empirical studies show that the variance of
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demand typically deviates from the mean significantly. Recent work [24,26] reports
variance being strictly less than the mean in health care settings employing appoint-
ment booking systems. This reduction of variability can be accredited to the goal of
the booking system to create a more predictable arrival pattern. On the other hand, in
other scenarios with no control over the arrivals, the variance can dominate the mean;
see [4–6,11,12,17,19,23,25,30,31,34,38,41]. The feature that variability is higher
than one expects from the Poisson assumption is referred to as overdispersion and
serves as the primary motivation for this work.

Stochastic models with the Poisson assumption have been widely applied to opti-
mize capacity levels in service systems.When stochastic models, however, do not take
into account overdispersion, resulting performance estimates are likely to be overopti-
mistic. The system then ends up being underprovisioned, which possibly causes severe
performance problems, particularly in critical loading.

A significant part of the queueing literature has focused on extending Poisson arrival
processes to more bursty arrival processes, and analyzing these models using, for
example, matrix-analytic models [29,33]. In this paper, we focus on a different cause
of overdispersion in arrival processes, which is arrival rate uncertainty. Since model
primitives, in particular the arrival rate, are typically estimated through historical data,
these are prone to be subject to forecasting errors. In the realm of Poisson processes,
this inherent uncertainty can be acknowledged by viewing the arrival rate �n itself
as being stochastic. The resulting doubly stochastic Poisson process, also known as
a Cox process (first presented in [14]), implies that demand in a given interval Ak,n

follows a mixed Poisson distribution. In this case, the expected demand per period
equals μn = E[�n], while the variance is σ 2

n = E[�n] + Var�n . By selecting the
distribution of the mixing factor �n , the magnitude of overdispersion can be made
arbitrarily large, and only a deterministic �n leads to a true Poisson process.

The mixed Poisson model presents a useful way to fit both the mean and variance
to real data, particularly in case of overdispersion. The mixing distribution can be esti-
mated parametrically or nonparametrically; see [23,30]. A popular parametric family
is the Gamma distribution, which gives rise to an effective data fitting procedure that
uses the fact that a Gamma mixed Poisson random variable follows a negative bino-
mial distribution. We will in this paper adopt the assumption of a Gamma–Poisson
mixture as the demand process.

We investigate the impact of this modeling assumption within the context of a
classical model in queueing theory, which is the reflected random walk. In particular,
we consider a sequence of such randomwalks, indexed by n, with increments Ak,n−sn ,
where Ak,n ∼ Pois(�n) and sn denotes the system capacity, and we consider a
regime in which the system approaches heavy traffic. We are especially interested in
the impact of overdispersion on the way performance measures scale, and how they
impact capacity allocation rules.

A sensible candidate capacity allocation rule is sn = μn + βσn + o(σn) for some
β > 0, which is asymptotically equivalent to the scaling

μn

σn
(1 − ρn) → β, for n → ∞,
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where ρn := μn/sn denotes the utilization. We will verify mathematically that this
is asymptotically the appropriate choice and our methods allow us to quantify the
accuracy of the resulting performance formulae for finite systems. Studies that have
addressed similar capacity allocation problems with stochastic arrival rates include
[28,30,39,40]. Of the aforementioned papers, our work best relates to [30], in the
sense that we also assess the asymptotic performance of a queueing system having
a stochastic arrival rate in heavy traffic. We therefore expand the paradigm of the
quality-and-efficiency-driven (QED) regime, which relies on the popular square-root
staffing rule sn = μn + β

√
μn , in order to have it accommodated for overdispersed

demand that follows from a doubly stochastic Poisson process.
The first part of our analysis relates to [37], inwhich a sequence of cyclically thinned

queues, denoted byGn/Gn/1 queues, is considered.Here,Gn indicates that only every
nth point of the original point process is considered. In this framework, it is shown that
the stationary waiting time can be characterized as the maximum of a random walk,
in which the increments grow indefinitely. Under appropriate heavy-traffic scaling,
the authors prove convergence to a Gaussian random walk and moreover characterize
the limits of the stationary waiting time moments. Our work differs with respect to
[37] in the sense that we study a discrete-time model, rather than the continuous-time
Gn/Gn/1 queue. Also, the presence of the overdispersion requires us to employ an
alternative scaling.

Furthermore, our approach through Pollaczek’s formula allows us to derive esti-
mates for performance measures in pre-limit, i.e., large but finite-size, systems.
Mathematically, this second part of our analysis is related to previous work [22]. In
particular, we use a refinement of the saddle point technique to establish our asymp-
totic estimates. The associated analysis is substantially more involved in the present
situation, as we will explain in Sect. 4.

Structure of the paper The remainder of this paper is structured as follows. Our model
is introduced in Sect. 2 together with some preliminary results. In Sect. 3, we derive
the classical heavy-traffic scaling limits for the queue length process in the presence
of overdispersed arrivals both for the moments and the distribution itself. Section 4
presents our main theoretical result, which provides a robust refinement to the heavy-
traffic characterization of the queue length measures in pre-limit systems. In Sect. 5,
we describe the numerical results and demonstrate the heavy-traffic approximation.

2 Model description and preliminaries

We consider a sequence of discrete stochastic models, indexed by n, in which time is
divided into periods of equal length. At the beginning of each period k = 1, 2, 3, . . .,
new demand Ak,n arrives to the system. The demands per period A1,n, A2,n, . . . are
assumed independent and equal in distribution to some nonnegative integer-valued
random variable An . For brevity, we define μn := EAn and σ 2

n = Var An . The system
has a service capacity sn ∈ N per period, so we have the recursion

Qk+1,n = max{Qk,n + Ak,n − sn, 0}, k = 0, 1, 2, . . . , (1)
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with Q0,n = 0. The duality principle for randomwalks, see, for example [35, Sec. 7.1],
shows that this expression is equivalent to

Qk+1,n
d= max

0≤ j≤k

⎧
⎨

⎩

j∑

i=1

(Ai,n − sn)

⎫
⎬

⎭
, k = 0, 1, 2, . . . , (2)

i.e., themaximumof the first k steps of a randomwalkwith steps distributed as An−sn .
Even more, we can characterize Qn , the stationary queue length, as

Qn
d= max

k≥0

{
k∑

i=1

(Ai,n − sn)

}

. (3)

The behavior of Qk,n greatly depends on the characteristics of An and sn . First, note
that μn < sn is a necessary condition for the maximum to be finite and therefore for
the queue to be stable. This random variable is finite a.s. if E[Ai,n] < sn , which is
guaranteed by our Assumption 1 (in particular β > 0) below. Before continuing the
analysis of Qn , we impose a set of conditions on the asymptotic properties of sn, μn

and σn , which are assumed to hold throughout the remainder of this paper.

Assumption 1 (a) (Asymptotic growth)

μn, σn → ∞, for n → ∞.

(b) (Persistence of overdispersion)

σ 2
n /μn → ∞, for n → ∞.

(c) (Heavy-traffic condition) The utilization ρn := μn/sn → 1 as n → ∞ according
to

(1 − ρn)
μn

σn
→ β, for n → ∞, (4)

for some β > 0.

By Assumption 1(a), we insist that the expected demand per period grows infinitely
large, which allows us to develop approximations for systems with large yet finite
arrival volumes. Moreover, it is assumed that the order of stochastic variability of the
arrival process relative to the mean arrival volume does not vanish in the limit. In
fact, the assumption on the persistence of overdispersion says that the variance of the
demand per period is of higher order than its mean as n grows large. We note that
the scenario with σ 2

n /μn → γ for some γ > 0 is asymptotically equivalent to the
process studied in [22], in which case overdispersion of the arrival process does not
play a role in the limit as n → ∞. In order to establish heavy-traffic approximations
for large systems that do face overdispersion we need to construct an asymptotic
regime in which overdispersion continues to play a dominant role as n → ∞, which
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is secured by Assumption 1(b). The subsequent analysis will clarify why the heavy-
traffic condition in Assumption 1(c) is the correct one for our purposes. Note that
Assumption 1(c) is satisfied for the capacity allocation rule

sn = μn + β σn . (5)

Since we are mainly interested in the system behavior in heavy traffic, it is appro-
priate to study the queue length process in a scaled form. Substituting sn as in
Assumption 1(c), and dividing both sides of (3) by σn , gives

Qn

σn
= max

k≥0

{
k∑

i=1

(
Ai,n − μn

σn
− β

)}

. (6)

By defining Q̂n := Qn/σn and

Âi,n := (Ai,n − μn)/σn, (7)

we see that the scaled queue length process is in distribution equal to the maximum
of a random walk with i.i.d. increments distributed as Ân − β. Besides E Ân = 0 and
Var Ân = 1, the scaled and centered arrival counts Ân have a few other nice properties
which we turn to later in this section.

