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We consider Markovian many-server systems with admission cont-
rol operating in a Quality-and-Efficiency-Driven (QED) regime, where
the relative utilization approaches unity while the number of servers
grows large, providing natural Economies-of-Scale. In order to de-
termine the optimal admission control policy, we adopt a revenue
maximization framework, and suppose that the revenue rate attains
a maximum when no customers are waiting and no servers are id-
ling. When the revenue function scales properly with the system size,
we show that a nondegenerate optimization problem arises in the
limit. Detailed analysis demonstrates that the revenue is maximized
by nontrivial policies that bar customers from entering when the
queue length exceeds a certain threshold of the order of the typical
square-root level variation in the system occupancy. We identify a
fundamental equation characterizing the optimal threshold, which we
extensively leverage to provide broadly applicable upper/lower bounds
for the optimal threshold, establish its monotonicity, and examine its
asymptotic behavior, all for general revenue structures. For linear and
exponential revenue structures, we present explicit expressions for the
optimal threshold.

1. Introduction. Large-scale systems that operate in the Quality-and-
Efficiency Driven (QED) regime dwarf the usual trade-off between high
system utilization and short waiting times. In order to achieve these dual
goals, the system is scaled so as to approach full utilization, while the number
of servers grows simultaneously large, rendering crucial Economies-of-Scale.
Specifically, for a Markovian many-server system with Poisson arrival rate
λ, exponential unit-mean service times and s servers, the load ρ = λ/s is
driven to unity in the QED regime in accordance with

(1) (1− ρ)
√
s→ γ, s→∞,

for some fixed parameter γ ∈ R+. As s grows large, the stationary proba-
bility of delay then tends to a limit, say g(γ), which may take any value
in (0, 1), depending on the parameter γ. Since the conditional queue length
distribution is geometric with mean ρ/(1 − ρ) ≈

√
s/γ, it follows that the

stationary mean number of waiting customers scales as g(γ)
√
s/γ. Little’s
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law then in turn implies that the mean stationary waiting time of a customer
falls off as g(γ)/(γ

√
s).

The QED scaling behavior also manifests itself in process level limits,
where the evolution of the system occupancy, properly centered around s
and normalized by

√
s, converges to a diffusion process as s → ∞, which

again is fully characterized by the single parameter γ. This reflects that the
system state typically hovers around the full-occupancy level s, with natural
fluctuations of the order

√
s.

The QED scaling laws provide a powerful framework for system dimensio-
ning, i.e., matching the service capacity and traffic demand so as to achieve
a certain target performance level or optimize a certain cost metric. Suppose,
for instance, that the objective is to find the number of servers s for a given
arrival rate λ (or equivalently, determine what arrival rate λ can be suppor-
ted with a given number s of servers) such that a target delay probability
ε ∈ (0, 1) is attained. The above-mentioned convergence results for the delay
probability then provide the natural guideline to match the service capacity
and traffic volume in accordance with λ = s− γε

√
s, where the value of γε

is such that g(γε) = ε.
As an alternative objective, imagine we aim to strike a balance between

the expenses incurred for staffing servers and the dissatisfaction experienced
by waiting customers. Specifically, suppose a (salary) cost c is associated with
each server per unit of time and a (possibly fictitious) holding charge h is
imposed for every waiting customer per unit of time. Writing λ = s−γ

√
s in

accordance with (1), and recalling that the mean number of waiting customers
scales as g(γ)

√
s/γ, we find that the total operating cost per time unit scales

as

cs+ h
g(γ)
√
s

γ
= λc+ cγ

√
s+ h

g(γ)
√
s

γ
= λc+

(
cγ + h

g(γ)

γ

)√
s.

This then suggests to set the number of servers in accordance with s =
λ + γc,h

√
s, where γc,h = arg minγ>0(cγ + hg(γ)/γ) in order to minimize

the total operating cost per time unit. Exploiting the powerful QED limit
theorems, such convenient capacity sizing rules can in fact be shown to
achieve optimality in some suitable asymptotic sense.

As illustrated by the above two paragraphs, the QED scaling laws can be
leveraged for the purpose of dimensioning, with the objective to balance the
service capacity and traffic demand so as to achieve a certain target perfor-
mance standard or optimize a certain cost criterion. A critical assumption,
however, is that all customers are admitted into the system and eventu-
ally served, which may in fact not be consistent with the relevant objective
functions in the dimensioning, let alone be optimal in any sense.
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Motivated by the latter observation, we focus in the present paper on the
optimal admission control problem for a given performance or cost criterion.
Admission control acts on an operational time scale, with decisions occurring
continuously whenever customers arrive, as opposed to capacity planning
decisions which tend to involve longer time scales. Indeed, we assume that
the service capacity and traffic volume are given, and balanced in accordance
with (1), but do allow for the value of γ to be negative, since admission control
provides a mechanism to deal with overload conditions. While a negative
value of γ may not be a plausible outcome of a deliberate optimization
process, in practice an overload of that order might well result from typical
forecast errors.

We formulate the admission control problem in a revenue maximization
framework, and suppose that revenue is generated at rate rs(k) when the
system occupancy is k. As noted above, both from a customer satisfaction
perspective and a system efficiency viewpoint, the ideal operating condition
for the system is around the full occupancy level s, where no customers are
waiting and no servers are idling. Hence we assume that the function rs(k)
is unimodal, increasing in k for k ≤ s and decreasing in k for k ≥ s, thus
attaining its maximum at k = s.

We consider probabilistic control policies, which admit arriving customers
with probability ps(k−s) when the system occupancy is k, independent of any
prior admission decisions. It is obviously advantageous to admit customers as
long as free servers are available, since it will not lead to any wait and drive
the system closer to the ideal operating point s, boosting the instantaneous
revenue rate. Thus we stipulate that ps(k − s) = 1 for all k < s.

For k ≥ s, it is far less evident whether to admit customers or not. Admit-
ting a customer will then result in a wait and move the system away from the
ideal operating point, reducing the instantaneous revenue rate. On the other
hand, admitting a customer may prevent the system occupancy from falling
below the ideal operating point in the future. The potential long-term gain
may outweigh the adverse near-term effect, so there may be a net benefit,
but the incentive weakens as the queue grows. The fundamental challenge
in the design of admission control policies is to find exactly the point where
the marginal utility reaches zero, so as to strike the optimal balance between
the conflicting near-term and longer-term considerations.

Since the service capacity and traffic volume are governed by (1), the
QED scaling laws imply that, at least for γ > 0 and without any admission
control, the system occupancy varies around the ideal operating point s, with
typical deviations of the order

√
s. It is therefore natural to suppose that

the revenue rates and admission probabilities scale in a consistent manner,
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and in the limit behave as functions of the properly centered and normalized
state variable (k − s)/

√
s. Specifically, we assume that the revenue rates

satisfy the scaling condition

(2)
rs(k)− ns

qs
→ r

(k − s√
s

)
, s→∞,

with ns a nominal revenue rate attained at the ideal operating point, qs a
scaling coefficient, and r a unimodal function, which represents the scaled
reduction in revenue rate associated with deviations from the optimal ope-
rating point s. For example, with [x]+ = max{0, x}, any revenue structure
of the form

rs(k) = ns − α−([s− k]+)β
− − α+([k − s]+)β

+

satisfies (2) when qs = smax{β−,β+}/2, in which case

r(x) = −α−([−x]+)β
−
1[β− ≥ β+]− α+([x]+)β

+
1[β− ≤ β+].

Note that these revenue structures impose polynomial penalties on deviations
from the ideal operating point. Similar to (2), we assume that the admission
probabilities satisfy a scaling condition, namely

(3) ps(0) · · · ps(k − s) = f
(k − s√

s

)
, k ≥ s,

with f a non-increasing function and f(0) = 1. In particular, we allow for
f(x) = 1[0 ≤ x < η], which corresponds to an admission threshold control
ps(k − s) = 1[k − s ≤ bη

√
sc].

In Section 2 we discuss the fact that the optimal admission policy is indeed
such a threshold control, with the value of η asymptotically being determined
by the function r, which we later prove in Section 4. The optimality of a
threshold policy may not come as a surprise, and can in fact be established
in the pre-limit (s <∞). However, the pre-limit optimality proof only yields
the structural property, and does not furnish any characterization of how
the optimal threshold depends on the system characteristics or provide any
computational procedure for actually obtaining the optimal value. In con-
trast, our asymptotic framework (as s → ∞) produces a specific equation
characterizing the optimal threshold value, which does offer explicit insight
in the dependence on the key system parameters and can serve as a basis
for an efficient numerical computation or even a closed-form expression in
certain cases. This is particularly valuable for large-scale systems where a
brute-force enumerative search procedure may prove prohibitive.
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Let us finally discuss the precise form of the revenue rates that serve as
the objective function that needs to be maximized by the optimal threshold.
We will mostly focus on the average system-governed revenue rate defined as

(4) Rs({ps(k)}k≥0) =

∞∑
k=0

rs(k)πs(k).

From the system’s perspective, this means that the revenue is simply governed
by the state-dependent revenue rate rs(k) weighed according to the stationary
distribution, with πs(k) denoting the stationary probability of state k.

An alternative would be to consider the customer reward rate

(5) R̂s({ps(k)}k≥0) = λ
∞∑
k=0

r̂s(k)ps(k − s)πs(k).

Here, r̂s(k) can be interpreted as the state-dependent reward when admitting
a customer in state k, and since this happens with probability ps(k) at
intensity λ, we obtain (5). While this paper primarily focuses on (4), we
show in Section 2.3 that there is an intimate connection with (5); a system-
governed reward structure {rs(k)}k∈N0 can be translated into a customer
reward structure {r̂s(k)}k∈N0 , and vice versa.

1.1. Contributions and related literature. A diverse range of control pro-
blems have been considered in the queueing literature, and we refer the reader
to [23, 33, 22, 29, 9] for background. Threshold control policies are found to
be optimal in a variety of contexts such as [12, 10, 7], and many (implicit)
characterizations of optimal threshold values have been obtained in [30, 40],
and [8]. For (single-server) queues in a conventional heavy-traffic regime,
optimality of threshold control policies has been established by studying
limiting diffusion control problems in [14, 36], and [15].

The analysis of control problems in the QED regime has mostly focused
on routing and scheduling, see [4, 2, 3, 5], and [16]. Threshold policies in the
context of many-server systems in the QED regime have been considered in
[1, 28, 39], and [38]. General admission control, however, has only received
limited attention in the QED regime, see for instance [20, 37]. These studies
specifically account for abandonments, which create a trade-off between the
rejection of a new arrival and the risk of that arrival later abandoning without
receiving service, with the associated costly increase of server idleness.

In the present paper we address the optimal admission control problem
from a revenue maximization perspective. Diverse considerations of revenue
maximization problems as a function of pricing, capacity constraints and
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service differentiation have shown that the QED regime and other heavy-
traffic regimes emerge naturally as the optimal regimes to operate in [26,
27, 21, 25]. This implies in particular that the QED regime is one of the
important regimes to adress further questions of revenue maximization in.
We therefore start from the premise that the system is operated in the QED
regime, and then diverge from [26, 27, 21, 25] by assuming that the revenue
function rs(k) satisfies the scaling condition (2). Building on the recent work
in [19] allows us to show that additional nondegenerate optimization problems
arise in the QED limit. This suggests that the QED could be optimal in
more situations when underlying pricing and revenue structures are scaled
appropriately, complementing the conclusions in [26, 27, 21, 25]. Lastly, our
analysis shows that nontrivial threshold control policies are optimal when
rs(k) peaks around the ideal operating point k ≈ s.

