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In this paper we highlight that extreme events such as freak waves are a transient phe-
nomenon in keeping with the old fisherman tale that these extreme events seem to appear
out of nowhere. Janssen (2003) obtained an evolution equation for the ensemble average
of the excess kurtosis, which is a measure for the deviation from normality and an indica-
tor for nonlinear focusing resulting in extreme events. In the limit of a narrow-band wave
train, whose dynamics is governed by the two-dimensional Nonlinear Schrödinger (NLS)
equation, the excess kurtosis is under certain conditions seen to grow to a maximum
after which it decays to zero for large times. This follows from a numerical solution of
the problem and also from an analytical solution presented by Fedele (2015). The ana-
lytical solution is not explicit because it involves an integral from initial time to actual
time. We therefore study a number of properties of the integral expression in order to
better understand some interesting features of the time-dependent excess kurtosis and
the generation of extreme events.
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1. Introduction.

In the past 15 years, there has been considerable progress in our understanding of
the mechanisms that may cause the generation of extreme (ocean) wave events. In the
early days, these extreme sea states were discussed in the context of linear wave theory
(Draper, 1965; Dean, 1990) for which the corresponding probability density function is
the Rayleigh distribution (Cartwright and Longuet-Higgins, 1956), and extreme events
were very unlikely. Recently, it has been made plausible that nonlinear effects related
to the presence of bound waves and non-resonant four wave interactions give rise to
a (nonlinear) focusing of wave energy and therefore have a profound impact on the
statistics of extreme events, increasing the probability of extreme events by two orders
of magnitude (Osborne et al., 2000; Mori et al., 2007; Onorato et al., 2009; Cavaleri et
al., 2016) .

We study in this paper the most simple example of nonlinear focusing by investigating
the properties of the evolution of a weakly nonlinear, narrow-band wave train. For deep-
water ocean waves, Zakharov (1968) found that the envelope of such a narrow-band
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wave train obeys the focusing NLS equation, an equation which is found in many other
branches of physics as well, e.g. in nonlinear optics and plasma physics. Because of this
common mathematical description a rapid development in the field of “rogue” or “freak”
waves followed. For a recent introduction into this field the reader is refered to Onorato,
Residori and Baronio (2016). Assuming that the probability distribution of the waves is
close to a Gaussian, Janssen (2003) derived an expression for a measure of the deviation
from Gaussian statistics, namely the excess kurtosis. When the dynamics of the wave
train leads to focussing, resulting in extreme events, which are called freak waves or rogue
waves, the excess kurtosis becomes positive. Thus excess kurtosis is a good indicator for
extreme events.

The main question now is under what circumstances one finds focusing of wave energy.
For one-dimensional propagation it has been shown (Janssen, 2004) that for weakly
nonlinear waves the answer to this question is closely related to the conditions for which
the narrow-band wave train is modulationally unstable or not (Janssen, 2004). In the
fields of nonlinear optics and fluid dynamics, the modulational instability, also called
the side band instability or the Benjamin-Feir Instability, is a phenomenon whereby
deviations from the periodic waveform are reinforced by nonlinearity, leading to the
generation of spectral sidebands and the eventual break up of the wave form in a train
of pulses or envelope solitons, which is similar to the formation of extreme events.
For one dimensional propagation, ocean waves are modulationally unstable as discov-

ered experimentally by Benjamin and Feir in 1967. Envelope cnoidal waves (Yuen and
Lake, 1982), Akhmediev breathers (Akhmediev et al., 1987) and the Peregrine solution
(Peregrine, 1983), for example, may be formed because the sign of the nonlinear term
in the NLS equation is such that there exist a balance between nonlinearity and the
linear dispersion of the waves. For an ensemble of ocean waves, it can then be shown
that the excess kurtosis evolves towards a steady positive value (Janssen, 2003). For two-
dimensional propagation, however, there exist no balance between nonlinear focusing and
the linear dispersion by waves. Consequently, for large times envelope cnoidal waves are
most likely not present, because they are unstable ( see e.g. the work of Zakharov and
Rubenchik (1974) on the instability of envelope solitons in two dimensions, and Yuen and
Lake (1982) for cnoidal waves) and excess kurtosis does not evolve towards a steady finite
value. According to numerical computations and an exact result by Fedele (2015), for
two-dimensional propagation the formation of extreme events is a transient phenomenon.
Although the early evolution of excess kurtosis is identical to the one-dimensional case,
for later times a maximum in excess kurtosis is found followed by a decay towards zero,
hence returning to a Gaussian sea state.