The model in (1) is valid for any distribution of An , also for the original case where
the number of arrivals follows a Poisson distribution with fixed parameter λn , but
Assumption 1(b) does not hold then. Instead, we assume An to be Poisson distributed
with uncertain arrival rate rendered by the nonnegative random variable �n . This �n

is commonly referred to as the prior distribution, while An is given the name of a
Poisson mixture; see [18]. Given that the moment generation function of �n , denoted
by M�

n (·), exists, we are able to express the probability generating function (pgf) of
An through the former. Namely,

Ãn(z) = E[E[zAn |�n]] = E[exp(�n(z − 1))] = M�
n (z − 1). (8)

From (8), we get

μn = EAn = E�n, σ 2
n = Var An = Var�n + E�n, (9)

so that μn < σ 2
n if �n is non-deterministic. Assumption 1(b) hence translates to

Var�n/E�n → ∞, n → ∞.

The next result relates the convergence behavior of the centered and scaled �n to that
of Ân .
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Lemma 1 Let μn, σ
2
n → ∞ and σ 2

n /μn → ∞. If

�̂n := �n − μn

σn

d⇒ N (0, 1), for n → ∞, (10)

where N (0, 1) denotes a standard normal variable, then Ân converges weakly to a
standard normal variable as n → ∞.

The proof can be found in Appendix A.
The prevalent choice for �n is the Gamma distribution. The Gamma–Poisson mix-

ture turns out to provide a good fit to arrival counts observed in service systems, as
was observed by [23,30]. Assuming �n to be of Gamma type with scale and rate
parameters an and 1/bn , respectively, we get

Ãn(z) =
(

1

1 + bn(1 − z)

)an
, (11)

in which we recognize the pgf of a negative binomial distribution with parameters an
and 1/(bn + 1), so that

μn = anbn, σ 2
n = anbn(bn + 1). (12)

Note that in the context of a Gamma prior, the restrictions in Assumption 1 reduce
to only two rules. For completeness, we include the revised list below.

Assumption 2 (a) (Asymptotic regime and persistence of overdispersion)

an, bn → ∞, for n → ∞.

(b) (Heavy-traffic condition) Let

sn = anbn + β
√
anbn(bn + 1) + o

(√
anbn

)
,

for some β > 0, or equivalently

(1 − ρn)
√
an → β, for n → ∞.

The next result follows from the fact that �n is a Gamma random variable:

Corollary 1 Let �n ∼ Gamma(an, 1/bn), An ∼ Poisson(�n) and an, bn → ∞.
Then, Ân converges weakly to a standard normal random variable as n → ∞.

Proof With Lemma 1 in mind, it is sufficient to prove that �̂n ⇒ N (0, 1) for this
particular choice of �n . We do this by proving the pointwise convergence of the
characteristic function (cf) of �̂n to exp(−t2/2), the cf of the standard normal distri-
bution. Let ϕG(·) denote the characteristic function of a random variable G. By basic
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properties of the cf,

ϕ
�̂n

(t) = e−iμn t/σn ϕ�n (t/σn) = e−iμn t/σn

(

1 − ibnt

σn

)−an

= exp

[

− iμnt

σn
− an ln

(

1 − ibnt

σn

)]

= exp

[

− iμnt

σn
− an

(

− i bnt

σn
+ b2nt

2

2σ 2
n

+ O(b3n/σ
3
n )

)]

= exp

[

− bn t2

2(bn + 1)
+ O

(
1/

√
an

)
]

→ exp
(
−t2/2

)
, (13)

for n → ∞. Since bn/σn = a−1/2
n (1 + 1/bn)−1/2 → 0 as n → ∞, we can take

the principal value in (13) for the logarithm when t is in any compact set and n is
large enough. By Lévy’s continuity theorem, see, for example, [16, Thm. 18.21], this
implies �̂n is indeed asymptotically standard normal. 
�

The characterization of the arrival process as a Gamma–Poisson mixture is of vital
importance in later sections.

2.1 Expressions for the stationary distribution

Our main focus is on the stationary queue length distribution, denoted by

P(Qn = i) = lim
k→∞P(Qk,n = i).

Denote the pgf of Qn by

Q̃n(w) =
∞∑

i=0

P(Qn = i)wi . (14)

To continue our analysis of Qn , we need one more condition on An .

Assumption 3 The pgf of An , denoted by Ãn(w), exists within |w| < r0, for some
r0 > 1, so that all moments of An are finite.

We next recall two characterizations of Q̃n(w) that play prominent roles in the
remainder of our analysis. The first characterization of Q̃n(w) originates from a ran-
dom walk perspective. As we see from (3), the (scaled) stationary queue length is
equal in distribution to the all-time maximum of a random walk with i.i.d. increments
distributed as An − sn (or Ân − β in the scaled setting). Spitzer’s identity, see, for
example, [3, Theorem VIII4.2], then gives

Q̃n(w) = exp

{ ∞∑

k=1

1

k

(

E

[

w

(∑k
i=1{Ai,n−sn}

)+]

− 1

)}

, (15)
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where (x)+ = max{x, 0}. Hence,

EQn = Q̃′
n(1) =

∞∑

k=1

1

k
E

[
k∑

i=1

(Ai,n − sn)

]+
, (16)

Var Qn = Q̃′′
n(1) + Q′

n(1) −
(
Q̃′

n(1)
)2 =

∞∑

k=1

1

k
E

⎡

⎣

(
k∑

i=1

(Ai,n − sn)

)+⎤

⎦

2

,

(17)

P(Qn = 0) = Q̃n(0) = exp

{

−
∞∑

k=1

1

k
P

(
k∑

i=1

(Ai,n − sn) > 0

)}

. (18)

A second characterization follows from Pollaczek’s formula, see [1,22]:

Q̃n(w) = exp

{
1

2π i

∫

|z|=1+ε

ln

(
w − z

1 − z

)
(zsn − Ãn(z))′

zsn − Ãn(z)
dz

}

, (19)

which is analytic for |w| < r0, for some r0 > 1. Therefore, ε > 0 has to be chosen
such that |w| < 1 + ε < r0. This gives

EQn = 1

2π i

∫

|z|=1+ε

1

1 − z

(zsn − Ãn(z))′

zsn − Ãn(z)
dz, (20)

Var Qn = 1

2π i

∫

|z|=1+ε

−z

(1 − z)2
(zsn − Ãn(z))′

zsn − Ãn(z)
dz, (21)

P(Qn = 0) = exp

{
1

2π i

∫

|z|=1+ε

ln

(
z

z − 1

)
(zsn − Ãn(z))′

zsn − Ãn(z)
dz

}

. (22)

Pollaczek-type integrals like (19)–(22) first occurred in the work of Pollaczek
on the classical single-server queue (see [1,13,21] for historical accounts). These
integrals are fairly straightforward to evaluate numerically and hence give rise to effi-
cient algorithms for performance evaluation [1,9]. The integrals also proved useful in
establishing heavy-traffic results by asymptotic evaluation of the integrals in various
heavy-traffic regimes [8,13,22,27], and in this paper we follow that approach for a
heavy-traffic regime that is suitable for overdispersion.

3 Heavy-traffic limits

In this section, we present the result on the convergence of the discrete process Q̂n to a
non-degenerate limiting process and of the associated stationary moments. The latter
requires an interchange of limits. Using this asymptotic result, we derive two sets of
approximations for EQn , Var Qn and P(Qn = 0) that capture the limiting behavior
of Qn . The first set provides a rather crude estimation for the first cumulants of the
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queue length process for any arrival process An satisfying Assumption 1. The second
set, which is the subject of the next section, is derived for the specific case of a Gamma
prior and is therefore expected to provide more accurate, robust approximations for
the performance metrics.