In Section 2 we present a fundamental equation which implicitly determi-
nes the asymptotically optimal threshold. The subsequent analysis of this
equation in Section 3 yields valuable insight into the dependence of the opti-
mal threshold on the revenue structure, and provides a basis for an efficient
numerical scheme. Closed-form expressions for the optimal threshold can
only be derived when considering specific revenue structures.

We will, for example, show that for linearly decreasing revenue rates, the
optimal threshold can be (explicitly) expressed in terms of the Lambert
W function [11]. We note that a linearly decreasing revenue structure has
also been considered in [8] for determining the optimal threshold kopt in an
M/M/s/k system, and there also, kopt is expressed in terms of the Lambert W
function. Besides assuming a static revenue and finite threshold k, a crucial
difference between [8] and this paper is that our revenue structure scales as
in (2), so that the threshold k is suitable for the QED regime. Our work thus
extends [8], both in terms of scalable and more general revenue structures.

In terms of mathematical techniques, we use Euler–Maclaurin (EM) sum-
mation [31] and asymptotic results by Jagerman [18] to analyze the asymp-
totic behavior of (4) as s→∞. This approach was used recently for many-
server systems with admission control in the QED regime [19], and is now
extended by incorporating suitably scaled revenue structures in Section 2.
These ingredients then pave the way to determine the optimal admission
control policy in the QED regime in Section 3. In Section 4, we use Hilbert-
space theory from analysis, and techniques from variational calculus, to prove
the existence of optimal control policies, and to establish that control poli-
cies with an admission threshold which scales with the natural

√
s order of

variation are optimal in the QED regime.
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2. Revenue maximization framework. We now develop an asympto-
tic framework for determining an optimal admission control policy for a given
performance or cost criterion. In Section 2.1 we describe the basic model for
the system dynamics, which is an extension of the classical M/M/s system.
Specifically, the model incorporates admission control and is augmented with
a revenue structure, which describes the revenue rate as a function of the
system occupancy. Adopting this flexible apparatus, the problem of finding
an optimal admission control policy is formulated in terms of a revenue
maximization objective.

2.1. Markovian many-server systems with admission control. Consider a
system with s parallel servers where customers arrive according to a Poisson
process with rate λ. Customers require exponentially distributed service
times with unit mean. A customer that finds upon arrival k customers in
the system is taken into service immediately if k < s, or may join a queue
of waiting customers if k ≥ s. If all servers are occupied, a newly arriving
customer is admitted into the system with probability ps(k− s), and denied
access otherwise. We refer to the probabilities {ps(k)}k≥0 as the admission
control policy. If we denote the number of customers in the system at time
t by Qs(t), and make the usual independence assumptions, then {Qs(t)}t≥0

constitutes a Markov process (see Figure 1 for its transition diagram). The
stationary distribution πs(k) = limt→∞ P[Qs(t) = k] is given by

(6) πs(k) =

{
πs(0) (sρ)k

k! , k = 1, 2, . . . , s,

πs(0) s
sρk

s!

∏k−s−1
i=0 ps(i), k = s+ 1, s+ 2, . . . ,

with

(7) ρ =
λ

s
, πs(0) =

( s∑
k=0

(sρ)k

k!
+

(sρ)s

s!
Fs(ρ)

)−1

and

(8) Fs(ρ) =

∞∑
n=0

ps(0) · · · ps(n) ρn+1.

From (6)–(8), we see that the stationary distribution exists if and only if the
relative load ρ and the admission control policy {ps(k)}k∈N0 are such that
Fs(ρ) <∞ [19], which always holds in case ρ < 1.

With k customers in the system, we assume that the system generates
revenue at rate rs(k) ∈ R. We call {rs(k)}k≥0 the revenue structure. Our
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0 1

λ

1
· · ·

λ

2
s

λ

s
s+ 1

ps(0)λ

s
· · ·

ps(1)λ

s

Fig 1. Transition diagram of the process {Qs(t)}t≥0.

objective is to find an admission control policy in terms of the probabilities
{ps(k)}k≥0 that maximizes the average stationary revenue rate, i.e.

(9)
to maximize Rs({ps(k)}k≥0) over {ps(k)}k≥0,
subject to 0 ≤ ps(k) ≤ 1, k ∈ N0, and Fs(ρ) <∞.

2.2. QED-driven asymptotic optimization framework. We now construct
an asymptotic optimization framework where the limit laws of the Quality-
and-Efficiency-Driven (QED) regime can be leveraged by imposing suitable
assumptions on the admission control policy and revenue structure. In order
for the system to operate in the QED regime, we couple the arrival rate to
the number of servers as

(10) λ = s− γ
√
s, γ ∈ R.

For the admission control policy we assume the form in (3), with f either
a nonincreasing, bounded, and twice differentiable continuous function, or
a step function, which we will refer to as the asymptotic admission control
profile. We also assume the revenue structure has the scaling property (2),
with r a piecewise bounded, twice differentiable continuous function with
bounded derivatives. We will refer to r as the asymptotic revenue profile.
These assumptions allow us to establish Proposition 1 by considering the
stationary average revenue rate Rs({ps(k)}k≥0) as a Riemann sum and using
Euler–Maclaurin (EM) summation to identify its limiting integral expression,
the proof of which can be found in Appendix A. Let φ(x) = exp (−1

2x
2)/
√

2π
and Φ(x) =

∫ x
−∞ φ(u) du denote the probability density function and cumu-

lative distribution function of the standard normal distribution, respectively.

Proposition 1. If r(i) is continuous and bounded for i = 0, 1, 2,
and either (i) f is smooth, and (f(x) exp (−γx))(i) is exponentially small as
x→∞ for i = 0, 1, 2, or (ii) f(x) = 1[0 ≤ x < η] with a fixed, finite η > 0,
then

lim
s→∞

Rs({ps(k)}k≥0)− ns
qs

= R(f),

imsart-ssy ver. 2014/10/16 file: SSY__OACQDR.tex date: July 18, 2017



OPTIMAL ADMISSION CONTROL WITH QED-DRIVEN REVENUES 9

where in case (i)

(11) R(f) =

∫ 0
−∞ r(x)e−

1
2
x2−γx dx+

∫∞
0 r(x)f(x)e−γx dx

Φ(γ)
φ(γ) +

∫∞
0 f(x)e−γx dx

,

and in case (ii)

(12) R(1[0 ≤ x < η]) =

∫ 0
−∞ r(x)e−

1
2
x2−γx dx+

∫ η
0 r(x)e−γx dx

Φ(γ)
φ(γ) + 1−e−γη

γ

, η ≥ 0.

Because of the importance of the threshold policy, we will henceforth use
the short-hand notations RT,s(τ) = Rs({1[k ≤ s + τ ]}k≥0) and RT(η) =
R(1[0 ≤ x < η]) to indicate threshold policies.

Example 1 (Exponential revenue). Consider a revenue structure rs(k) =
exp (b(k − s)/

√
s) for k < s and rs(k) = exp (−d(k − s)/

√
s) for k ≥ s, and

with b, d > 0. Taking ns = 0 and qs = 1, the asymptotic revenue profile is
r(x) = exp (bx) for x < 0 and r(x) = exp (−dx) for x ≥ 0, so that according
to Proposition 1 for threshold policies,

lim
s→∞

RT,s(bη
√
sc) = RT(η) =

Φ(γ−b)
φ(γ−b) + 1−e−(d+γ)η

d+γ

Φ(γ)
φ(γ) + 1−e−γη

γ

.

Figure 2 plots RT,s(bη
√
sc) for a finite system with s = 8, 32, 128, 256

servers, respectively, together with its limit RT(η). Here, we set b = 5, d =
1, and γ = 0.01. Note that the approximation RT,s(bη

√
sc) ≈ RT(η) is

remarkably accurate, even for relatively small systems, an observation which
in fact seems to hold for most revenue structures and parameter choices. For
this particular revenue structure, we see that the average revenue rate peaks
around ηopt ≈ 1.0. In Example 2, we confirm this observation by determining
ηopt numerically.

An alternative way of establishing that the limit of Rs({ps(k)}k≥0) is R(f),
is by exploiting the stochastic-process limit for {Qs(t)}t≥0. It was shown in
[19] that under condition (i) in Proposition 1, together with (3) and (10),
the normalized process {Q̂s(t)}t≥0 with Q̂s(t) = (Qs(t) − s)/

√
s converges

weakly to a stochastic-process limit {D(t)}t≥0 with stationary density

w(x) =

{
Z−1e−

1
2
x2−γx, x < 0,

Z−1f(x)e−γx, x ≥ 0,
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0.4

RT,8(bη
√

8c)
RT(η)

RT,32(b4η
√

2c)
RT(η)
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0

0.2

0.4

RT,128(b8η
√

2c)
RT(η)

η
0 2 4 6 8 10

RT,512(b16η
√

2c)
RT(η)

η

Fig 2. RT,s(bη
√
sc) and RT(η) for s = 8, 32, 128, 256 servers.

where Z = Φ(γ)/φ(γ) +
∫∞

0 f(x) exp (−γx) dx. This diffusion process es-
sentially behaves as a Brownian motion when x ≥ 0, and as an Ornstein–
Uhlenbeck process when x < 0. When additionally assuming (2), the limiting
system revenue can be written as

R(f) =

∫ ∞
−∞

r(x)w(x) dx,

the stationary revenue rate generated by the stochastic-process limit. So an
alternative method to prove Proposition 1 would be to first formally establish
weak convergence at the process level, then prove that limits with respect to
space and time can be interchanged, and finally use the stationary behavior
of the stochastic-process limit. This is a common approach in the QED
literature ([17, 13]). Instead, we construct a direct, purely analytic proof,
that additionally gives insight into the error that is made when approximating
Rs({ps(k)}k≥0) by R(f) for finite s. These error estimates are available in
Appendix A for future reference.

With Proposition 1 at hand, we are naturally led to consider the asymptotic
optimization problem, namely,
(13)

to maximize R(f) over f,
subject to 0 ≤ f(x) ≤ 1, x ∈ [0,∞), and

∫∞
0 f(x)e−γx dx <∞.

The condition
∫∞

0 f(x)e−γx dx < ∞ is the limiting form of the stability
condition Fs(ρ) < ∞, see [19]. Also note that we do not restrict f to be
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monotone. We prove for the optimization problem in (13) the following in
Section 4.

Proposition 2. If r is nonincreasing for x ≥ 0, then there exist
optimal asymptotic admission controls that solve (13). Moreover, the optimal
asymptotic admission control profiles have a threshold structure of the form

f(x) = 1[0 ≤ x < ηopt],

where ηopt is any solution of

(14) r(η) = RT(η)

if r(0) > RT(0), and ηopt = 0 if r(0) ≤ RT(0). If r is strictly decreasing in
x ≥ 0, then ηopt is unique.

Recall that the optimality of a threshold policy should not come as a
surprise, and could in fact be shown in the pre-limit and within a far wider
class of policies than those satisfying (3). The strength of Proposition 2 lies
in the characterization (14) of ηopt. We refer to (14) as the threshold equation:
it is a powerful basis on which to obtain numerical solutions, closed-form
expressions, bounds, and asymptotic expansions for ηopt. Results for ηopt of
this nature are presented in Section 3.

Example 2 (Exponential revenue revisited). Let us revisit Example 1,
where r(x) = exp (bx) for x < 0 and r(x) = exp (−dx) for x ≥ 0. The
threshold equation, (14), takes the form

(15) e−dη
(Φ(γ)

φ(γ)
+

1− e−γη

γ

)
=

Φ(γ − b)
φ(γ − b)

+
1− e−(d+γ)η

d+ γ
,

which we study in depth in Section 3.4.2. When b = 5, d = 1, and γ = 0.01,
solving (15) numerically yields ηopt ≈ 1.00985, which supports our earlier
observation that ηopt ≈ 1 in Example 1.