In this paper we present additional analytical results on the evolution of excess kurtosis
for the one and two dimensional case. We consider the excess kurtosis as a function of
dimensionless short-crestedness R and dimensionless time τ , where the one-dimensional
case corresponds to R = 0 while the two-dimensional case yields finite positive R. We
give two mathematical proofs that the excess kurtosis vanishes as τ tends to infinity. In
Fedele (2015), it is shown that the excess kurtosis has a limit as τ tends to infinity, but
it is not obvious that this limit equals 0. Secondly, we give the large-time asymptotics of
the excess kurtosis as a function of R and we assess validity range and accuracy of this
asymptotics. Thirdly, we investigate the behaviour of the time-maximum of the excess
kurtosis near R = 0 and R = 1 in considerably more detail than was done in Fedele
(2015). This allows us to develop a compromise fit for the exact value of the maximum
kurtosis as a function of R that outperforms existing fits considerably. Finally, we give
a new classification of the integral form of the maximum excess kurtosis in terms of the
Jacobian elliptic integral of the first kind.
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2. Evolution equation for excess kurtosis.

Extreme (ocean) wave events are a very intriguing phenomenon and considerable effort
has been devoted to try to understand its generation mechanism. Two strands may then
be distinguished.

In the first approach researchers have studied the deterministic evolution equations for
water waves, and found interesting properties such as the modulational instability of a
Stokes wave train (Lighthill, 1965; Benjamin and Feir, 1967; Whitham, 1974), and the
connection of this instability to Fermi-Pasta-Ulam recurrence (Lake et al., 1977). The
experimental results presented by (Lake et al., 1977) show an evolution of a uniform wave
train towards a heavily modulated wave train, resulting in large amplitude individual
waves which may be regarded as an example of the generation of an extreme wave event
in periodic fashion. Also, for narrow-band wave trains a number of special solutions have
been found, e.g. the Peregrine soliton, Akhmediev breathers and cnoidal waves whose
shape seems to be related to observed extreme events. In the limit of a narrow-band
wave train the envelope of the wave train satisfies the so-called NLS equation (Zakharov,
1968).

The second approach is concerned with a statistical description of the sea state, be-
cause in practice information about the phase information of the waves is not available.
This is a common approach in operational wave forecasting. Starting point are the de-
terministic evolution equations and using appropriate assumptions such as the Random
Phase Approximation an evolution equation for the average wave spectrum is derived,
and also information on the deviation from Gaussian statistics is obtained which is vital
to make statements on the probability of extreme events. We will concentrate on the sta-
tistical approach, but we will first briefly discuss the deterministic evolutions equations
and some of its properties.

For ocean waves a key variable is the surface elevation η(x, t) which is obtained by
means of the Fourier transform of the action variable a(k, t), i.e.

η =

∫ ∞

−∞
dk

(

ω

2g

)1/2

[a(k) + a∗(−k)] eik·x, (2.1)

where coordinates have been chosen in such a way that the undisturbed surface of the
fluid coincides with the x-y plane, k is the wavenumber vector, k its absolute value, and
ω(k) denotes the dispersion relation which, restricting ourselves to the case of deep-water
waves, reads ω2 = gk, with g acceleration of gravity.