We start by indicating how the asymptotic properties of the scaled arrival process
give rise to a proper limiting random variable describing the stationary queue length.
The asymptotic normality of Ân provides a link with the Gaussian random walk and
nearly deterministic queues [36,37]. The main results in [36,37] were obtained under
the assumption that ρn ∼ 1 − β/

√
n, in which case it follows from [37, Thm. 3] that

the rescaled stationary waiting time process converges to a reflected Gaussian random
walk.

We shall also identify the Gaussian random walk as the appropriate scaling limit
for our stationary system. However, since the normalized natural fluctuations of our
system are given by μn/σn instead of

√
n, we assume that the load grows like ρn ∼

1 − β
μn/σn

. Hence, in contrast to [36,37], our systems’ characteristics display larger
natural fluctuations, due to the mixing factor that drives the arrival process. Yet, by
matching this overdispersed demand with the appropriate hedge against variability,
we again obtain Gaussian limiting behavior. This is not surprising, since we saw in
Lemma 1 that the increments start resembling Gaussian behavior for n → ∞. The
following result summarizes this.

Theorem 1 Let An be a nonnegative random variable such that Ân = (An −
μn)/σn is asymptotically standard normal, with μn and σn as defined in (9), and
E[(max{ Ân, 0})4] is bounded in n. Then, under Assumption 1, for n → ∞,

(i) Q̂n
d⇒ Mβ ,

(ii) P(Qn = 0) → P(Mβ = 0),
(iii) EQ̂n → EMβ ,
(iv) Var Q̂n → Var Mβ ,

where Mβ is the all-time maximum of a random walk with i.i.d. normal increments
with mean −β and unit variance.

The proof of Theorem 1 is given in Appendix A. We remark that for convergence
of the mean scaled queue length, only E[(max{ Ân, 0})3] < ∞ is needed. The follow-
ing result shows that Theorem 1 also applies to Gamma mixtures, which is a direct
consequence of Corollary 1.

Corollary 2 Let �n ∼ Gamma(an, bn). Then, under Assumption 2 the four conver-
gence results of Theorem 1 hold true.

It follows from Theorem 1 that the scaled stationary queueing process converges
under (4) to a reflected Gaussian random walk. Hence, the performance measures of
the original system should be well approximated by the performance measures of the
reflected Gaussian random walk, yielding heavy-traffic approximations.

Like our original system, the Gaussian random walk falls in the classical setting
of the reflected one-dimensional random walk, whose behavior is characterized by
both Spitzer’s identity and Pollaczek’s formula. In particular, Pollaczek’s formula
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gives rise to contour integral expressions for performance measures that are easy to
evaluate numerically, also in heavy-traffic conditions. The numerical evaluation of
such integrals is considered in [1]. For EMβ , such an integral is as follows:

EMβ = − 1

π

∫ ∞

0
Re

[
1 − φ(−z)

z2

]

dy, (23)

with φ(z) = exp(−β z + 1
2 z

2), the Laplace transform of a normal random variable
with mean −β and unit variance, and z = x + iy with an appropriately chosen
real part x . Note that this integral involves complex-valued functions with complex
arguments. Similar Pollaczek-type integrals exist for P(Mβ = 0) and Var Mβ ; see [1].
The following result simply rewrites these integrals in terms of real integrals and uses
the fact that the scaled queue length process mimics the maximum of the Gaussian
random walk for large n.

Corollary 3 Under Assumption 1, the leading order behavior of P(Qn = 0), EQn

and Var Qn as n → ∞ is given by, respectively,

exp

[
1

π

∫ ∞

0

β/
√
2

1
2β

2 + t2
ln

(

1 − e− 1
2β2−t2

)

dt

]

, (24)

√
2σn
π

∫ ∞

0

t2

1
2β

2 + t2
exp(− 1

2β
2 − t2)

1 − exp(− 1
2β

2 − t2)
dt, (25)

√
2βσ 2

n

π

∫ ∞

0

t2

( 12β
2 + t2)2

exp(− 1
2β

2 − t2)

1 − exp(− 1
2β

2 − t2)
dt. (26)

Proof According to [1, Eq. (15)],

− ln [P(Mβ = 0)] = c0, EMβ = c1, Var Mβ = c2,

where

cn = (−1)nn!
π

Re

[∫ ∞

0

ln (1 − exp(β z + 1
2 z

2))

zn+1 dy

]

,

in which z = −x + i y, y ≥ 0, and x is any fixed number between 0 and 2β. Take
x = β, so that

βz + 1
2 z

2 = − 1
2β

2 − 1
2 y

2 ≤ 0, y ≥ 0.

For n = 0, this gives

c0 = 1

π
Re

[∫ ∞

0

ln (1 − exp(− 1
2β

2 − 1
2 y

2))

−β + i y
dy

]
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= − 1

π

∫ ∞

0

β

β2 + y2
ln

(
1 − exp(− 1

2β
2 − 1

2 y
2)

)
dy

= − 1

π

∫ ∞

0

β/
√
2

1
2β

2 + t2
ln

(
1 − exp(− 1

2β
2 − t2)

)
dt,

where we used that

Re

[
1

−β + i y

]

= −β

β2 + y2
,

together with the substitution y = t
√
2. For n = 1, 2, . . . , partial integration gives

cn = (−1)nn!
π

Re

[∫ ∞

0

ln(1 − exp(− 1
2β

2 − 1
2 y

2))

(−β + i y)n+1 dy

]

= (−1)n−1(n − 1)!
π

Im

[∫ ∞

0
ln(1 − exp(− 1

2β
2 − 1

2 y
2))d

(
1

(−β + i y)n

)]

= − (−1)n−1(n − 1)!
π

Im

[∫ ∞

0

y

(−β + i y)n
exp(− 1

2β
2 − 1

2 y
2)

1 − exp(− 1
2β

2 − 1
2 y

2)
dy

]

,

where we have used that

Im

[
ln(1 − exp(− 1

2β
2 − 1

2 y
2))

(−β + i y)n

]
∣
∣
∣
∞
0

= 0.

Using

1

(−β + i y)n
= (−1)n

(β + i y)n

(β2 + y2)n
,

we then get

cn = (n − 1)!
π

Im

[∫ ∞

0

y(β + i y)n

(β2 + y2)n
exp(− 1

2β
2 − 1

2 y
2)

1 − exp(− 1
2β

2 − 1
2 y

2)
dy

]

,

which, after substitution of y = t
√
2 gives (25) and (26). 
�

4 Robust heavy-traffic approximations

We shall now establish robust heavy-traffic approximations for the canonical case of
Gamma–Poisson mixtures; see (11).
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Theorem 2 Let an, bn and sn be as in Assumption 2. Then, the leading order behavior
of EQn is given by

√
2 βn

π

(
bn + ρn

1 − ρn

) ∫ ∞

0

t2

1
2β

2
n + t2

exp(− 1
2β

2
n − t2)

1 − exp(− 1
2β

2
n − t2)

dt (1 + o(1)), (27)

where

β2
n = sn

(
1 − ρn

bn + 1

)2 (

1 + bn
ρn

)

. (28)

Furthermore, the leading order behavior of P(Qn = 0) and Var Qn is given by

exp

[
1

π

bn + ρn

bn + 1

∫ ∞

0

βn/
√
2

1
2β

2
n + t2

ln

(

1 − e− 1
2β2

n−t2
)

dt

]

,

and

β3
n/

√
2

π

(
bn + ρn

1 − ρn

)2 (
bn + 1

bn + ρn
+ 1

)∫ ∞

0

t2

( 12βn + t2)2
exp(− 1

2βn − t2)

1 − exp(− 1
2β

2
n − t2)

dt,

(29)

respectively.