The true optimal admission threshold τopt = arg maxτ∈N0 RT,s(τ) is plot-
ted in Figure 3 as a function of s, along with the asymptotic QED approxima-
tion τopt ≈ bηopt√sc. We observe that the QED approximation is accurate,
even for a relatively small number of servers, and exact in the majority of
cases. This is reflected in Figure 4, which plots the relative optimality gap
as a function of s. The relative optimality gap is zero for the vast majority
of s values, and as low as 10−2 for systems with as few as 10 servers.
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τopt, bηopt
√
sc

s

Fig 3. The true optimal admission threshold τopt as a function of s, together with the
(almost indistinguishable) QED approximation bηopt√sc.

100 101 102
10−6

10−4

10−2

100

RT,s(τ
opt)−RT,s(bηopt

√
sc)

RT,s(τopt)

s

Fig 4. The relative error (RT,s(τ
opt) − RT,s(bηopt√sc))/RT,s(τ

opt) as a function of s.
The missing points indicate an error that is strictly zero. The errors that are non-zero arise
due to the QED approximation for the optimal admission threshold being off by just one
state.
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We remark that when utilizing the asymptotic optimal threshold provided
by Proposition 2 in a finite system, the proof of Proposition 1 in Appendix A
guarantees that Rs,T(bηopt√sc) − RT(ηopt) = O(1/

√
s). In other words,

a finite system that utilizes the asymptotic optimal threshold achieves a
revenue within O(1/

√
s) of the solution to (13).

2.3. Customer reward maximization. In Section 1 we have discussed the
difference between revenues seen from the system’s perspective and from
the customer’s perspective. Although the emphasis lies on the system’s
perspective, as in Section 2.2, we now show how results for the customer’s
perspective can be obtained.

2.3.1. Linear revenue structure. If revenue is generated at rate a > 0 for
each customer that is being served, and cost is incurred at rate b > 0 for
each customer that is waiting for service, the revenue structure is given by

(16) rs(k) =

{
ak, k ≤ s,
as− b(k − s), k ≥ s.

When ns = as and qs =
√
s, the revenue structure in (16) satisfies the scaling

condition in (2), with

(17) r(x) =

{
ax, x ≤ 0,

−bx, x ≥ 0.

Consequently, Proposition 1 implies that

lim
s→∞

Rs({ps(k)}k≥0)− as√
s

=
a
(
1 + γΦ(γ)

φ(γ)

)
− b

∫∞
0 xf(x)e−γx dx

Φ(γ)
φ(γ) +

∫∞
0 f(x)e−γx dx

,

for any profile f , and Proposition 2 reveals that the optimal control is f(x) =
1[0 ≤ x < ηopt] with ηopt the unique solution of the threshold equation (14),
which with c = a/b becomes

(18) η
(Φ(γ)

φ(γ)
+

1− e−γη

γ

)
= c
(

1 + γ
Φ(γ)

φ(γ)

)
+

1− (1 + γη)e−γη

γ2
.

We see that ηopt depends only on c. The threshold equation (18) is studied
extensively in Section 3.4.1. A minor variation of the arguments used there
to prove Proposition 8, shows that

(19) ηopt = r0 +
1

γ
W
(γe−γr0

a0

)
,
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14 JARON SANDERS ET AL.

where W denotes the Lambert W function, i.e., the solution to the equation
W (z) exp (W (z)) = z, and

a0 = −γ − γ2 Φ(γ)

φ(γ)
, r0 = cγ +

1

γ + γ2 Φ(γ)
φ(γ)

.

2.3.2. Relating system-governed revenue to customer rewards. From (19),
it can be deduced that for large values of γ, ηopt ≈ cγ (see the proof of Pro-
position 10, and for a discussion on the asymptotic behavior of the threshold
equation for general revenue structures, we refer to Section 3.3). Thus, asymp-
totically, the optimal threshold value is approximately equal to the product
of the staffing slack γ and the ratio of the service revenue a and the waiting
cost b.

The asymptotic behavior ηopt ≈ cγ may be explained as follows. For
each arriving customer, we must balance the expected revenue a when that
customer is admitted and eventually served against the expected waiting
cost incurred for that customer as well as the additional waiting cost for
customers arriving after that customer. When the arriving customer finds
τ customers waiting, the overall waiting cost incurred by admitting that
customer may be shown to behave roughly as bτ/(γ

√
s) for large values of

γ. Equating a with bτ/(γ
√
s) then yields that the optimal threshold value

should approximately be τopt ≈ cγ
√
s.

The stationary average revenue rate Rs({ps(k)}k≥0) under revenue struc-
ture (16) is therefore the same as when a reward a > 0 is received for
each admitted customer and a penalty bE[W ] is charged when the expected
waiting time of that customer is E[W ], with b > 0. In the latter case the
stationary average reward earned may be expressed as in (5), where now

(20) r̂s(k) = a− bmax
{

0,
k − s+ 1

s

}
denotes a customer reward.

The system-governed revenue rate and the customer reward rate are in
this case equivalent. To see this, write

R̂s({ps(k)}k≥0)

= aλ
(s−1∑
k=0

πs(k) +

∞∑
k=s

ps(k − s)πs(k)
)
− bλ

∞∑
k=s

k − s+ 1

s
ps(k − s)πs(k).

Then note that because the arrival rate multiplied by the probability that
an arriving customer is admitted must equal the expected number of busy
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OPTIMAL ADMISSION CONTROL WITH QED-DRIVEN REVENUES 15

servers, and by local balance λπs(k)ps(k−s) = sπs(k+1) for k = s, s+1, . . . ,
we have

R̂s({ps(k)}k≥0) = a
(s−1∑
k=0

kπs(k) +
∞∑
k=s

sπs(k)
)
− b

∞∑
k=s+1

(k − s)πs(k)

=

s−1∑
k=0

akπs(k) +

∞∑
k=s

(as− b(k − s))πs(k)
(16)
=

∞∑
k=0

rs(k)πs(k) = Rs({ps(k)}k≥0).

The optimal threshold in (19) thus maximizes the customer reward rate R̂s
asymptotically as well, i.e., in this example by Proposition 2,

lim
s→∞

R̂s({ps(k)}k≥0)− a√
s

= lim
s→∞

Rs({ps(k)}k≥0)− a√
s

= R(f).

In fact, for any system-governed revenue rate rs(k), the related customer
reward structure r̂s(k) is given by

(21) r̂s(k) =
rs(k + 1)

min{k + 1, s}
, k ∈ N0,

because then

R̂s({ps(k)}k≥0) =
s−1∑
k=0

r̂s(k)λπs(k) +
∞∑
k=s

r̂s(k)λps(k − s)πs(k)

=

s−1∑
k=0

r̂s(k)(k + 1)πs(k + 1) +

∞∑
k=s

r̂s(k)sπs(k + 1)

=

s∑
k=0

r̂s(k − 1)kπs(k) +

∞∑
k=s+1

r̂s(k − 1)sπs(k) = Rs({ps(k)}k≥0),

using local balance, λπs(k) = (k + 1)πs(k + 1) for k = 0, 1, . . . , s − 1 and
λps(k − s)πs(k) = sπs(k + 1) for k = s, s+ 1, . . ..

Proposition 3. For any system-governed revenue rate rs(k), the
customer reward structure r̂s(k) in (21) guarantees that the average system-
governed revenue rate Rs({ps(k)}k≥0) equals the customer reward rate R̂s({ps(k)}k≥0).

In particular, Proposition 3 implies that counterparts to Proposition 1 and
Proposition 2 hold for the customer reward rate R̂s({ps(k)}k≥0), assuming
the customer reward structure r̂s(k) is appropriately scaled.
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16 JARON SANDERS ET AL.

3. Properties of the optimal threshold. We focus throughout this
paper on maximization of the average system-governed revenue rate. In
Section 2 we have established threshold optimality and derived the threshold
equation that defines the optimal threshold ηopt. In this section we obtain a
series of results about ηopt. In Section 3.1, we present a procedure (for general
revenue functions) to obtain an upper bound ηmax and a lower bound ηmin

on the optimal threshold ηopt. Section 3.2 discusses our monotonicity results.
Specifically, we prove that ηopt increases with γ ∈ R, and thatRT(0),RT(ηopt)
both decrease with γ ∈ R. In Section 3.3, we derive asymptotic descriptions
of the optimal threshold for general revenue structures, even if the revenue
structures would not allow for an explicit characterization. We prove that
ηopt ≈ r←(r(−γ)) as γ →∞, and that ηopt ≈ −(1/γ) ln (1− r′(0−)/r′(0+))
as γ → −∞. In Section 3.4, we derive explicit characterizations of ηopt for
linear and exponential revenue structures.

From here on, we assume that r(x) is piecewise smooth and bounded
on (−∞, 0) and (0,∞), and continuous at 0 with r(±0) = 1 = r(0). We
also assume that r(x) is increasing on (−∞, 0] and decreasing on [0,∞),
with 0 ≤ r(x) ≤ r(0) = 1. Revenue functions for which r(0) > 0 and
r(0) 6= 1 can be considered through analysis of the scaled revenue function
r̄(x) = r(x)/r(0). For notational convenience, we also define rL(x) and rR(x)
as

r(x) =

{
rL(x), x < 0,

rR(x), x ≥ 0,

and introduce A =
∫ 0
−∞ rL(x)e−

1
2
x2−γx dx, and B = Φ(γ)/φ(γ). Note that

RT(0) = A/B.

Corollary 1. Under these assumptions, there exists a solution ηopt >
0 of the threshold equation. This solution is positive, unless rL(x) = 1, and
unique when r′R(x) < 0 for all x ≥ 0 such that rR(x) > 0.

Proof. Note that these assumptions on r are slightly stronger than in
Proposition 2. This corollary is directly implied by our proof of Proposition 2;
see the explanation between (48) and (49).

3.1. General bounds. Denote the inverse function of r by r←. The fol-
lowing bounds hold for general revenue structures, are readily calculated,
and provide insight into the optimal thresholds. Later in Section 3.4.1 and
Section 3.4.2, we illustrate Proposition 4 for a linear revenue structure, and
an exponential revenue structure, respectively.
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Proposition 4. When r is strictly decreasing for x ≥ 0, ηmax =
r←R (Rlower) ≥ ηopt, and ηmin = r←R (Rupper) < ηopt. Here,

Rlower = RT(0) =

∫ 0
−∞ r(x)e−

1
2
x2−γx dx

Φ(γ)
φ(γ)

,

Rupper =

∫ 0
−∞ r(x)e−

1
2
x2−γx dx+

∫ ηmax

0 e−γx dx

Φ(γ)
φ(γ) +

∫ ηmax

0 e−γx dx
.

Proof. The assumptions on rR(x) imply that its inverse function r←R (y)
exists, and that it is also strictly decreasing. It is therefore sufficient to provide
upper and lower bounds on RT(η) that are independent of η.

For threshold control policies, the system revenue is given by (12). Also
recall that the optimal threshold ηopt solves the threshold equation, i.e.,
rR(ηopt) = RT(ηopt). By suboptimality, we immediately obtain Rlower ≤
RT(ηopt), and so ηopt ≤ ηmax by monotonicity.