For potential flow, Zakharov (1968) has shown that ocean waves are a Hamiltonian sys-
tem and a systematic small amplitude expansion gives a deterministic evolution equation
for the action variable a,

∂a1
∂t

+ iω1a1 = −i

∫

dk2,3,4T1,2,3,4a
∗
2a3a4δ1+2−3−4, (2.2)

which is called the Zakharov equation. Here, a simplified notation has been adopted, e.g.
a1 = a(k1), dk2,3,4 = dk2dk3dk4, δ1+2−3−4 = δ(k1 + k2 − k3 − k4), etc. Furthermore,
the interaction coefficient T1,2,3,4 is given by Krasitskii (1994) and enjoys a number of
symmetry conditions of which the most important one is T1,2,3,4 = T3,4,1,2 because this
reflects the property that surface gravity waves are a Hamiltonian system. Finally, as
reflected by the Dirac δ-function, only those quartets give rise to change that satisfy the
resonance condition k1 + k2 = k3 + k4.

The properties of the Zakharov equation have been studied in great detail by, for
example, Crawford et al. (1981) [for an overview see Yuen and Lake (1982)]. Thus the
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nonlinear dispersion relation, first obtained by Stokes (1847), follows from (2.2), and
also the instability of a weakly nonlinear, uniform wave train (Benjamin & Feir (1967))
is described well by the Zakharov equation; the results on growth rates, for example,
are qualitatively in good agreement with the results of Longuet-Higgins (1978) who
numerically solved the exact potential flow equations.

In this paper, we will concentrate on the narrow-band approximation to the Zakharov
equation, because the main impact of the Benjamin-Feir instability is thought to be near
the spectral peak. This approximate evolution equation is obtained by means of a Taylor
expansion of angular frequency ω and the interaction coefficient T around the carrier
wave number k0 (Zakharov, 1968). The NLS equation is then obtained by using only
the lowest approximation to the interaction coefficient T , given by T0 = k30, and angular
frequency ω is expanded to second order in the modulation wavenumber p = k − k0.
After an inverse Fourier transform to return to ordinary space one finds for deep water
waves in two spatial dimensions

i

(

∂

∂t
+ vg

∂

∂x

)

ρ+ 1
2

(

∂2ω

∂k2x

∂2

∂x2
+

∂2ω

∂k2y

∂2

∂y2

)

ρ− 1
2c0T0|ρ|2ρ = 0, (2.3)

which is the evolution equation for the envelope ρ of a wave train with carrier wave
number k = (k0, 0) and phase speed c0 = ω0/k0. The relation of the surface elevation
η(x, y, t) to the envelope ρ(x, y, t) is given by η = (ρ/2) exp(i(k0x − ω0t)) + c.c. The
group velocity is given by the first derivative of angular frequency, i.e. vg = ∂ω/∂kx
evaluated at the carrier wavenumber. The second derivatives of angular frequency are
given by ∂2ω/∂k2x = −ω0/4k

2
0 while ∂2ω/∂k2y = ω0/2k

2
0 , hence for ocean waves the signs

of the two dispersive term are opposite. This makes the equation hyperbolic in the spatial
derivatives rather than elliptic as it happens to be the case for other physical systems
such as in nonlinear optics or for gravity-capillary waves when surface tension becomes
important. The implication of this difference will be seen in what follows and is the main
subject of this paper.

For completeness we briefly discuss results of the stability of a plane wave solution. In
one spatial dimension, moving in a frame with the group velocity vg, it is seen that there
are only two parameters in the problem, namely the coefficient in front of the second
spatial derivative ∂2ω/∂k2x and the strength of the nonlinear term c0T0/2. A necessary
condition for modulational instability of a plane wave is then given by (see Whitham,
1974)

T0
∂2ω

∂k2x
< 0 (2.4)

Eq. (2.4) shows an important result for nonlinear wave trains as there is only modula-
tional instability provided that linear dispersion and nonlinearity counteract each other.
When there is a balance between nonlinearity and linear dispersion, solutions of perma-
nent shape are possible, e.g. envelope solitary waves for the case of vanishing boundary
conditions. These solutions play an important role in the large-time behaviour of the ex-
act solution to the one-dimensional NLS equation (Zakharov and Shabat, 1972). In the
case of two-spatial dimensions, there is also instability of a plane wave, and a complete
discussion of this case is given by Crawford et al. (1981). However, qualitative agreement
of the stability results with the results from the Zakharov equation are not as favourable
as in the one-dimensional case. For example, according to the two-dimensional version
of the Zakharov equation the instability region is of finite extent, while according to the
NLS equation the instability region extends to infinity in modulation wavenumber space
so that energy leakage to high-modulation wave numbers is possible. In addition, since



Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves 5

the work of Zakharov and Rubenchik (1974) it is known that envelope solitary waves and
cnoidal waves (Yuen and Lake, 1982) are unstable to transverse perturbations so it is un-
likely that in two-dimensions these entities play an important role in the representation
of a wave field.