The proof of Theorem 2 requires asymptotic evaluation of the Pollaczek-type inte-
grals (20)–(22), for which we shall use a nonstandard saddle point method. The saddle
point method in its standard form is typically suitable for large deviation regimes, for
instance excess probabilities, and it cannot be applied to asymptotically characterize
other stationary measures such as the mean or mass at zero. Indeed, in the presence
of overdispersion, the saddle point converges to one (as n → ∞), which is a singular
point of the integrand, and renders the standard saddle point method useless. Our non-
standard saddle point method, originally proposed by [15] and also applied in [22],
aims specifically to overcome this challenge. Subsequently, we apply the nonstandard
saddle point method to turn these contour integrals into practical approximations. In
contrast to the setting of [22], the analyticity radius tends to one in the setting with
overdispersion, which is a singular point of the integrand. For the proof of Theorem 2,
we therefore modify the special saddle point method developed in [22] to account for
this circumstance.

Proof Our starting point is the probability generating function of the number of arrivals
per time slot, given in (11), which is analytic for |z| < 1 + 1/bn =: r0. Under
Assumption 2, we consider EQn as given in (20). We set

g(z) = −ln z + 1

sn
ln

[
Ãn(z)

] = −ln z − an
sn

ln (1 + (1 − z)bn) , (30)
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to be considered in the entire complex plane with branch cuts (−∞, 0] and [r,∞).
The relevant saddle point zsp is the unique zero z of g′(z) with z ∈ (1, r0). Since

g′(z) = −1

z
+ ρn

1 + (1 − z)bn
, (31)

this yields

1 + (1 − zsp)bn = ρnzsp, i.e., zsp = 1 + 1 − ρn

ρn + bn
. (32)

We then find

EQn = sn
2π i

∫

|z|=1+ε

g′(z)
z − 1

exp(sn g(z))

1 − exp(sn g(z))
dz, (33)

and take 1 + ε = zsp. There are no problems with the branch cuts since we consider
exp(sng(z)) with integer sn .

We continue as in [22] and thus we intend to substitute z = z(v) in the integral in
(33), where z(v) satisfies

g(z(v)) = g(zsp) − 1
2 v2 g′′(zsp) =: q(v)

in the range − 1
2δn ≤ v ≤ 1

2δn with δn → 0 as n → ∞. Note that this range depends
on n, whereas these bounds ± 1

2δn remained bounded away from zero in [22]. This
severely complicates the present analysis.We consider the approximate representation

−sn g′′(zsp)
2π i

∫ 1
2 δn

− 1
2 δn

v

z(v) − 1

exp(sn q(v))

1 − exp(sn q(v))
dv (34)

ofEQn . We have to operate here with additional care, since both the analyticity radius
r0 = 1 + 1/bn and the saddle point zsp outside the unit circle tend to 1 as n → ∞.
Specifically, proceeding under the assumptions that (1 − ρn)

2an is bounded while
an → ∞ and bn ≥ 1, see Assumption 2, we have from (32) that

zsp − 1 = 1 − ρn

bn + ρn
= 1 − ρn

bn
+ O

(
1 − ρn

b2n

)

, (35)

where the O-term is small compared to (1 − ρn)/bn when bn → ∞. Next, we
approximate r0, using that r0 > 1 satisfies

−ln r0 − ρn

bn
ln (1 + (1 − r0)bn) = 0.
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Write r0 = 1 + u/bn , so that we get the equation

0 = −ln

(

1 + u

bn

)

− ρn

bn
ln(1 − u)

= − u

bn

(

1 − ρn − 1
2

(
1

bn
+ ρn

)

u − 1
3

(−1

b2n
+ ρn

)

u2 + · · ·
)

,

where we have used the Taylor expansion of ln(1 + x) at x = 0. Thus, we find

u = 2(1 − ρn)

ρn + 1/bn
+ O(u2) = 2(1 − ρn) + O((1 − ρn)

2) + O

(
1 − ρn

bn

)

,

and so,

r0 = 1 + 2
1 − ρn

bn
+ O

(
(1 − ρn)

2

bn

)

+ O

(
1 − ρn

b2n

)

.

In (34) we choose δn so large that the integral has converged within exponentially
small error using ± δn as integration limits and, at the same time, so small that there
is a convergent power series

z(v) = zsp + iv +
∞∑

k=2

ck(iv)k, for |v| ≤ 1
2δn . (36)

To achieve these goals, we supplement the information on g(z), as given by (30)–(32),
by

g′′(z) = 1

z2
+ ρnbn

(1 + (1 − z)bn)2
, g′′(1) = 1 + ρnbn, g′′(zsp) = 1

z2sp

(

1 + bn
ρn

)

.

(37)

Now,

exp(sn q(v)) = exp(sn g(zsp)) exp(− 1
2 sn g

′′(zsp) v2),

and

sn g
′′(zsp)v2 = sn bnv

2(1 + o(1)) = an(bn v)2(1 + o(1)).

Therefore, (34) approximates EQn with exponentially small error when we take 1
2δn

of the order 1/bn .
We next aim at showing thatwe have a power series for z(v) as in (36) that converges

for |v| ≤ 1
2δn , with

1
2δn of the order 1/bn .
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Lemma 2 Let

rn := 1

2 bn
− (zsp − 1), mn := 2

3ρnrn

√

bn + ρ−1
n

bn + ρn
,

where we assume rn > 0. Then, (36) holds with real coefficients ck satisfying

|ck | ≤ rn
mk

n
, k = 2, 3, . . . . (38)

Proof We let

G(z) := 2(g(z) − g(zsp))

g′′(zsp)(z − zsp)2
. (39)

Then G(zsp) = 1 and so we can write (4) as

F(z) := (z − zsp)
√
G(z) = iv (40)

when |z − zsp| is sufficiently small. Since F(zsp) = 0, F ′(zsp) = 1, the Bürmann–
Lagrange inversion theorem implies validity of a power series as in (36), with real ck
sinceG(z) is positive and real for real z close to zsp. We therefore just need to estimate
the convergence radius of this series from below.

To this end, we start by showing that

Re[g′′(z)] >
4

9
ρ2
n
bn + ρ−1

n

bn + ρn
, |z − zsp| ≤ rn . (41)

For this, we consider the representation

G(z) = 2
∫ 1

0

∫ 1

0

g′′(zsp + s t (z − zsp))

g′′(zsp)
tdsdt. (42)

We have, for ζ ∈ C and |ζ − 1| ≤ 1/2bn ≤ 1/2, from (37) that

Re[g′′(ζ )] = Re(1/ζ 2) + ρnbn Re

[(
1

1 + (1 − ζ )bn

)2
]

≥ 4
9 (1 + ρnbn). (43)

To show the inequality in (43), it suffices to show that

min|ξ−1|≤1/2
Re

(
1

ξ2

)

= 4

9
. (44)

The minimum in (44) is assumed at the boundary |ξ − 1| = 1/2, and for a boundary
point ξ we write

ξ = 1 + 1
2 cos θ + 1

2 i sin θ, 0 ≤ θ ≤ 2π,
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so that

Re

(
1

ξ2

)

= 1 + cos θ + 1
4 cos 2θ

(
5
4 + cos θ

)2 .

Now

d

dθ

⎡

⎢
⎣
1 + cos θ + 1

4 cos 2θ
(
5
4 + cos θ

)2

⎤

⎥
⎦ = sin θ (1 − cos θ)

4
(
5
4 + cos θ

)3

vanishes for θ = 0, π, 2π , where Re(1/ξ2) assumes the values 4/9, 4, 4/9, respec-
tively. This shows (44).

We use (44) with ξ = ζ and ξ = 1 + (1 − ζ )bn , with

ζ = ζ(s, t) = zsp + s t (z − zsp), 0 ≤ s, t ≤ 1, (45)

where we take ζ such that |ζ −1| ≤ 1/2bn . It is easy to see from 1 < zsp < 1+1/2bn
that |ζ − 1| ≤ 1/2bn holds when |z − zsp| ≤ rn = 1/2bn − (zsp − 1). We have,
furthermore, from (32) that 0 < g′′(zsp) ≤ 1 + bn/ρn . Using this, together with (43)
where ζ is as in (45), yields

Re[G(z)] ≤ 4

9

1 + ρnbn
1 + bn/ρn

2
∫ 1

0

∫ 1

0
t ds dt = 4

9 ρ2
n
bn + ρ−1

n

bn + ρn

when |z − zsp| ≤ rn , and this is (41). We therefore have from (40) that

|F(z)| > rn · 2
3
ρn

√

bn + ρ−1
n

bn + ρn
= mn, |z − zsp| = rn .