We will first derive an alternative forms of the threshold equation. For
instance, rewriting (14) into

(22)
(
B +

∫ η

0
e−γx dx

)
r(η) = A+

∫ η

0
r(x)e−γx dx,

dividing by B, and using RT(0) = A/B gives

r(η)−RT(0) = −r(η)

B

∫ η

0
e−γx dx+

∫ η

0
r(x)e−γx dx.

We then identify the right-hand member as being a result of an integration
by parts, to arrive at the alternative form

r(η)−RT(0) = −
[r(x)

B

∫ x

0
e−γu du

]η
0

+

∫ η

0
e−γx dx

= −
∫ η

0

r′(x)

B

∫ x

0
e−γu dudx.(23)

Let c(η) =
∫ η

0 e−γx dx = (1− e−γη)/γ if γ 6= 0 and c(η) = η if γ = 0. Since
c(η) is increasing in η and −r′(x) ≥ 0 for x ≥ 0, we have for η ≥ 0

− 1

B

∫ η

0
r′(x)c(x) dx < − 1

B
c(η)

∫ η

0
r′(x) dx =

1

B
c(η)(1− r(η)).

Let η = η̂ be the (unique) solution of the equation

(24) r(η)−RT(0) =
1

B
c(η)(1− r(η)).

imsart-ssy ver. 2014/10/16 file: SSY__OACQDR.tex date: July 18, 2017



18 JARON SANDERS ET AL.

Then

r(η̂)−RT(0) =
1

B
c(η̂)(1− r(η̂)) > − 1

B

∫ η̂

0
r′(x)c(x) dx,

and so 0 < η̂ < ηopt. We have from (24) that

(25) r(η̂) =
RT(0) + 1

B c(η̂)

1 + 1
B c(η̂)

=
A+ c(η̂)

B + c(η̂)
.

From η̂ < ηopt < ηmax = r←(RT(0)), we then find

c(η̂) < c(ηmax),
A+ c(η̂)

B + c(η̂)
<
A+ c(ηmax)

B + c(ηmax)
= Rupper,

since 0 < A < B, i.e. RT(0) < 1. This completes the proof.

3.2. Monotonicity. We next investigate the influence of the slack γ on
the optimal threshold.

Proposition 5. The revenue RT(0) decreases in γ ∈ R.

Proof. Write r(−x) = u(x) so that 0 ≤ u(x) ≤ 1 = u(0) and

RT(0) =

∫∞
0 u(x)e−

1
2
x2+γx dx∫∞

0 e−
1
2
x2+γx dx

, γ ∈ R,

and calculate

dRT(0)

dγ
=

∫∞
0 e−

1
2
x2+γx dx

∫∞
0 xu(x)e−

1
2
x2+γx dx(∫∞

0 e−
1
2
x2+γx dx

)2

−
∫∞

0 u(x)e−
1
2
x2+γx dx

∫∞
0 xe−

1
2
x2+γx dx(∫∞

0 e−
1
2
x2+γx dx

)2 .

The numerator can be written as

N =

∫ ∞
0

∫ ∞
0

(x− y)u(x)e−
1
2
x2+γxe−

1
2
y2+γy dx dy.

Suppose that u(x) = 1[0 ≤ x < a] for some a > 0. Then

N =

∫ a

0

∫ ∞
0

(x− y)e−
1
2
x2+γxe−

1
2
y2+γy dx dy

≤
∫ a

0

∫ a

0
(x− y)e−

1
2
x2+γxe−

1
2
y2+γy dx dy = 0.
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In general, we can write u(x) = −
∫∞

0 1[0 ≤ x < a]u′(a) da = −
∫∞
x u′(a) da

with u′(a) < 0, to arrive at

N =

∫ ∞
0
−u′(a)

(∫ ∞
0

∫ ∞
0

(x− y)1[0 ≤ x < a]e−
1
2
x2+γxe−

1
2
y2+γy dx dy

)
da

≤ 0.

This concludes the proof.

Proposition 6. The optimal threshold ηopt increases in γ ∈ R, and
RT(ηopt) decreases in γ ∈ R.

Proof. By Proposition 5, we have that RT(0) decreases in γ ∈ R.
Furthermore, for any η > 0, we have that

∫ η
0 e−γx dx/B decreases in γ ∈ R.

Consider the alternative form (23) of the threshold equation. For fixed η, the
left member thus increases in γ, while the right member decreases in γ, since
r′(x) < 0. The solution ηopt of the threshold equation therefore increases in
γ ∈ R.

To prove the second part of the claim, we recall that ηopt solves the
threshold equation, so RT(ηopt) = rR(ηopt). Since ηopt ≥ 0 is increasing in
γ ∈ R, our assumptions on r imply that rR(ηopt) is decreasing in γ ∈ R.
Hence, RT(ηopt) is decreasing in γ ∈ R as well.

Proposition 6 can be interpreted as follows. First note that an increase
in γ means that fewer customers are served by the system, apart from the
impact of a possible admission control policy. Then, for threshold control, an
increased γ implies that the optimal threshold should increase, in order to
serve more customers. This of course is a direct consequence of our revenue
structure, which is designed to let the system operate close to the ideal
operating point. A large γ drifts the process away from this ideal operating
point, and this can be compensated for by a large threshold ηopt. Hence,
although the slack γ and the threshold ηopt have quite different impacts
on the system behavior, at a high level their monotonic relation can be
understood, and underlines that the revenue structure introduced in this
paper has the right properties for the QED regime.

3.3. Asymptotic solutions. We now present asymptotic results for the
optimal threshold in the regimes where the slack γ becomes extremely large
or extremely small.
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Proposition 7. When γ → −∞, and if the revenue function has a
cusp at x = 0, i.e., r′R(0+) < 0 < r′L(0−), the optimal threshold is given by

(26) ηopt = −1

γ
ln
(

1−
r′L(0−)

r′R(0+)

)
+O

( 1

γ2

)
.

Proof. We consider γ → −∞. From steepest descent analysis, we have
for a smooth and bounded f on (−∞, 0],∫ 0

−∞
f(x)e−γx dx = −f(0)

γ
− f ′(0)

γ2
+O

( 1

γ3

)
, γ → −∞.

Hence, it follows that
(27)

RT(0) =
A

B
=
− 1
γ −

r′L(0−)

γ2 +O
(

1
γ3

)
− 1
γ +O

(
1
γ3

) = 1 +
r′L(0−)

γ
+O

( 1

γ2

)
, γ → −∞.

From the upper bound ηopt < r←(RT(0)) and r(0) = 1, r′R(0+) < 0, we thus
see that ηopt = O(1/|γ|), γ → −∞, and so in the threshold equation, see (23),
we only need to consider η’s of O(1/|γ|). In (23), we have

∫ x
0 exp (−γu) du =

(1 − exp (−γx))/γ. Using that 1/(γB) = 1 + O(1/γ2), see (27), we get for
the right-hand side of (23),

− 1

B

∫ η

0
r′R(x)

∫ x

0
e−γu dudx =

∫ η

0
r′R(x)(1− e−γx dx) dx

(
1 +O

( 1

γ2

))
.

Next,

r′R(x) = r′R(0+) +O
(1

γ

)
, 1− e−γx = O(1), 0 ≤ x ≤ η = O

(1

γ

)
,

and so

(28) − 1

B

∫ η

0
r′R(x)

∫ x

0
e−γu dudx = −r′R(0+)

1− e−γη − γη
γ

+O
( 1

γ2

)
.

Furthermore, for the left-hand side of (23), we have

rR(η)−RT(0) = 1 + r′R(0+)η +O
( 1

γ2

)
−
(

1 +
r′L(0−)

γ
+O

( 1

γ2

))
= r′R(0+)η −

r′L(0−)

γ
+O

( 1

γ2

)
.(29)
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Equating (28) and (29) and simplifying, we find

r′R(0+)(1− e−γη) = r′L(0−) +O
(1

γ

)
,

and this gives (26).

If rL(x) is slowly varying, the optimal threshold is approximately given
by

(30) ηopt ≈ r←R (rL(−γ))

as γ →∞. To see this, note that as γ →∞,

RT(0) =

∫ 0
−∞ rL(x)e−

1
2
x2−γx dx∫ 0

−∞ e−
1
2
x2−γx dx

=
e

1
2
γ2 ∫∞

0 rL(−x)e−
1
2

(x−γ)2
dx

e
1
2
γ2 ∫∞

0 e−
1
2

(x−γ)2
dx

≈ rL(−γ).

A full analysis goes be beyond the scope of this paper, and would overly
complicating our exposition. Instead, consider as an example rL(x) = exp (bx)
with b > 0 small. We have as γ →∞ with exponentially small error
(31)

RT(0) =
Φ(γ − b)
φ(γ − b)

· φ(γ)

Φ(γ)
= e−bγe

b2

2

(
1−b φ(γ)

Φ(γ)
+O(b2)

)
= rL(−γ)(1+O(b2)).

When for instance rR(x) = exp (dx) with d > 0, we get that ηopt ≈ r←R (exp (−bγ
+ b2/2)) = (b/d)γ − b2/(2d) with exponentially small error, as γ →∞. Furt-
hermore, the right-hand side in (23) is exponentially small as γ → ∞, so
that in good approximation the solution to the threshold equation is indeed
given by (30).

3.4. Explicit results for two special cases. We now study the two special
cases of linear and exponential revenue structures. For these cases we are
able to find precise results for the ηopt. We demonstrate these results for
some example systems, and also include the bounds and asymptotic results
obtained in Section 3.1 and Section 3.3, respectively.

3.4.1. Linear revenue. We first present an explicit expression for the
optimal threshold for the case of a linear revenue function,

rR(x) =
(

1− x

d

)
1[0 ≤ x ≤ d], x ≥ 0,

and arbitrary rL(x). We distinguish between γ 6= 0 and γ = 0 in Proposition 8
and Proposition 9 below.
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Proposition 8. Assume γ 6= 0. Then

(32) ηopt = r0 +
1

γ
W
(γe−γr0

a0

)
,

where W denotes Lambert’s W function, and

(33) a0 = −γ2
(
B +

1

γ

)
, r0 =

d(B −A) + 1
γ2

B + 1
γ

.

Proof. It follows from [6, Section 4] that B + 1/γ 6= 0 when γ 6= 0 so
that a0, r0 in (33) are well-defined with a0 6= 0. From the threshold equation
in (23), and rR(η) = 1− η/d when 0 ≤ η ≤ d, we see that η = ηopt satisfies

1− η

d
− A

B
=

1

d

∫ η

0

∫ x

0
e−γu dudx.

Now ∫ η

0

∫ x

0
e−γu du dx =

1

γ

(
η − 1− e−γη

γ

)
,

and this yields for η = ηopt the equation

(34) γ(η − r0)eγ(η−r0) =
γ

a0
e−γr0

with a0 and r0 given in (33). Note that equation (34) is of the form W (z)×
exp (W (z)) = z, which is the defining equation for Lambert’s W function,
and this yields the result.

Proposition 8 provides a connection with the developments in [8]. Further-
more, the optimal threshold ηopt is readily computed from it, taking care that
the branch choice for W is such that the resulting ηopt is positive, continuous,
and increasing as a function of γ. For this matter, the following result is
relevant.

Proposition 9. For rR(x) = 1−x/d with d > 0, and arbitrary rL(x),
as γ → 0,

(35) ηopt =

√
π

2
+ 2d

(√π

2
−
∫ 0

−∞
rL(x)e−

1
2
x dx

)
−
√
π

2
+O(γ).
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Proof. In the threshold equation in (23), we set ε = 1−A/B and use
rR(x) = 1− x/d, r′R(x) = −1/d, to arrive at

dε− η =
1

B

∫ η

0

∫ x

0
e−γu dudx.