The main advantage of the use of the NLS equation is that many properties of this
equation are known and that it can be solved numerically in an efficient way, and it
illustrates some interesting aspects of extreme wave generation. The draw-back, however,
is that it overestimates the growth rates of the Benjamin-Feir instability (Crawford et
al., 1981), gives in two dimension rise to energy leakage towards the small scales and
the nonlinear energy transfer is symmetrical with respect to the carrier wavenumber
(Janssen, 2003).

2.1. Kinetic equation.

In the field of ocean-wave forecasting one tries to predict a number of key properties
of the sea state in a domain which is much larger then the typical wavelength of the
sea state in a point of interest. The domain may be as large as the whole globe. Ideally
one would like to predict the surface elevation η(x, t) but the prediction of the phase of
individual waves is a hopeless venture, because a) there are no observations of the initial
phases of the waves while b) long-time integrations of the Zakharov equation exhibit
features of chaotic behaviour (Annenkov et al., 2001), i.e. the phases have a sensitive
dependence on the initial conditions and are therefore in practice not predictable. This is
the main reason that in ocean wave forecasting one tries to predict the two-dimensional
wave variance spectrum F (k,x, t) which is a function of the wavenumber vector k and
a slowly varying function of the spatial coordinates x and time t. The wave spectrum
represents the ensemble average of the wave variance as function of wavenumber and the
main challenge now is whether it is possible to incorporate aspects of the deviations from
the ensemble mean sea state so that statements on the probability of extreme events can
be made.

It turns out that this is possible by following the statistical approach to nonlinear
interactions which was studied extensively in the 1960’s and 1970’s and the key develop-
ments have been described by Hasselman (1962) and Davidson (1972). The application
of this approach to water waves for slowly varying spectra is extensively discussed in
Janssen (2003), and in Chapter 4 of Janssen (2004). For a similar approach in nonlinear
optics see Suret et al. (2011). Annenkov and Shrira (2006) have extended this approach
by including effects of rapid variations in the wave spectrum, but we will not need to use
their result because we concentrate on the statistical properties of a stationary spectrum.
Because the phase of the waves is not predictable, one can hope at best to predict

quantities that remove the phase dependence as much as possible. An example is the
second moment 〈a1a∗2〉, where the angle brackets denote an ensemble average. Assuming
a zero mean value of the amplitude a1, i.e. 〈a1〉 = 0 one can obtain the rate of change in
time of the second moment from the Zakharov equation. However, because of nonlinearity,
the evolution of the second moment is determined by the fourth moment and so on,
resulting in an infinite hierarchy of equations (see e.g. Davidson, 1972). A meaningful
closure of this hierarchy of equations is obtained by making two assumptions, namely a)
that the ensemble of waves is spatially homogeneous and stationary, hence the second
moment satisfies

〈a1a∗2〉 = N1δ(k1 − k2) (2.5)

whereN1 is the spectral action density, and b)the probability distribution for the complex
amplitude of the waves a1 is close to a Gaussian (Random Phase Approximation), which
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implicitly implies that the ocean waves are weakly nonlinear. It also has implications for
the wave spectrum, which should be sufficiently broad. Using these assumptions one may
determine then the rate of change of the action density owing to the four-wave interactions
and also the rate of change of the fourth moment, so that one finds an expression for a
measure for the deviations from the Gaussian distribution, namely excess kurtosis (cf.
Janssen, 2003, 2004). Assuming that the action density varies slowly in time the evolution
equation for the action density becomes

∂

∂t
N1 = 4

∫

dk2,3,4|T1,2,3,4|2δ1+2−3−4Gi(∆ω, t) [N3N4(N1 +N2)−N1N2(N3 +N4)] ,

(2.6)

where ∆ω = ω1 + ω2 − ω3 − ω4 measures the distance to the resonant surface, which
is given by the resonance condition ∆ω = 0 and k1 + k2 = k3 + k4. A key role in this
problem is played by the complex resonance function G defined as