Hence, for any v with |v| ≤ mn , there is exactly one solution z = z(v) of the equation
F(z) − iv = 0 in |z − zsp| ≤ rn by Rouché’s theorem [2]. This z(v) is given by

z(v) = 1

2π i

∫

|z−zsp|=rn

F ′(z) z
F(z) − iv

dz,

and depends analytically on v, |v| ≤ mn . From |z(v)− zsp| ≤ rn , we can finally bound
the power series coefficients ck according to

|ck | =
∣
∣
∣
∣
1

2π i

∫

|iv|=mn

z(v) − zsp
(iv)k+1 d(iv)

∣
∣
∣
∣ ≤ rn

mk
n
,

and this completes the proof of the lemma. 
�
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Remark 1 We have zsp − 1 = o(1/bn), see (35), and so

rn = 1

2bn
(1 + o(1)), mn = 1

3bn
(1 + o(1)),

implying that the radius of convergence of the series in (36) is indeed of order 1/bn
(since we have assumed bn ≥ 1).

We let δn = mn , and we write, for 0 ≤ v ≤ 1
2δn ,

v

z(v) − 1
+ −v

z(−v) − 1
= −2iv Im(z(v))

|z(v) − 1|2 ,

where we have used that all ck are real, so that z(−v) = z(v)∗, where ∗ denotes the
complex conjugate. Now, from (38) and realness of the ck , we have

Im(z(v)) = v +
∞∑

l=1

c2l+1(−1)l v2l+1 = v + O(v3), (46)

and in similar fashion

|z(v) − 1|2 = (zsp − 1)2 + v2 + O((zsp − 1)2v2) + O(v4) (47)

when 0 ≤ v ≤ 1
2δn . The order terms in (46), (47) are negligible in leading order, and

so we get for μQn via (34) the leading order expression

−sn g′′(zsp)
2π i

∫ 1
2 δn

0

−2iv2

(zsp − 1)2 + v2

exp(sn q(v))

1 − exp(sn q(v))
dv.

We finally approximate q(v) = g(zsp) − 1
2g

′′(zsp)v2. There is a z1, 1 ≤ z1 ≤ zsp,
such that

g(zsp) = − 1
2 (zsp − 1)2 g′′(z1),

and, see (35) and (37),

g′′(z1) = g′′(zsp) + O((1 − ρn)bn).

Hence

sn q(v) = − 1
2 sn g

′′(zsp) [(zsp − 1)2 + v2] + O((1 − ρn)bnsn(zsp − 1)2)

= − 1
2 sn g

′′(zsp)[(zsp − 1)2 + v2] + O((1 − ρn)
2an), (48)
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where (35) has been used, and anbn = sn(1 + o(1)). Therefore, the O-term in (48)
tends to 0 by our assumption that (1 − ρn)

2an is bounded. Thus, we get for μQn in
leading order

sng′′(zsp)
π

∫ 1
2 δn

0

v2

(zsp − 1)2 + v2

exp(− 1
2g

′′(zsp)sn((zsp − 1)2 + v2))

1 − exp(− 1
2g

′′(zsp)sn((zsp − 1)2 + v2))
dv.

(49)

When we substitute t = v
√
sn g′′(zsp)/2 and extend the integration in (49) to all t ≥ 0

(at the expense of an exponentially small error), we get for μQn in leading order

= 1

π

√

2 sn g′′(zsp)
∫ ∞

0

t2

1
2β

2
n

exp(− 1
2β

2
n − t2)

1 − exp(− 1
2β

2
n − t2)

dt,

where

β2
n = sn g

′′(zsp)(zsp − 1)2.

Now using (32) and (37), we get the result of Theorem 2. A separate analysis of βn is
provided in Sect. 5.1. 
�

5 Main insights and numerics

Through Theorem 2, we can write (27) as

EQn ≈ σ̃n E[Mβn ]

with

σ̃n = βn

(
bn + ρn

1 − ρn

)

. (50)

This robust approximation for EQn is suggestive of the following two properties that
extend beyond the mean system behavior, and hold at the level of approximating the
queue by σn times the Gaussian random walk:

(i) At the process level, the space should be normalizedwithσn , as in (8). The approx-
imation (27) suggests that it is better to normalize with σ̃n . Although σ̃n/σn → 1
for n → ∞, the σ̃n is expected to lead to sharper approximations for finite n.

(ii) Again at the process level, it seems better to replace the original hedge β by the
robust hedge βn . This thus means that the original system for finite n is approxi-
mated by a Gaussian random walk with drift−βn . Apart from this approximation
being asymptotically correct for n → ∞, it is also expected to approximate the
behavior better for finite n.
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5.1 Convergence of the robust hedge

We next examine the accuracy of the heavy-traffic approximations for EQn and σ 2
Q ,

following Corollary 3 and Theorem 2. We expect the robust approximation to be
considerably better than the classical approximation when βn and σ̃n differ substan-
tially from their limiting counterparts. Before substantiating this claim numerically,
we present a result on the convergence rates of βn to β and σ̃n to σn .

Proposition 1 Let an, bn and sn be as in Assumption 2. Then

β2
n = β2

(

1 − 1

1 + bn + σn/β

)

. (51)

Proof From (28), we have

β2
n = sn

(
1 − ρn

bn + 1

)2 (

1 + bn
ρn

)

= 1

sn

(
sn − anbn
bn + 1

)2 (

1 + sn
an

)

= 1

sn

β2 anbn(bn + 1)

(bn + 1)2

(

1 + sn
an

)

= β2 bn
bn + 1

(

1 + an
sn

)

=: β2 F̄n .

Now,

F̄n = bn
bn + 1

(

1 + an
sn

)

= bn
bn + 1

+ 1

bn + 1

anbn
sn

= 1 − 1

bn + 1

(

1 − anbn
sn

)

= 1 − 1

bn + 1

β σn

sn

= 1 − 1

bn + 1

1

1 + μn
βσn

= 1 − 1

bn + 1 + 1
β

√
anbn(bn + 1)

,

which, together with σ 2
n = anbn(bn + 1), proves the proposition. 
�

Note that βn always approaches β from below. Also, (51) shows that bn is the
dominant factor in determining the rate of convergence of βn .

Proposition 2 Let σ̃n as in (50). Then

σ̃n = σn + bnβn + O(1).

Proof Straightforward calculations give

σ̃n = βn

(
snbn + anbn
sn − anbn

)

= βn

β

bn
σn

(sn + an) = βn

β

√
bn

an(bn + 1)

(
an(bn + 1) + β

√
anbn(bn + 1)

)

= βn

β

(√
anbn(bn + 1) + βbn

)
= βn

β
σn + βnbn .
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(a) (b)

Fig. 1 Convergence of the robust hedge. a Convergence of βn , b convergence of σ̃n

Table 1 Numerical results for the Gamma–Poisson case with β = 1 and δ = 0.6

sn ρn EQn (25) (27)
√
Var Qn (26) (29)

5 0.609 0.343 0.246 0.363 1.002 0.835 0.978

10 0.683 0.535 0.400 0.551 1.239 1.063 1.216

50 0.815 1.405 1.168 1.405 1.995 1.817 1.971

100 0.855 2.113 1.824 2.105 2.445 2.270 2.420

500 0.920 5.446 5.006 5.412 3.923 3.762 3.899

Applying Proposition 1 together with the observation

σn

√

1 − 1

1 + bn + σn/β
= σn(1 + O(1/

√
anbn)) = σn + O(1)

yields the result. 
�
In Fig. 1, we visualize the convergence speed of both parameters in the caseμn = n,

σn = nδ with δ = 0.7 and β = 1. This implies an = n/(n2δ − 1) and bn = n2δ − 1.
We observe that βn starts resembling β fairly quickly, as predicted by Proposition 1;
σ̃n , on the other hand, converges extremely slowly to its limiting counterpart. Since
EQn and Var Qn are approximated by β̃n and σ̃n , multiplied by a term that remains
almost constant as n grows, the substitution of σn by σ̃n is essential for obtaining
accurate approximations, as we illustrate further in the next subsection.