Since ∫ η

0

∫ x

0
e−γu dudx =

∫ η

0
(x+O(γx2)) dx =

1

2
η2 +O(γη3),

we obtain the equation

(36) dε− η =
1

2B
η2 +O(γη3).

Using that ηopt < r←(A/B) = O(1) as γ → 0, we find from (36) that as
γ → 0,

ηopt =
√
B2 + 2Bdε−B +O(γ) =

√
B2 + 2d(B −A)−B +O(γ).

Finally (35) follows from the expansions

B =

√
π

2
+O(γ), A =

∫ 0

−∞
rL(x)e−

1
2
x2

dx+O(γ),

as γ → 0.

We may also study the regime γ → ∞. Note that the following result
coincides with the asymptotic behavior of ηmin and ηmax in Proposition 4.

Proposition 10. For rL(x) = ebx, and rR(x) = (d−x)/d, as γ →∞,

ηopt = d
(

1− Φ(γ − b)φ(γ)

φ(γ − b)Φ(γ)

)
+O

(1

γ
e−

1
2
γ2
)
.

Proof. The revenue structure implies that

A =
Φ(γ − b)
φ(γ − b)

, B =
Φ(γ)

φ(γ)
,

∫ x

0
e−γu du =

1− e−γx

γ
.

Therefore, as γ →∞,

A

B
=

Φ(γ − b)φ(γ)

φ(γ − b)Φ(γ)
,

1

B
= O(e−

1
2
γ2

),

∫ x

0
e−γu du = O

(1

γ

)
.

Substituting in the threshold equation (23), we find that as γ →∞,

1− η

d
=

Φ(γ − b)φ(γ)

φ(γ − b)Φ(γ)
+O

(1

γ
e−

1
2
γ2
)
,

which completes the proof.
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Figure 5 displays ηopt given in Proposition 8 as a function of γ, together
with the bounds given by Proposition 4,

ηmax = d
(

1− Φ(γ − b)φ(γ)

φ(γ − b)Φ(γ)

)
,

ηmin = d
(

1−
Φ(γ − b)/φ(γ − b) +

∫ ηmax

0 e−γx dx

Φ(γ)/φ(γ) +
∫ ηmax

0 e−γx dx

)
,

and asymptotic solutions of Proposition 7,

ηγ→−∞ = −1

γ
ln (1 + bd), ηγ→∞ = d(1− e−bγ).

Figure 5 also confirms the monotonicity of ηopt in γ established in Proposi-
tion 6. Note also the different regimes in which our approximations are valid,
and that the bounds of Proposition 4 are tight as γ → ±∞.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

ηmin

ηmax

ηγ→−∞

ηγ→∞

γ

Fig 5. The optimal threshold ηopt, its bounds ηmin, ηmax, and its approximations ηγ→±∞,
all as a function of γ, when rL(x) = exp (bx), rR(x) = (d−x)/d, and b = d = 1. The curve
for the optimal threshold has been produced with (32).

3.4.2. Exponential revenue. Consider rL(x) arbitrary, and let rR(x) =
exp (−δx) for x ≥ 0, with δ > 0. First, we will consider what happens
asymptotically as δ ↓ 0 in the case γ = 0, which should be comparable to
the case in Proposition 9. Then, we consider the case γ = −δ, which like the
linear revenue structure has a Lambert W solution. Finally, we consider what
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happens asymptotically when ε = 1−RT(x) > 0 is small, and we check our
results in the specific cases γ = −2δ, −δ/2 and γ = δ, which have explicit
solutions.

Proposition 11. For γ = 0, as δ ↓ 0,

ηopt =

√
2(B −A)

δ
− 2A+B

3
+O

(√
δ
)

=

√
2

δ

(√π

2
−
∫ 0

−∞
r(x)e−

1
2
x2

dx
)

+O(1).(37)

Proof. When γ = 0, the threshold equation reads

(38) eδη = 1 +
δ(B −A)

1 +Aδ
+

δη

1 +Aδ
,

which follows from (22) with γ = 0. With δ > 0, η > 0, the left-hand side
of (38) exceeds 1 + δη + δ2η2/2, while the right-hand side is exceeded by
1+δη+δ(B−A). Therefore, the left-hand side of (38) exceeds the right-hand
side if η > η∗, where η∗ =

√
2(B −A)/δ. This implies that ηopt ≤ η∗, and

so we restrict attention to 0 ≤ η ≤ η∗ = O(1/
√
δ) when considering (38).

Expanding both sides of (38) gives

1 + δη +
1

2
δ2η2 +

1

6
δ3η3 +O(δ4η4)

= 1 + δ(B −A)− δ2A(B −A) +O(δ3) + δη − δ2Aη +O(δ3η).(39)

Cancelling the terms 1 + δη at both sides of (39), and dividing by δ2/2 while
remembering that η = O(1/

√
δ), we get

η2 =
2(B −A)

δ
− 2ηA− 1

3
η3δ +O(1).

Therefore,

(40) η = η∗

(
1− Aδ

B −A
η − δ2

6(B −A)
η3 +O(δ)

) 1
2

= η∗(1 +O(
√
δ)).

Thus η = η∗ +O(1), and inserting this in the right-hand side of the middle
member in (40) yields

η = η∗

(
1− Aδ

B −A
η∗ −

δ2

6(B −A)
η3
∗ +O(δ)

) 1
2

= η∗ −
Aδ

2(B −A)
η2
∗ −

δ2

12(B −A)
η4
∗ +O(

√
δ)

= η∗ −
2A+B

3
+O(

√
δ),
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which is the result (37).

Figure 6 draws for γ = 0 a comparison between rR(x) = exp (−∆x) and
rR(x) = 1−∆x. As expected, we see agreement when ∆ ↓ 0, and for larger
∆ the exponential revenue leads to slightly larger ηopt compared with linear
revenues.

10−2 10−1 100 101

10−2

10−1

100

101

asymptotics

rR(x) = e−∆x

rR(x) = 1−∆x

∆

ηopt

Fig 6. The optimal threshold ηopt in the exponential revenue case rR(x) = exp (−∆x),
and in the linear revenue case rR(x) = 1 −∆x, as ∆ ↓ 0. In both cases, r′R(0+) = −∆.
The leading-order behavior established in Proposition 11 is also included.

When γ = −δ, the threshold equation becomes

e−δη −RT(0) =
φ(−δ)
Φ(−δ)

(
η − 1− e−δη

δ

)
,

or equivalently,

e−δη =
1

Φ(−δ)
φ(−δ) −

1
δ

(
η − 1

δ
+

Φ(−δ)
φ(−δ)

RT(0)
)
,

and the solution may again be expressed in terms the Lambert W function.

Proposition 12. When γ = −δ, ηopt = r0 + (1/δ)W (δe−δr0/a0),
with

a0 =
1

Φ(γ)
φ(γ) −

1
δ

, r0 =
1

δ
− Φ(γ)

φ(γ)
RT(0).

Proof. Immediate, since the standard form is e−δη = a0(η − r0).
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In case α = (γ + δ)/δ 6= 0, 1, the threshold equation is given by, see (23),
(41)

e−δη −RT(0) =
δ

B

∫ η

0
e−δx

1− e−γx

γ
dx =

δ

Bγ

(1− e−δη

δ
− 1− e−(γ+δ)η

γ + δ

)
,

After setting z = e−δη ∈ (0, 1], (41) takes the form

(42) z −RT(0) =
1

γB

(
1− z − 1− zα

α

)
.

Observe that the factor 1/γB is positive when α > 1, and negative when
α < 1. For values α = −1, 1/2, and 2, an explicit solution can be found in
terms of the square-root function, see Proposition 19 in Appendix B. In all
other cases, the solution is more involved. In certain regimes, however, a so-
lution in terms of an infinite power series can be obtained, see Proposition 18
in Appendix B.

For illustrative purposes, we again plot the optimal threshold ηopt as a
function of γ. It has been determined by numerically solving the threshold
equation, and is plotted together with the bounds given by Proposition 4,

ηmax = −1

d
ln
(g(γ − b)

g(γ)

)
, ηmin = −1

d
ln
(g(γ − b) +

∫ ηmax

0 e−γx dx

g(γ) +
∫ ηmax

0 e−γx dx

)
,

and asymptotic solutions of Proposition 7,

ηγ→−∞ = −1

γ
ln
(

1 +
b

d

)
, ηγ→∞ =

bγ

d
,

in Figure 7. Similar to Figure 5, Figure 7 also illustrates the monotonicity
of ηopt in γ ∈ R, the different regimes our approximations and bounds are
valid, and how our bounds are tight as γ →∞. We have also indicated the
analytical solutions for α = −1, 0, 1/2, and 2, as provided by Proposition 12
and Proposition 19 in Appendix B. The asymptotic width 1/2 of the gap bet-
ween the graphs of ηopt and ηγ→∞ is consistent with the refined asymptotics
of ηopt as given below (31), case b = d = 1.

4. Optimality of threshold policies. We now present a proof of Pro-
position 2, the cornerstone for this paper that says that threshold policies
are optimal, and that the optimal threshold satisfies the threshold equation.
We first present in Section 4.1 a variational argument that gives an insightful
way to derive Proposition 2 heuristically. Next, we present the formal proof
of Proposition 2 in Section 4.2 using Hilbert-space theory.
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−3 −2 −1 −0.5 0 1 2 3
0

1

2

3

ηmin

ηmax

ηγ→−∞

ηγ→∞

γ

Fig 7. The optimal threshold ηopt, its bounds ηmin, ηmax, and its approximations ηγ→±∞,
all as a function of γ, when rL(x) = exp (bx), rR(x) = exp (−dx), and b = d = 1. The
analytical solutions for α = −1, 0, 1/2, and 2 provided by Proposition 12 and Proposition 19
are also indicated. The curve for the optimal threshold has been produced by numerically
solving the threshold equation.

4.1. Heuristic based on a variational argument. For threshold controls
f(x) = 1[0 ≤ x < η] with η ∈ [0,∞), the QED limit of the long-term revenue
(11) becomes (12). The optimal threshold ηopt can be found by equating
(43)

dR

dη
=

(
B + 1−e−γη

γ

)
r(η)e−γη −

(
A+

∫ η
0 r(x)e−γx dx

)
e−γη(

B + 1−e−γη

γ

)2 =
r(η)−RT(η)

eγη
(
B + 1−e−γη

γ

)
to zero, which shows that the optimal threshold ηopt solves the threshold
equation (14), i.e. r(η) = RT(η).

For any piecewise continuous function g on [0,∞) that is admissible, i.e.
such that 0 ≤ f + εg ≤ 1 and

∫∞
0 (f + εg)e−γx dx <∞ for sufficiently small

ε, define

(44) δR(f ; g) = lim
ε↓0

R(f + εg)−R(f)

ε
.

We call (44) the functional derivative of f with increment g, which can
loosely be interpreted as a derivative of f in the direction of g, see [24] for
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background. Substituting (11) into (44) yields

δR(f ; g) =

(
B +

∫∞
0 fe−γx dx

) ∫∞
0 rge−γx dx(

B +
∫∞

0 fe−γx dx
)2

−
(
A+

∫∞
0 rfe−γx dx

) ∫∞
0 ge−γx dx(

B +
∫∞

0 fe−γx dx
)2 .(45)

Rewriting (45) gives

(46) δR(f ; g) =

∫∞
0 g(x)e−γx

[
r(x)−R(f)

]
dx

B +
∫∞

0 f(x)e−γx dx
.