G(∆ω, t) =
1− exp(−i∆ωt)

∆ω
(2.7)

because the real part will determine the deviations from Gaussian statistics while the
imaginary part determines the rate of change of the action density. Thus, Gi = Im(G) is
given by

Gi(∆ω, t) =
sin(∆ωt)

∆ω
(2.8)

which is time dependent and selects the quartets that contribute to the rate of change
of the action spectrum. It is stressed that the action density changes due to nonresonant
and resonant transfer. This follows from two limits of Gi. For small times we have

Gi(∆ω, t) ≈ t (2.9)

while for large times we have

lim
t→∞

Gi(∆ω, t) = πδ(∆ω). (2.10)

Hence, according to Eq.(2.6), for short times the evolution of the action density N is
caused by both resonant and nonresonant four-wave interactions, while for large times,
when the resonance function evolves towards a δ-function, only resonant interactions
contribute to spectral change. Note, that in the standard treatment of resonant wave
wave interactions (cf., for example Hasselmann (1962) and Davidson (1972)) it is argued
that the resonance function Gi(∆ω, t) may be replaced by its time-asymptotic value
(Eq.(2.10)), because the action density spectrum is assumed to be a slowly varying func-
tion of time. However, the time required for the resonance function to evolve towards a
delta function may be so large that in the mean time considerable changes in the statis-
tics of ocean waves have occurred. For this reason the full expression for the resonance
function is kept.

At the same time it is emphasized that non-resonant interactions typically occur on a
much shorter time scale than the resonant interactions. With ǫ a typical wave steepness
and ω0 a typical angular frequency of the wave field, one finds from the kinetic equation
(2.6) that for non-resonant interactions, corresponding to the short time limit (2.9),
τNL = O(1/ǫ2ω0), while for resonant interactions τNL = O(1/ǫ4ω0). Therefore, since the
nonresonant interactions occur on such a short time scale they determine the transient
behaviour of action density and wave statistics.

Connected to this, it is remarked that the Random Phase Approximation has implica-
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tions for spectral shape. In order for it to be valid the autocorrelation time τac = 1/σω

(here σω is the width of the frequency spectrum) should be much shorter then the nonlin-
ear evolution time scale of the non-resonant interactions τNL = 1/ǫ2ω0. As a consequence
one finds that σω/ω0 >> ǫ2 hence wave spectra should be sufficiently broad.

It is also important to note the following difference between the 1D and the 2D ki-
netic equation. In one dimension only non-resonant interactions give rise to nonlinear
transfer (Dyachenko and Zakharov, 1994). Now, the resonance function Gi is becoming
progressively narrower in the course of time to such extent that for large times only
resonant wave-wave interactions are selected. In that event in 1D there is no change of
the wave spectrum possible anymore so that for large times a steady state is achieved.
And, according to the numerical simulations and statistical theory also excess kurtosis
evolves towards a finite value. In sharp contrast, for the case of two-dimensional propa-
gation, resonant wave-wave interactions do contribute to spectral change, and no steady
state solution is achieved. It is therefore of interest to study the time evolution of excess
kurtosis in the two-dimensional case.

Finally, it is remarked that the spectral action density N is equivalent to a number
density because ωN/g is the spectral energy density, while kN/g is the spectral mo-
mentum density. The kinetic equation (2.6) admits just as the deterministic Zakharov
equation, conservation of total action, wave momentum and energy. In wave forecasting
the key parameter of interest is, however, not the spectral action density, but it is the
wave variance spectrum F (k) (for a thorough discussion of this see Janssen (2004), which
also quotes a number of historical references). It is defined as

F (k) =
ωN(k)

g
, (2.11)

and it is normalized in such a way that the integral of F over wavenumber space equals
the variance 〈η2〉 of the sea surface. Alternatively, one uses the 2-dimensional frequency-
directional spectrum. Using the wavenumber spectrum F it is defined as

E(ω, θ)dωdθ = F (k)dk, (2.12)

where the direction θ is implicitly defined through the wave vector k : kx = k cos θ, ky =
k sin θ.