5.2 Comparison between heavy-traffic approximations

We set μn = n and σ 2
n = n2δ with δ > 1

2 , so that sn = n + βnδ , and an =
n/(n2δ−1 − 1) and bn = n2δ−1 − 1. Tables 1, 2, 3 and 4 present numerical results
for various parameter values. The exact values are calculated using the method in
Appendix B. Several conclusions are drawn from these tables. Observe that the heavy-
traffic approximations based on the Gaussian random walk, (25) and (26), capture the
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Table 2 Numerical results for the Gamma–Poisson case with β = 1 and δ = 0.8

sn ρn EQn (25) (27)
√
Var Qn (26) (29)

5 0.550 0.462 0.284 0.479 1.162 0.896 1.130

10 0.587 0.852 0.521 0.855 1.570 1.213 1.528

50 0.668 3.197 2.093 3.106 3.025 2.433 2.947

100 0.700 5.561 3.784 5.377 3.983 3.270 3.887

500 0.766 19.887 14.741 19.202 7.514 6.455 7.361

Table 3 Numerical results for the Gamma–Poisson case with β = 0.1 and δ = 0.6

sn ρn EQn (25) (27)
√
Var Qn (26) (29)

5 0.949 11.532 11.306 11.495 3.634 3.559 3.602

10 0.961 17.565 17.268 17.548 4.474 4.398 4.444

50 0.979 46.368 45.869 46.418 7.241 7.168 7.218

100 0.984 70.340 69.735 70.430 8.910 8.839 8.888

500 0.991 184.900 183.989 185.108 14.422 14.357 14.404

Table 4 Numerical results for the Gamma–Poisson case with β = 0.1 and δ = 0.8

sn ρn EQn (25) (27)
√
Var Qn (26) (29)

5 0.931 15.730 15.209 15.909 4.276 4.127 4.233

10 0.939 27.561 26.672 27.958 5.652 5.466 5.605

50 0.955 100.660 97.967 102.070 10.760 10.476 10.698

100 0.961 175.591 171.360 177.818 14.189 13.855 14.117

500 0.971 638.097 626.346 644.105 26.963 26.490 26.864

right order of magnitude for both EQn and Var Qn . However, the values are off,
in particular for small sn and relatively low ρn := E[An]/sn . The inaccuracy also
increases with the level of overdispersion. In contrast, the approximations that follow
from Theorem 2, (27) and (29), are remarkably accurate. Even for small systems with
sn = 5 or 10, the approximations for EQn are within 6% of the exact value for small
ρn and within 2% for ρn close to 1. For σ 2

Q , these percentages even reduce to 3% and
1%, respectively. For larger values of sn these relative errors naturally reduce further.
Overall, we observe that the approximations improve for heavily loaded systems,
and the corrected approximations are particularly useful for systems with increased
overdispersion.
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A Proofs of convergence results

This section presents the details of the proofs of Lemma 1 and Theorem 1, using
the random walk perspective of the process {Qk,n}∞k=0. This section is structured
as follows. The next two lemmata are necessary for proving the first assertion of
Theorem 1, concerning the weak convergence of the scaled process to themaximum of
the Gaussian random walk, which is summarized in Proposition 4. The two remaining
propositions of this section show convergence of Q̂n at the process level as well as in
terms of the three characteristics.

Let us first fix some notation:

Yk,n := Âk,n − β, Sk,n =
k∑

i=1

Yi,n, (52)

with S0,n = 0 and k = 1, 2, . . .. Then (6) can be rewritten as

Q̂n
d= max

0≤k

{
k∑

i=1

Yi,n

}

=: Mβ,n . (53)

Last, we introduce the sequence of independent normal random variables Z1, Z2, . . .

with mean −β and unit variance 1, and

Mβ
d= max

k≥0

{
k∑

i=1

Zi

}

.

A.1 Proof of Lemma 1

Proof We show weak convergence of the random variable Ân , as defined as the
common distribution of (7), to a standard normal random variable. Since �̂n is
asymptotically standard normal, its characteristic function converges pointwise to the
corresponding limiting characteristic function, i.e.,

lim
n→∞ φ

�̂n
(t) = lim

n→∞ e−iμn t/σn φ�n (t/σn) = e−t2/2, ∀t ∈ R. (54)

Furthermore, by the definition of An ,

φAn (t) = E

[
exp(�n(e

i t − 1))
]

= φ�n

(
−i(ei t − 1)

)
,
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so that

φ Ân
(t) = e−iμn t/σn φAk,n (t/σn) = e−iμn t/σnφ�n

(
−i(ei t/σn − 1)

)
. (55)

Now fix t ∈ R. By using

−i(ei t/σn − 1) = t

σn
+ O

(
t2/σ 2

n

)
,

we expand the last term in (55),

φ�n (t/σn) + O
(
t2/σ 2

n

)
φ′

�n
(ζ )

for some ζ such that |ζ − t/σn| < |i(1 − ei t/σn ) − t/σn|. Also,

|φ′
�n

(u)| =
∣
∣
∣
∣

δ

du

∫ ∞

−∞
eiuxdF�n (x)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ ∞

0
i x eiuxdF�n (x)

∣
∣
∣
∣

≤
∫ ∞

−∞
|i x eiux | dF�n (x) =

∫ ∞

0
xdF�n (x) = μn (56)

for all u ∈ R. This implies

φ Âk,n
(t) = φ�n (t/σn) + O

(
t2μn/σ

2
n

)
,

in which the order term tends to zero as n → ∞ by our assumption that μn/σ
2
n → 0.

Combining this with (54), we find that φ Ân
(t) converges to e−t2/2 for all t ∈ R, so

that we can conclude by Lévy’s continuity theorem that Âk,n
d⇒ N (0, 1). 
�

A.2 Proof of Theorem 1

To secure convergence in distribution of Q̂n to Mβ , i.e., the maximum of a Gaussian
random walk with negative drift, the following property of the sequence {Yk,n}n∈N
needs to hold. Because the sequence {Yk,n}k∈N is i.i.d. for all n, we omit the index k
in this result and its proof.

Lemma 3 Let Yn be defined as in (52) with μn, σ
2
n < ∞ for all n ∈ N. Then, the

sequence {(Yn)+}n∈N is uniformly integrable.

Proof Note that the sequence {Yn}n∈N has constant finite mean and variance equal
to 0 and 1, respectively, which implies it is bounded in L2. Since (Y+

n )2 ≤ Y 2
n ,

the sequence {Y+
n }n∈N is bounded in L2 as well. It readily follows from elementary

probability theory that any sequence bounded in L2 is uniformly integrable; see, for
example, [7]. 
�

By combining the properties proved in Lemmas 1 and 3 with Assumption 1, the
next result follows directly by [3, Thm. X6.1].
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Proposition 3 Let Q̂n be as in (53). Then,

Q̂n
d⇒ Mβ, as n → ∞.

Although Proposition 3 tells us that the properly scaled Qn converges to a non-
degenerate limiting random variable, it does not cover the convergence of its mean,
variance and the empty-queue probability. In order to secure convergence of these per-
formance measures as well, we follow an approach similar [37], using Assumptions 1
and 3.

Proposition 4 Let Q̂n be as in (53), μn, σ
2
n → ∞ such that both σ 2

n /μn → ∞ and
E[(max{ Ân, 0})m] is bounded in n for m = 3, 4. Then

P(Q̂n = 0) → P(Mβ = 0),

E[Q̂n] → E[Mβ ],
Var Q̂n → Var Mβ,

as n → ∞.