We can now examine the effect of small perturbations εg towards (or
away from) policies f by studying the sign of (46). Specifically, it can be
shown that for every perturbation g applied to the optimal threshold policy
of Proposition 2, δR(fopt; g) ≤ 0, indicating that these threshold policies are
locally optimal. Moreover, it can be shown that for any other control f , a
perturbation exists so that δR(f ; g) > 0. Such other controls are therefore not
locally optimal. Assuming the existence of an optimizer, these observations
thus indeed indicate that the threshold control in Proposition 2 is optimal.
We note that these observations crucially depend on the sign of r(x)−R(f),
as can be seen from (46). It is in fact the threshold equation (14) that
specifies the point where a sign change occurs.

Note that while these arguments support Proposition 2, this section does
not constitute a complete proof. In particular the existence of optimizers
still needs to be established.

4.2. Formal proof of Proposition 2. In the formal proof of Proposition 2
that now follows, we start by proving that there exist maximizers in Section 4.2.1.
This ensures that our maximization problem is well-defined. In Section 4.2.2,
we then derive necessary conditions for maximizers by perturbing the control
towards (or away from) a threshold policy, as alluded to before, and in a
formal manner using measure theory. Finally, we characterize in Section 4.2.3
the maximizers, by formally discarding pathological candidates.

With r : R → [0,∞) a smooth function, nonincreasing to 0 as x →
±∞, and γ ∈ R, recall that we are considering the maximization of the
functional (11) with f : [0,∞) → [0, 1] is measurable and with g(x) =
f(x)e−γx ∈ L1([0,∞)). We do not assume f to be nonincreasing. Recall
that A =

∫ 0
−∞ r(x) exp (−1

2x
2 − γx) dx > 0, B = Φ(γ)/φ(γ) > 0, and let

b(x) = e−γx for x ≥ 0. Then write R(f) as

R(f) =
A+

∫∞
0 r(x)g(x) dx

B +
∫∞

0 g(x) dx
= L(g),
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which is considered for all g ∈ L1([0,∞)) such that 0 ≤ g(x) ≤ b(x) for
0 ≤ x <∞. The objective is to maximize L(g) over all such allowed g.

For notational convenience, write

(47) L(g) =
A

B

(
1 +

∫∞
0 s(x)g(x) dx

1 +
∫∞

0 Sg(x) dx

)
,

where

s(x) =
r(x)

A
− 1

B
, S =

1

B
.

Recall that r(x) is nonincreasing, implying that s(x) ≤ s(0) for all x ≥ 0.
When s(0) ≤ 0, the maximum of (47) thus equals A/B, and is assumed by
all allowed g that vanish outside the interval [0, sup{x ∈ [0,∞)|s(x) = 0}].
When s(0) > 0, define

(48) x0 = inf{x ∈ [0,∞)|s(x) = 0},

which is positive and finite by smoothness of s and r(x) → 0 as x → ∞.
Note that the set {x ∈ [0,∞)|s(x) = 0} consists of a single point when r(x)
is strictly decreasing as long as r(x) > 0. But even if r(x) is not strictly
decreasing, we have s(x) ≤ 0 for x ≥ x0. Because g(x) ≥ 0 implies that

(49)

∫ ∞
x0

s(x)g(x) dx ≤ 0 ≤
∫ ∞
x0

Sg(x) dx,

we have
L(g1[x ∈ [0, x0)]) ≥ L(g)

for all g. We may therefore restrict attention to allowed g supported on
[0, x0]. Such a g can be extended to any allowed function supported on
[0, sup{x ∈ [0,∞)|s(x) = 0} without changing the value L(g). Therefore, we
shall instead maximize

(50) J(g) =

∫ x0

0 s(x)g(x) dx

1 +
∫ x0

0 Sg(x) dx

over all g ∈ L1([0, x0]) satisfying 0 ≤ g(x) ≤ b(x) for 0 ≤ x ≤ x0, in
which s(x) is a smooth function that is positive on [0, x0) and decreases to
s(x0) = 0.

4.2.1. Existence of allowed maximizers.

Proposition 13. There exist maximizers fopt ∈ F that maximize
R(f).
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Proof. We will use notions from the theory of Hilbert spaces and Le-
besgue integration on the line. We consider maximization of J(g) in (50)
over all measurable g with 0 ≤ g(x) ≤ b(x) for a.e. x ∈ [0, x0].

For any g ∈ L1([0, x0]), the Lebesgue points of g, i.e., all x1 ∈ (0, x0) such
that

(51) lim
ε↓0

1

2ε

∫ ε

−ε
g(x1 + x) dx

exists, is a subset of [0, x0] whose complement is a null set, and the limit in
(51) agrees with g(x1) for a.e. x1 ∈ [0, x0], [35].

The set of allowed functions g is a closed and bounded set of the separable
Hilbert space L2([0, x0]), and the functional J(g) is bounded on this set.
Hence, we can find a sequence of candidates {gn}n∈N0 of allowed gn, such
that

lim
n→∞

J(gn) = sup
allowed g

{J(g)} <∞.

We can subsequently find a subsequence {hk}k∈N0 = {gnk}k∈N0 such that hk
converges weakly to an h ∈ L2([0, x0]), [32]. Then

sup
allowed g

{J(g)} = lim
k→∞

J(hk) = lim
k→∞

∫∞
0

( r(x)
A −

1
B

)
hk(x) dx

1 + 1
B

∫∞
0 hk(x) dx

(i)
=

∫∞
0

( r(x)
A −

1
B

)
h(x) dx

1 + 1
B

∫∞
0 h(x) dx

= J(h),(52)

where (i) follows from weak convergence. We now only need to show that h
is allowed. We have for any ε > 0 and any x1 ∈ (0, x0) by weak convergence
that

1

2ε

∫ ε

−ε
h(x1 + x) dx = lim

k→∞

1

2ε

∫ ε

−ε
hk(x1 + x) dx ∈ [0, b(x1)],

since all hk are allowed. Hence for all Lebesgue points x1 ∈ (0, x0) of h we
have

lim
ε↓0

1

2ε

∫ ε

−ε
h(x1 + x) dx ∈ [0, b(x1)],

and so 0 ≤ h(x1) ≤ b(x1) for a.e. x1 ∈ [0, x0]. This, together with (52) shows
that h is an allowed maximizer.

4.2.2. Necessary condition for maximizers.

Proposition 14. For any maximizer fopt ∈ F , f(x) = 1 if r(x) >
R(x), and f(x) = 0 if r(x) < R(x).
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Proof. Let g be an allowed maximizer of J(g). We shall equivalently
show that for any Lebesgue point x1 ∈ (0, x0) of g,

s(x1)(1 +
∫ x0

0 Sg(x) dx)

S
∫ x0

0 s(x)g(x) dx
> 1⇒ g(x1) = b(x1),(53)

s(x1)(1 +
∫ x0

0 Sg(x) dx)

S
∫ x0

0 s(x)g(x) dx
< 1⇒ g(x1) = 0.(54)

Let x1 ∈ (0, x0) be any Lebesgue point of g and assume that

(55)
s(x1)(1 +

∫ x0

0 Sg(x) dx)

S
∫ x0

0 s(x)g(x) dx
> 1.

Suppose that g(x1) < b(x1). We shall derive a contradiction. Let ε0 > 0 be
small enough so that

(56)
1

2
(g(x1) + b(x1)) ≤ min

x1−ε0≤x≤x1+ε0
{b(x)}.

Along with g, consider for 0 < ε ≤ ε0 the function

gε(x) =

{
g(x), x 6∈ [x1 − ε, x1 + ε],
1
2(g(x1) + b(x1)), x ∈ [x1 − ε, x1 + ε].

This gε is allowed by (56). Write J(g) as

J(g) =
C(ε) + Is(ε; g)

D(ε) + IS(ε; g)
,

where

C(ε) =

(∫ y−ε

0
+

∫ x0

y+ε

)
s(x)g(x) dx, D(ε) = 1+

(∫ y−ε

0
+

∫ x0

y+ε

)
Sg(x) dx,

and

(57) Is(ε; g) =

∫ x1+ε

x1−ε
s(x)g(x) dx, IS(ε; g) =

∫ x1+ε

x1−ε
Sg(x) dx.

We can do a similar thing with J(gε), using the same numbers C(ε) and
D(ε) and g replaced by gε in (57). We compute

J(gε)− J(g)

(58)

=
(C(ε) + Is(ε; gε))(D(ε) + IS(ε; g))− (C(ε) + Is(ε; g))(D(ε) + IS(ε; gε))

(D(ε) + IS(ε; g))(D(ε) + IS(ε; gε))
,
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in which the numerator N(gε; g) of the fraction at the right-hand side of (58)
can be written as

N(gε; g) =(Is(ε; gε)− Is(ε; g))D(ε)− (IS(ε; gε)− IS(ε; g))C(ε)

+ Is(ε; gε)IS(ε; g)− Is(ε; g)IS(ε; gε).

Since x1 is a Lebesgue point of g, we have as ε ↓ 0

1

2ε
Is(ε; gε)→

1

2
s(x1)(g(x1) + b(x1)),

1

2ε
Is(ε; g)→ s(x1)g(x1),(59)

1

2ε
IS(ε; gε)→

1

2
S(g(x1) + b(x1)),

1

2ε
IS(ε; g)→ Sg(x1),(60)

while also

C(ε)→
∫ x0

0
s(x)g(x) dx, D(ε)→ 1 +

∫ x0

0
Sg(x) dx.

Therefore,

lim
ε↓0

N(gε, g)

=
1

2
(b(x1)− g(x1))

(
s(x1)

(
1 +

∫ x0

0
Sg(x) dx

)
− S

∫ x0

0
s(x)g(x) dx

)
> 0

by assumption (55). Then J(gε) − J(g) > 0 when ε is sufficiently small,
contradicting maximality of J(g). Hence, we have proven the first relation
in (54). The proof of the second relation is similar.

4.2.3. Characterization of maximizers. Proposition 14 does not exclude
the possibility that a maximizer alternates between 0 and 1. Proposition 15
solves this problem by excluding the pathological candidates.

Proposition 15. The quantity

R(f ; η) =
A+

∫ η
0 r(x)f(x)e−γx dx

B +
∫ η

0 f(x)e−γx dx
.

is uniquely maximized by

f(x) = 1[0 ≤ x ≤ ηopt],

with ηopt a solution of the equation r(η) = RT(η), apart from null functions
and its value at any solution of r(η) = RT(η).
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Proof. Assume that g is a maximizer, and consider the continuous,
decreasing function

tg(x1) = s(x1)
(
1 +

∫ x0

0
Sg(x) dx

)
− S

∫ x0

0
s(x)g(x) dx,

which is positive at x1 = 0 and negative (because g 6= 0) at x1 = x0

since s is decreasing with s(0) > 0 = s(x0). Let x2,g, x3,g be such that
0 < x2,g ≤ x3,g < x0 and

tg(x1) =


> 0, 0 ≤ x1 < x2,g,

= 0, x2,g ≤ x1 ≤ x3,g,

< 0, x3,g < x1 ≤ x0.

Note that x2,g = x3,g when s is strictly decreasing on [0, x0], and that
s′(x) = 0 for x ∈ [x2,g, x3,g] when x2,g < x3,g. According to [19], we have
(61)
g(x1) = b(x1), a.e. x1 ∈ [0, x2,g], and g(x1) = 0, a.e. x1 ∈ [x3,g, x0].

For an allowed h 6= 0, consider the continuous function

(62) J(h;x1) =

∫ x1

0 s(x)h(x) dx

1 +
∫ x1

0 Sh(x) dx
, 0 ≤ x1 ≤ x0.

We differentiate J(h;x1) with respect to x1, where we use the fact that for
any k ∈ L1([0, x0]),

d

dx1

[∫ x1

0
k(x) dx

]
= k(x1), a.e. x1 ∈ [0, x0].

Thus we get for a.e. x1 that

(63)
d

dx1

[
J(h;x1)

]
=
Nh(x1)

Dh(x1)
,

where Dh(x1) = (1 +
∫ x0

0 Sh(x) dx)2, and

(64) Nh(x1) = h(x1)Mh(x1)

with

Mh(x1) = s(x1)
(
1 +

∫ x1

0
Sh(x) dx

)
− S

∫ x1

0
s(x)h(x) dx.
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Now Mh(x1) is a continuous function of x1 ∈ [0, x0] with Mh(x0) < 0 <
Mh(0) since s(x0) = 0 < s(0) and h 6= 0. Furthermore, Mh(x1) is differentia-
ble at a.e. x1, and one computes for a.e. x1,

(65)
d

dx1

[
Mh(x1)

]
= s′(x1)

(
1 +

∫ x1

0
Sh(x) dx

)
.

Since s is decreasing, the right-hand side of (65) is nonpositive for all x1 and
negative for all x1 with s′(x1) < 0.

Now let g be a maximizer, and consider first the case that s(x) is strictly
decreasing. Then x2,g = x3,g in (61). Next consider h = b in (62) and further.
It follows from (65) that Mb is strictly decreasing on [0, x0], and so Mb has
a unique zero x̂ on [0, x0]. Therefore, by (63) and (64), J(b;x1) has a unique
maximum at x1 = x̂. Then, from (61) and maximality of g, x2,g = x̂ = x3,g.
Hence, J is uniquely maximized by

(66) g(x1) = b(x1)1[x1 ∈ [0, x̂]],

apart from null functions, with x̂ the unique solution y of the equation

(67) s(y)
(
1 +

∫ y

0
Sb(x) dx

)
− S

∫ y

0
s(x)b(x) dx = 0.

This handles the case that s is strictly decreasing.
When s′ may vanish, we have to argue more carefully. In the case that

x2,g = x3,g, we can proceed as earlier, with (66) emerging as maximizer and
x2,g = y = x3,g. So assume we have a maximizer g with x2,g < x3,g, and
consider h = g in (62) and further. We have that J(h = g;x1) is constant
in x1 ∈ [x3,g, x0]. Furthermore, from s′(x1) = 0 for x1 ∈ [x2,g, x3,g] and (64),
we see that J(h = g;x1) is constant in x1 ∈ [x2,g, x3,g] as well. This constant
value equals J(g), and is equal to J(b1[x1 ∈ [0, x2,g]]) since, due to (64),
we have J(g; ·) = J(ḡ; ·) when g = ḡ a.e. outside [x2,g, x3,g]. We are then
again in the previous situation, and the solutions y of (67) form now a whole
interval [y2, y3]. The maximizers are again unique, apart from their values
for x1 ∈ [y2, y3] that can be chosen arbitrarily between 0 and b(x1).

5. Conclusions and future perspectives. The QED regime has gai-
ned tremendous popularity in the operations management literature, because
it describes how large-scale service operations can achieve high system utili-
zation while simultaneously maintaining short delays. Operating a system in
the QED regime typically entails hiring a number of servers according to the
square-root staffing rule s = λ/µ+ γ

√
λ/µ, and has the added benefit that

limiting performance measures can be described by elementary functions of
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just the one parameter γ. Through the square-root staffing rule, γ determi-
nes a hedge against variability or overcapacity, which is of the order of the
natural fluctuations of the demand per time unit when the system operates
in the QED regime. Classical problems of dimensioning large-scale systems
in the QED regime can then be solved by optimizing objective functions
solely dependent on γ.

Our paper adds a revenue maximization framework that complies with the
classical dimensioning of QED systems by constructing scalable admission
controls and revenue structures that remain meaningful in the QED regime
(Proposition 1). As we have proven, our revenue framework naturally leads
to an optimal control that bars customers from entering when the queue
length of delayed customers exceeds the threshold ηopt√s, provided that
ηopt satisfies a fundamental threshold equation (Proposition 2). A detailed
study of this threshold equation made it possible to characterize ηopt in
terms of exact expressions, bounds, and asymptotic expansions. The weak
assumptions made throughout this paper allow for application to a rich class
of revenue structures, and an interesting direction for future work would
therefore be the construction of realistic revenue structures based on specific
case studies, expert opinions, or calibration to financial data.

Let us finally discuss the fascinating interplay between the parameters
γ and η, which suggest that they act as communicating yet incomparable
vessels. The optimal threshold ηopt increases with the overcapacity γ. Since
more overcapacity roughly means fewer customers per server, and a larger
threshold means more customers per server, we see that the optimization
of revenues over the pair (γ, η) gives rise to an intricate two-dimensional
framework in which the two parameters have radically different yet persistent
effects in the QED regime. At the process level, the γ acts as a negative drift
in the entire state space, while the η only interferes at the upper limit of
the state space. Hence, while in this paper we have treated γ as given, and
mostly focused on the behavior of the new parameter η, our framework paves
the way for two-dimensional joint staffing and admission control problems.
Gaining a deeper understanding of this interplay, and in relation to specific
revenue structures, is a promising direction for future research.

imsart-ssy ver. 2014/10/16 file: SSY__OACQDR.tex date: July 18, 2017



OPTIMAL ADMISSION CONTROL WITH QED-DRIVEN REVENUES 37

APPENDIX A: LIMITING BEHAVIOR OF LONG-TERM QED
REVENUE

With rs(k) = r((k − s)/
√
s) as in (2) and πs(k) = limt→∞ P[Qs(t) = k],

(6), where ps and f are related as in (3), we compute for ρ = 1− γ/
√
s > 0,

∞∑
k=0

rs(k)πs(k) =

∑s
k=0 r

(
k−s√
s

) (sρ)k

k! + (sρ)s

s!

∑∞
k=s+1 r

(
k−s√
s

)
ρk−sf

(
k−s√
s

)
∑s

k=0
(sρ)k

k! + (sρ)s

s!

∑∞
k=s+1 ρ

k−sf
(
k−s√
s

) .

Dividing by the factor (sρ)s/s!, we obtain

∞∑
k=0

rs(k)πs(k) =
WL
s (ρ) +WR

s (ρ)

B−1
s (ρ) + Fs(ρ)

.

Here,

Bs(ρ) =
(sρ)s

s!∑s
k=0

(sρ)k

k!

is the Erlang B formula,

Fs(ρ) =
∞∑
n=0

ρn+1f
(n+ 1√

s

)
as in (8), and

WL
s (ρ) =

s∑
k=0

r
(k − s√

s

)s!(sρ)k−s

k!
,(68)

WR
s (ρ) =

∞∑
n=0

r
(n+ 1√

s

)
ρn+1f

(n+ 1√
s

)
.(69)

with superscripts L and R referring to the left-hand part k = 0, 1, . . . , s and
right-hand part k = s+ 1, s+ 2, . . . of the summation range, respectively.

From Jagerman’s asymptotic results for Erlang B, there is the approxima-
tion [18, Theorem 14]

(70) B−1
s (ρ) =

√
sψ(γ) + χ(γ) +O

( 1√
s

)
with ψ(γ) = Φ(γ)/φ(γ) and χ(γ) expressible in terms of φ and Φ as well.
For Fs(ρ) there is the approximation [19, Theorem 4.2],

(71) Fs(ρ) =
√
sL(γ) +M(γ) +O

( 1√
s

)
,
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with L(γ) =
∫∞

0 f(x) exp (−γx) dx and M(γ) expressible in terms of L′(γ).
We aim at similar approximations for WL

s (ρ) and WR
s (ρ) in (68), (69).

We start by considering WR
s (ρ) for the case that r and its first two deri-

vatives are continuous and bounded in the two following situations:

(i.) f is smooth; f(y) exp (−γy) and its first two derivatives are exponen-
tially small as y →∞.

(ii.) f = 1[x ∈ [0, η]] with η > 0.

A.1. Asymptotics of WR
s (ρ). In the series expression for WR

s (ρ), we
have

ρn+1 =
(

1− γ√
s

)n+1
= e
− (n+1)γs√

s

with

(72) γs = −
√
s ln

(
1− γ√

s

)
= γ +

γ2

2
√
s

+ . . . > γ.

Hence, the conditions in case (i.) are also valid when using γs instead of γ.
We obtain the following result.

Lemma 1. For case (i.) it holds that

(73) WR
s (ρ) =

√
s

∫ ∞
0

e−γsyr(y)f(y) dy − 1

2
r(0)f(0) +O

( 1√
s

)
.

For case (ii.) it holds that
(74)

WR
s (ρ) =

√
s

∫ η

0
e−γsyr(y) dy−1

2
r(0)+

(
bη
√
sc−

(
η
√
s−1

2

))
e−γsηr(η)+O

( 1√
s

)
.

Proof. We use EM-summation as in [19, Appendix C], first instance
in [19, (C.1)], case m = 1, with the function

h(x) = g
(x+ 1

2√
s

)
, x ≥ 0, and g(y) = e−γsyr(y)f(y), y ≥ 0,

using a finite summation range n = 0, 1, . . . , N , where we take N = s in case
(i.) and N = bη

√
s− 3/2c in case (ii.) In both cases, we have by smoothness

of h on the range [0, N + 1] that

(75)
N∑
n=0

h
(
n+ 1

2

)
=

∫ N+1

0
h(x) dx+ 1

2B2

(
1
2

)(
h(1)(N + 1)− h(1)(0)

)
+R,
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where |R| ≤ 1
2B2

∫ N+1
0 |h(2)(x)|dx. Due to our assumptions, it holds in both

cases that

1
2B2

(
1
2

)(
h(1)(N + 1)− h(1)(0)

)
+R = O

( 1√
s

)
.

In case (i.), the left-hand side of (75) equals WR
s (ρ), apart from an error

that is exponentially small as s→∞. In case (ii.), the left-hand side of (75)
and WR

s (ρ) are related according to

(76) WR
s (ρ) =

N∑
n=0

h
(
n+ 1

2

)
+ g
(bη√sc√

s

)(
bη
√
sc −

⌊
η
√
s− 1

2

⌋)
.

The second term at the right-hand side of (76) equals 0 or g(bη
√
sc/
√
s)

accordingly as η
√
s−bη

√
sc ≥ or < 1

2 , i.e., accordingly as N + 1 = bη
√
sc or

bη
√
sc − 1. Next, by smoothness of h and g on the relevant ranges, we have∫ N+1

0
h(x) dx =

√
s

∫ N+3/2√
s

1
2
√
s

g(y) dy =
√
s

∫ N+3/2√
s

0
g(y) dy−1

2
g(0)+O

( 1√
s

)
.

In case (i.), we have that
∫∞

(N+3/2)/
√
s g(y) dy is exponentially small as s→∞,

since N = s, and this yields (73). In case (ii.), we have∫ N+3/2√
s

0
g(y) dy −

∫ η

0
g(y) dy =

∫ N+3/2√
s

η
g(y) dy

=
(N + 3/2√

s
− η
)
g
(bη√sc√

s

)
+O

(1

s

)
=

1√
s

(⌊
η
√
s− 1

2

⌋
−
(
η
√
s− 1

2

))
g
(bη√sc√

s

)
+O

(1

s

)
,

and with (76), this yields (74). This completes the proof.

We denote for both case (i.) and (ii.)