Proof First, we recall that Q̂n
d= Mβ,n for all n ∈ N, so that P(Q̂n = 0) = P(Mβ,n =

0), E[Q̂n] = E[Mβ,n] and Var Q̂n = Var Mβ,n as defined in (52). Our starting point
is Spitzer’s identity, see [3, p. 230],

E[ei tMβ,n ] = exp

( ∞∑

k=1

1

k
(E[ei t S+

k,n ] − 1)

)

, (57)

with Sk,n as in (52), and Mβ,n the all-time maximum of the associated random walk.
Simple manipulations of (57) give

lnP(Mβ,n = 0) = −
∞∑

k=1

1

k
P(Sk,n > 0), (58)

E[Mβ,n] =
∞∑

k=1

1

k
E[S+

k,n] =
∞∑

k=1

1

k

∫ ∞

0
P(Sk,n > x)dx, (59)

Var Mβ,n =
∞∑

k=1

1

k
E[(S+

k,n)
2] =

∞∑

k=1

1

k

∫ ∞

0
P(Sk,n >

√
x)dx . (60)

By Lemma 1, we know

P(Sk,n > y) = P

(
k∑

i=1

Yi,n > y

)

→ P

(
k∑

i=1

Zi > y

)

,
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for n → ∞, where the Zi are independent and identically normally distributed with
mean−β and variance 1. Because equivalent expressions to (58)–(60) apply to the lim-
iting Gaussian random walk, it is sufficient to show that the sums converge uniformly
in n, so that we can apply dominated convergence to prove the result.

We start with the empty-queue probability. To justify interchangeability of the
infinite sum and limit, note

P(Sk,n > 0) ≤ P(|Sk,n + kβ| > kβ) ≤ k

β2k2
= 1

β2k
,

where we used that E[Sk,n] = kE[Y1,n] = −kβ and Var Sk,n = k, and apply Cheby-
shev’s inequality, so that

∞∑

k=1

1

k
P(Sk,n > 0) ≤

∞∑

k=1

1

β2k2
< ∞, ∀n ∈ N.

Hence,

lim
n→∞ lnP(Q̂n = 0) = lim

n→∞ −
∞∑

k=1

1

k
P(Sk,n > 0) = −

∞∑

k=1

1

k
lim
n→∞P(Sk,n > 0)

= −
∞∑

k=1

1

k
P

(
k∑

i=1

Zi > 0

)

= lnP(Mβ = 0).

Finding a suitable upper bound on 1
k

∫ ∞
0 P(Q̂n > x)dx and 1

k

∫ ∞
0 P(Q̂n >

√
x)dx

requires a bit more work.We initially focus on the former, and the latter follows easily.
The following inequality from [32] proves to be very useful:

P(S̄k > y) ≤ Cr

(
k σ 2

y2

)r

+ k P(X > y/r), (61)

where S̄k is the sum of k i.i.d. random variables distributed as X , with E[X ] = 0 and
Var X = σ 2, y > 0, r > 0 and Cr a constant only depending on r . We take r = 3 for
brevity in the remainder of the proof, although any r > 2 will suffice. We have, from
(61) with X = Ân , so that E[X ] = 0, Var X = 1, and r = 3, y = x + kβ,

P(Sk,n > x) = P

(
k∑

i=1

Âi,n > x + kβ

)

≤ C3

(
k

(x + kβ)2

)3

+ k P

(

Â1,n >
x + kβ

3

)

. (62)
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The quantity (k/(x + kβ)2)3 is independent of n, and we have

∞∑

k=1

1

k

∫ ∞

0

(
k

(x + kβ)2

)3

dx =
∞∑

k=1

k2
∫ ∞

0

dx

(x + kβ)6

=
∞∑

k=1

k2

5(kβ)5
= 1

5β5

∞∑

k=1

1

k3
< ∞. (63)

Next, by assumption, there is an M3 > 0 such that

E[(max{ Â1,n, 0})3] =
∫ ∞

0
t3 dPÂ1,n

(t) ≤ M3 (64)

for all n = 1, 2, . . .. It follows that for all x > 0, k = 1, 2, . . ., and all n = 1, 2, . . .,

P

(

Â1,n >
x + kβ

3

)

=
∫ ∞

x+kβ
3

dPÂ1,n
(t) ≤

∫ ∞
x+kβ
3

t3
(
x+kβ
3

)3 dPÂ1,n
(t)

≤ 27

(x + kβ)3
E[(max{ Â1,n, 0})3] ≤ 27M3

(x + kβ)3
. (65)

The quantity 1/(x + kβ)3 is independent of n, and we have

∞∑

k=1

∫ ∞

0

dx

(x + kβ)3
=

∞∑

k=1

1

2k2β2 < ∞. (66)

Thus we see that for all x > 0, k = 1, 2, . . ., and all n = 1, 2, . . .,

1

k
P(Sk,n > x) ≤ C3k2

(x + kβ)6
+ 27M3

(x + kβ)3
, (67)

with

∞∑

k=1

∫ ∞

0

(
C3k2

(x + kβ)6
+ 27M3

(x + kβ)3

)

dx < ∞. (68)

By Lebesgue’s theorem on dominated convergence, it then follows that

lim
n→∞E[Q̂n] = lim

n→∞

∞∑

k=1

1

k

∫ ∞

0
P(Sk,n > x) dx

=
∞∑

k=1

∫ ∞

0
P

(
k∑

i=1

Zi > x

)

dx = E[Mβ ]. (69)
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In a similar fashion, by using (61) with y = √
x + kβ, we have

P(Sk,n >
√
x) ≤ C3

(
k

(
√
x + kβ)2

)3

+ k P

(

Â1,n >

√
x + kβ

3

)

. (70)

Now we have

∞∑

k=1

1

k

∫ ∞

0

(
k

(
√
x + kβ)2

)3

dx = 1

10β4

∞∑

k=1

1

k2
< ∞, (71)

where we have used that, by partial integration,

∫ ∞

0

dx

(
√
x + kβ)6

=
∫ ∞

0

2u du

(u + kβ)6
= 1

10(kβ)4
. (72)

Next, by assumption, there in an M4 > 0 such that

E[(max{ Â1,n, 0})4] =
∫ ∞

0
t4 dPÂ1,n

(t) ≤ M4 (73)

for all n = 1, 2, . . .. Then, as in (65), we get that for all x > 0, k = 1, 2, . . ., and all
n = 1, 2, . . .,

P

(

Â1,n >

√
x + kβ

3

)

≤ 81M4

(
√
x + kβ)4

, (74)

while, as in (66) and (72),

∞∑

k=1

∫ ∞

0

dx

(
√
x + kβ)4

=
∞∑

k=1

1

3k2β2 < ∞. (75)

Therefore, for all x > 0, k = 1, 2, . . ., and all n = 1, 2, . . .,

1

k
P
(
Sk,n >

√
x
) ≤ C3k2

(
√
x + kβ)6

+ 81M4

(
√
x + kβ)4

, (76)

with

∞∑

k=1

∫ ∞

0

(
C3k2

(
√
x + kβ)6

+ 81M4

(
√
x + kβ)4

)

dx < ∞. (77)

Hence, we conclude, as in (69), that limn→∞ Var Q̂n = Var Mβ . This completes the
proof. 
�
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We shall now indicate that the condition in Proposition 4 on boundedness of
E[(max{ Ân, 0})m] in n for m = 3, 4 is not overly restrictive by showing that it is
satisfied by the Poisson mixture An considered in Sect. 2. With pn,k = P(An = k),
we have that the pgf Ãn of A is given by

Ãn(z) =
(

1

1 + bn − bnz

)an
=

∞∑

k=0

pn,k z
k . (78)

For any m = 1, 2, . . ., we have

E[(max{ Ân, 0})m] = E

[(

max

{
An − μn

σn
, 0

})m]

= 1

σm
n

∑

k≥μn

(k − μn)
m pn,k .