(77) Lrf (δ) =

∫ ∞
0

e−δyr(y)f(y) dy

with δ ∈ R such that the integral of the right-hand side of (77) converges
absolutely. From (72) it is seen that, with the prime ′ denoting differentiation,

Lrf (γs) = Lrf (γ) +
γ2

2
√
s
L′rf (γ) +O

(1

s

)
.

Thus we get from Lemma 1 the following result.
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Proposition 16. For case (i.) it holds that

WR
s (ρ) =

√
sLrf (γ) + 1

2γ
2L′rf (γ)− 1

2r(0)f(0) +O
( 1√

s

)
.

For case (ii.) it holds that

WR
s (ρ) =

√
sLrf (γ) + 1

2γ
2L′rf (γ)− 1

2r(0)

+
(
bη
√
sc −

(
η
√
s− 1

2

))
e−γηr(η) +O

( 1√
s

)
.

A.2. Asymptotics of WL
s (ρ). We next consider WL

s (ρ) for the case
that r : (−∞, 0]→ R has bounded and continuous derivatives up to order 2.
Using a change of variables, we write

(78) WL
s (ρ) = r(0) +

s∑
k=1

r
(−k√

s

) s!s−k

(s− k)!
ρ−k,

and we again intend to apply EM-summation to the series at the right-hand
side of (78). We first present a bound and an approximation.

Lemma 2. We have for |γ|/
√
s ≤ 1

2 and ρ = 1− γ/
√
s,

(79)
s!s−k

(s− k)!
ρ−k ≤ exp

(
−k(k − 1)

2s
+
γk√
s

+
γ2k

s

)
, k = 1, 2, . . . , s,

and

(80)
s!s−k

(s− k)!
ρ−k = Gs

( k√
s

)(
1 +O

(1

s
P6

( k√
s

)))
, k ≤ s2/3,

where

(81) Gs(y) = e−
1
2
y2+γy

(
1− 1

6
√
s
y3 +

1

2
√
s

(1 + γ2)y
)
,

and P6(y) is a polynomial in y of degree 6 with coefficients bounded by 1 (the
constant implied by O(·) depends on γ).

Proof. We have for k = 1, 2, . . . , s and |γ|/
√
s ≤ 1/2, ρ = 1− γ/

√
s,

s!s−k

(s− k)!
ρ−k = ρ−k

k−1∏
j=0

(
1− j

s

)
= exp

(k−1∑
j=0

ln
(

1− j

s

)
− k ln

(
1− γ√

s

))

≤ exp
(
−
k−1∑
j=0

j

s
+
γk√
s

+
γ2k

s

)
= exp

(
−k(k − 1)

2s
+
γk√
s

+
γ2k

s

)
,

imsart-ssy ver. 2014/10/16 file: SSY__OACQDR.tex date: July 18, 2017



OPTIMAL ADMISSION CONTROL WITH QED-DRIVEN REVENUES 41

where it has been used that − ln (1− x) ≤ x+ x2, |x| ≤ 1/2.
On the range k ≤ s2/3, we further expand

s!s−k

(s− k)!
ρ−k = exp

(
−
k−1∑
j=0

(j
s

+
j2

2s2
+O

(j3

s3

))
+
γk√
s

+
γ2k

s
+O

( k

s3/2

))
= exp

(
−k(k − 1)

2s
− k(k − 1)(2k − 1)

12s2
+O

(k4

s3

)
+
γk√
s

+
γ2k

s
+O

( k

s3/2

))
= exp

(
−k

2

2s
+
γk√
s
− k3

6s2
+

1

2
(1 + γ2)

k

s
+O

( k

s3/2
+
k2

s2
+
k4

s3

))
On the range 0 ≤ k ≤ s2/3 we have

k3

s2
,
k

s
,
k

s3/2
,
k2

s2
,
k4

s3
= O(1).

Hence, on the range 0 ≤ k ≤ s2/3,

s!s−k

(s− k)!
ρ−k = exp

(
−k

2

2s
+
γk√
s

)(
1− k3

6s2
+

1

2
(1 + γ2)

k

s

+O
(k6

s4
+
k4

s3
+
k2

s2
+

k

s3/2

))
= G

( k√
s

)(
1 +O

(1

s
P6

( k√
s

)))
,

where P6(y) = y6 + y4 + y2 + y.

Proposition 17. It holds that

WL
s (ρ) =

√
s

∫ 0

−∞
e−

1
2
y2−γyr(y) dy +

1

2
r(0)

+

∫ 0

−∞
e−

1
2
y2−γy(1

6
y3 − 1

2
(1 + γ2)y

)
r(y) dy +O

( 1√
s

)
.

Proof. With v(y) = r(−y), we write

(82) WL
s (ρ) = r(0) +

s−1∑
n=0

v
(n+ 1√

s

) s!s−n−1

(s− n− 1)!
ρ−n−1.

By the assumptions on r and the bound in (79), the contribution of the
terms in the series in (82) with n > s2/3 is O(exp (−Cs1/3)), s→∞, for any
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C with 0 < C < 1/2. On the range n = 0, 1, . . . , bs2/3c − 1 =: N , we can
apply (80), and so, with exponentially small error,

WL
s (ρ) = r(0) +

N∑
n=0

v
(n+ 1√

s

)
Gs

(n+ 1√
s

)(
1 +O

(1

s
P6

(n+ 1√
s

)))
.

By EM-summation, as used in the proof of Lemma 1 for the case (i.) as
considered there, we have

N∑
n=0

v
(n+ 1√

s

)
Gs

(n+ 1√
s

)
=
√
s

∫ ∞
0

v(y)Gs(y) dy − 1

2
v(0)Gs(0) +O

( 1√
s

)
,

where we have extended the integration range [0, (N + 3/2)/
√
s] to [0,∞) at

the expense of exponentially small error. Then the result follows on a change
of the integration variable, noting that v(y) = r(−y) and the definition of
Gs in (81), implying Gs(0) = 1.

The result of Proposition 1 in the main text follows now from (70), (71),
Proposition 16 and Proposition 17, by considering leading terms only.

APPENDIX B: EXPLICIT SOLUTIONS FOR EXPONENTIAL
REVENUE

Proposition 18. When ε = 1−RT(0) > 0 is sufficiently small,

(83) ηopt = −1

δ
ln (1−

∞∑
l=1

alε
l),

where

a1 = 1, a2 =
1

2
(α+ β − 1),(84)

al+1 =
1

l + 1

(
(lα+ (l + 1)β − 1)al + β

l−1∑
i=2

iaial+1−i

)
, l = 2, 3, . . . ,

(85)

with β = (1− α)(1 + 1/(γB)) and the convention that
∑l−1

i=2 = 0 for l = 2.

Proof. With ε = 1−RT(0) and w = 1− z, we can write (42) as

(86) H(w) = w +
1

γB
(w − 1

α
(1− (1− w)α)) = ε.
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Note that

H(w) = w +
1

γB
(
1

2
(α− 1)w2 − 1

6
(α− 1)(α− 2)w3 + . . .), |w| < 1,

and so there is indeed a (unique) solution

(87) w(ε) = ε+
∞∑
l=2

alε
l

of (86) when |ε| is sufficiently small. To find the al we let D = 1/(γB), and
we write (86) as

(88) (1 +D)w − 1

α
D +

1

α
(1− w)α = ε, w = w(ε).

Differentiating (88) with respect to ε, multiplying by 1−w(ε), and eliminating
(1− w(ε))α using (88) yields the equation

(89) (1− αε− βw(ε))w′(ε) = 1− w(ε).

Inserting the power series (87) for w(ε) and 1 +
∑∞

l=1(l + 1)al+1ε
l for w′(ε)

into (89) gives

1− αε+
∞∑
l=1

(l + 1)al+1ε
l − α

∞∑
l=2

lalε
l

− βε− β
∞∑
l=2

lalε
l − β

∞∑
l=2

alε
l − β

∞∑
l=2

alε
l
∞∑
l=1

(l + 1)al+1ε
l

= 1− ε−
∞∑
l=2

alε
l.(90)

Using that

∞∑
l=2

alε
l
∞∑
l=1

(l + 1)al+1ε
l =

∞∑
l=3

( l−1∑
i=2

iaial+1−i

)
εl,

it follows that a1, a2, a3, . . . can be found recursively as in (84)–(85), by
equating coefficients in (90). The result (83) then follows from ηopt =
−(1/δ) ln z = (1/δ) ln (1− w). The inequality β < 0 follows from the in-
equality γ + φ(γ)/Φ(γ) > 0, γ ∈ R, given in [6, Sec. 4].

We consider next the cases α = −1, 1/2, and 2 that allow for solving the
threshold equation explicitly, and that illustrate Proposition 18.
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Proposition 19. Let t = −γB/(1 + γB) > 0, and ε = 1 − RT(0),
for the cases (i) and (ii) below. The optimal threshold ηopt is given as

ηopt = −1

δ
ln (1− w(ε)),

where w(ε) is given by:

(i) α = −1,

w(ε) =
1

2
t
(√

(1 + ε)2 +
4ε

t
− 1− ε

)
= ε− 1

2
t

∞∑
k=2

(−1)k
Pk

(
1 + 2

t

)
− Pk−2

(
1 + 2

t

)
2k − 1

εk(91)

for |ε| < 1+2/t−
√

(1 + 2/t)2 − 1, and where Pk is the Legendre polynomial
of degree k,

(ii) α = 1/2,

(92) w(ε) =
2t

1 + γB

(√
1 +

ε

t
− 1
)
− tε = ε+

2t

1 + γB

∞∑
k=2

(
1/2

k

)(ε
t

)k
for |ε| < t,

(iii) α = 2,

(93) w(ε) = −γB +
√

(γB)2 + 2γBε = ε+ γB
∞∑
k=2

(
1/2

k

)( 2ε

γB

)k
for |ε| < 1

2γB.

Proof. Case (i). When α = −1, we can write the threshold equation
as

(94) w2 + t(1 + ε)w = tε.

From the two solutions

w = −1

2
t(1 + ε)±

√
(
1

2
t(1 + ε))2 + tε

of (94), we take the one with the + sign so as to get w small and positive
when ε is small and positive. This gives w(ε) as in the first line of (91), the
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solution being analytic in the ε-range given in the second line of (91). To get
the explicit series expression in (91), we integrate the generating function

∞∑
k=0

Pk(x)εk = (1− 2xε+ ε2)−
1
2

of the Legendre polynomials over x from −1 to −1 − 2/t, and we use for
k = 1, 2, . . . that

P ′k+1(x)− P ′k−1(x) = (2k + 1)Pk(x), Pk+1(−1)− Pk−1(−1) = 0,

see [34, (4.7.29), (4.7.3-4)] for the case λ = 1/2.
Case (ii). When α = 1/2, we can write the threshold equation as

2(1− w)
1
2 = 2 + γBε− (1 + γB)w.

After squaring, we get the equation

w2 + 2
2− (2 + γBε)(1 + γB)

(1 + γB)2
w =

4− (2 + γBε)2

(1 + γB)2
.

After a lengthy calculation, this yields the two solutions

(95) w =
2γB

(1 + γB)2

(
1 +

1

2
(1 + γB)ε±

√
1− 1 + γB

γB
ε
)
.

Noting that −1 < γB < 0 in this case, and that w is small positive when ε
is small positive, we take the − sign in (95), and arrive at the square-root
expression in (92), with t given earlier. The series expansion given in (92)
and its validity range follow directly from this.

Case (iii). When α = 2, we have γB > 0, and the threshold equation can
be written as

w2 + 2γBw = 2γBε.

Using again that w is small positive when ε is small positive, the result in
(93) readily follows.
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