(79)

We shall conduct a somewhat heuristical saddle point analysis for the Cauchy integral
representation

pk−1 = 1

2π i

∮
1

zk

(
1

1 + b − bz

)a

dz, k ≥ μ, (80)

with integration along a circle with center 0 and radius less than (1 + b)/b. For
convenience, we have temporarily omitted the index n in pn,k−1, an , bn and μn . The
saddle point zsp lies on the positive real axis between 0 and (1+ b)/b and is obtained
by setting f ′(z) = 0, where

f (z) = − a ln(1 + b − bz) − k ln z. (81)

When k ≥ μ = ab, it is found that

zsp = 1 + k − ab

(k + a)b
. (82)

We have, moreover,

f (zsp) = −a ln

(

1 − k − ab

k + a

)

− k ln

(

1 + k − ab

(k + a)b

)

= − (k − ab)2

(k + a)b

(
1
2 + O

(
k − ab

k + a

))

(83)

and

f ′′(zsp) = 1

z2sp

k2

a
+ k

z2sp
= ab2

(

1 + O

(
k − ab

ab

)

+ O

(
1

b

))

. (84)

123



Queueing Syst

Thus, we find the saddle point approximation

pk−1 ≈ 1

2π

√
2π

f ′′(zsp)
exp

(
f (zsp)

) ≈ 1√
2πab2

exp

(

− (k − ab)2

2ab2

)

, (85)

with k restricted to the range 0 ≤ k − ab = O(ab). This range of k is sufficiently
large for the series and the integral in (86) below to have converged. We now use
this approximation in (79). Thus we have, using σ 2

n = anbn(bn + 1) ≈ anb2n and
μn = anbn ,

E[(max{ Ân, 0})m] = 1

σm
n

∑

k≥μn

(k − μn)
m pn,k

≈ 1√
2π

(
1

anb2n

)m+1
2 ∑

k≥μn

(k − μn)
m exp

(

− (k − μn)
2

2anb2n

)

≈ 1√
2π

(
1

anb2n

)m+1
2

∫ ∞

0
tm exp

(

− t2

2anb2n

)

dt

= 2
m−1
2√
2π

�

(
m + 1

2

)

. (86)

The final member of (86) is independent of n, and this provides evidence that
E[(max{ Ân, 0})m] is bounded.

B Numerical procedures

An alternative characterization of the stationary distribution is based on the analysis
in [10] and considers a factorization in terms of (complex) roots:

Qn(w) = (sn − E[An])(w − 1)

wsn − Ãn(w)

sn−1∏

k=1

w − znk
1 − znk

,

where zn1, z
n
2 . . . , znsn−1 are the sn − 1 zeros of zsn − Ãn(z) in |z| < 1, yielding

EQn = σ 2
n

2(sn − μn)
− sn − 1 + μn

2
+

sn−1∑

k−1

1

1 − znk
,

P(Qn = 0) = sn − μA

Ãn(0)

s−1∏

k=1

znk
znk − 1

,
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which for our choice of Ãn(z) becomes

EQn = anbn(bn + 1)

2β
√
anbn

− 2anbn + β
√
anbn(bn + 1) − 1

2
+

sn−1∑

k=1

1

1 − znk
,

P(Qn = 0) = β
√
anbn(bn + 1)(1 + bn)

an
sn−1∏

k=1

znk
znk − 1

,

where z1, . . . , zsn−1 denote the zeros of zsn − Ãn(z) in |z| < 1. These zeros exist
under the assumption sn > anbn ; see [2]. A robust numerical procedure to obtain
these zeros is essential for a base of comparison. We discuss two methods that fit these
requirements. The first follows directly from [20].

Lemma 4 Define the iteration scheme

zn,l+1
k = wn

k [ Ãn(z
n,l
k )]1/sn , (87)

with wn
k = e2π ik/sn and zn,0

k = 0 for k = 0, 1, . . . , sn−1. Then zn,l
k → znk for all

k = 0, 1, . . . , sn − 1 for l → ∞.

Proof The successive substitution scheme given in (87) is the fixed point iteration
scheme described in [20], applied to the pgf of our arrival process. The authors show
that, under the assumption of Ãn(z) being zero-free within |z| ≤ 1, the zeros can be
approximated arbitrarily closely, given that the function [ Ãn(z)]1/sn is a contraction
for |z| ≤ 1, i.e.,

∣
∣
∣
∣
d

dz
[ Ãn(z)]1/sn

∣
∣
∣
∣ < 1.

In our case,

∣
∣
∣
∣
d

dz
[ Ãn(z)]1/sn

∣
∣
∣
∣ =

∣
∣
∣
∣
d

dz
(1 + (1 − z)bn)

−an/sn

∣
∣
∣
∣ = anbn

sn
|1 + (1 − z)bn|−an/sn−1 ,

(88)

where anbn/sn = ρn is close to, but less than, 1 and

|1 + (1 − z)bn| ≥ |1 + bn| − |z|bn = 1 + (1 − |z|)bn ≥ 1,

when |z| ≤ 1. Hence, the expression in (88) is less than 1 for all |z| ≤ 1. Evidently,
Ãn(z) is also zero-free in |z| ≤ 1. Thus, [20, Lemma 3.8] shows that zn,l

k as in (87)
converges to the desired roots znk for all k as l tends to infinity. 
�
Remark 2 Theasymptotic convergence rate of the iteration in (87) equals d

dz [ Ãn(z)]1/sn
evaluated at z = znk . Hence, convergence is slow for zeros near 1 and fast for zeros
away from 1.
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A different approach is based on the Bürmann–Lagrange inversion formula.

Lemma 5 Let wn
k = e2π ik/sn and αn = an/sn. Then, the zeros of zsn − Ãn(z) are

given by

znk =
∞∑

l=1

1

l!
β(lαn + l − 1)

β(lαn)

bn + 1

bn

(
bn

(bn + 1)αn+1

)l

(wn
k )

l ,

for k = 0, 1, . . . , sn − 1.

Proof Note that we are looking for z’s that solve

z [ Ãn(z)]−1/sn = z (1 + (1 − z)bn)
an/sn = w,

where w = wk = e2π ik/sn . The Bürmann–Lagrange formula for z = z(w), as can be
found in [15, Sec. 2.2] for z = z(w), is given by

z(w) =
∞∑

l=1

1

l!
(

d

dz

)l−1
[(

z

z(1 + (1 − z)bn)an/sn

)l
]

z=0

wl

=
∞∑

l=1

1

l!
(

d

dz

)l−1 [
(1 + (1 − z)bn)

−l an/sn
]

z=0
wl .

Set αn = an/sn . We compute

(
d

dz

)l−1 [
(1 + (1 − z)bn)

−lαn
]

z=0
= β(lαn + l − 1)

β(lαn)

1 + bn
bn

(
bn

(1 + bn)αn+1

)l

.

With cn = bn/(1 + bn)αn+1 and dn = (1 + bn)/bn , we thus have

z(w) = dn

∞∑

l=1

β(lαn + l − 1)

β(l + 1)β(lαn)
cln wl .

By Stirling’s formula

β(lαn + l − 1)

β(l + 1)β(lαn)
= D

l
√
l

(
(αn + 1)αn+1

α
αn
n

)l

,

where D = α
1/2
n (αn + 1)−3/2(2π)−1/2. Now,

(αn + 1)αn+1

α
αn
n

cn = (αn + 1)αn+1

α
αn
n

· bn
(1 + bn)αn+1 =

(
bn + ρn

bn + 1

)ρn/bn+1 (
1

ρn

)ρn/bn
.

123



Queueing Syst

This determines the radius of convergence rBL of the above series for z(w):

1

rBL
:=

(
bn + ρn

bn + 1

)ρn/bn+1 (
1

ρn

)ρn/bn
. (89)

The derivative with respect to ρn of the quantity

(

1 + ρn

bn

)

ln

(
bn + ρn

bn + 1

)

+ ρn

bn
ln

(
1

ρn

)

(90)

is given by

1

bn
ln

(
bn + ρn

bnρn + ρn

)

> 0

for 0 < ρn < 1 and bn > 0. Furthermore, the quantity in (90) vanishes at ρn = 1 and
is therefore negative for 0 < ρn < 1 and bn > 0. 
�
Remark 3 The formula for the radius of convergence in (89) clearly shows the decre-
mental effect of both having a large bn and/or having ρn close to 1. The quantities
β(lα + l − 1)/(β(l + 1)β(lα)) in the power series for z(w) are not very convenient
for recursive computation, although normally α = an/sn is a rational number.
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