2.2. Deviations from Normality.

In the past most attention has been devoted to understanding the evolution of the wave
spectrum caused by four wave interactions. However, if there is interest in extreme events
it may also be relevant to obtain information regarding the deviations from the Gaussian
distribution as caused by the weakly nonlinear four-wave interactions. Because of the
symmetries of the Zakharov equation, the first moment of interest is then the fourth
moment and the related excess kurtosis C4, defined as

C4 =
〈η4〉
3〈η2〉2 − 1, (2.13)

with η the surface elevation. It turns out that excess kurtosis is an important measure
for the probability of extreme sea states. Since the fourth moment is known it is then
straightforward to determine excess kurtosis with the result (Janssen, 2003)

C4 =
4

g2〈η2〉

∫

dk1,2,3,4T1,2,3,4δ1+2−3−4 (ω1ω2ω3ω4)
1

2 ×Gr(∆ω, t)N1N2N3, (2.14)
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with Gr the real part of the resonance function G, or

Gr(∆ω, t) =
1− cos(∆ωt)

∆ω
. (2.15)

Note that for large times Gr → P/∆ω (with P denoting the principle value) and there-
fore, unlike the evolution of the action density, the kurtosis does not involve a Dirac
δ-function. Therefore the kurtosis is determined by both the resonant and nonresonant
interactions.

It is instructive to apply Eq. (2.14) to the case of a narrow-band wave spectrum in
one dimension, because this allows to make a connection with the necessary condition
for instability, discussed in the previous Section (see Eq. (2.6)). Hence, performing the
usual Taylor expansion around the carrier wave number k0 to lowest significant order,
one finds for large times (Janssen, 2003)

C4 =
8ω2

0

g2〈η2〉
T0

ω′′
0

∫

dp1,2,3,4
δ1+2−3−4

p21 + p22 − p23 − p24
N1N2N3, (2.16)

where p = k − k0 is the wavenumber with respect to the carrier and ω′′
0 is the second

derivative of angular frequency with respect to wavenumber. It is seen that the sign of the
kurtosis is determined by the ratio T0/ω

′′
0 , which is the same parameter that determines

whether a wave train is stable or not to sideband perturbations. Remark that numerically
the integral is found to be negative, at least for bell-shaped spectra. Hence, from Eq.(2.16)
it is immediately evident that for an unstable wave system which has negative T0/ω

′′
0

the kurtosis will be positive and thus will result in an increased probability of extreme
events, because of the presence of heavy tails. On the other hand, for a stable wave system
a reduction in the probability of extreme events is expected, because excess kurtosis is
negative.

These findings have been confirmed by means of numerical simulations of an ensemble
of waves of the one-dimensional NLS equation for the focusing case (positive T0) and
the defocussing case (negative T0), where the inital probability distribution function is a
Gaussian (Janssen, 2003). Observational and further numerical evidence of the generation
of a heavy tail in the probability distribution was found for ocean waves by Onorato et
al. (2004) and in nonlinear optics by Walczak et al. (2015) and by Suret et al. (2016). In
fact, a quantitative experimental comparison between hydrodynamics and optics which
focusses on the emergence of heavy tails has been recently presented by Koussaifi et al.
(2018). Evidence for a reduced tail in the probability distribution for the defocusing NLS
equation has been found by Randoux et al. (2014).
The initial conditions in these experiments assume a finite bandwidth spectrum, and

give rise in stationary conditions to significant deviations from Normality. Agafonstev
and Zakharov (2015) have reached a different conclusion when as initial condition a
plane wave is chosen, which is a stationary solution of the NLS equation. For this reason
they perturbed the plane wave with a small amount of random noise, so that the initial
wave spectrum is almost a Dirac-delta function, hence very narrow. It turns out that
the stationary statistics for large time become Gaussian. This is quite a surprise because
the numerical results show that the system is fairly nonlinear as the nonlinear part of
the Hamiltonian is of the same order of magnitude as the linear part. It remains an
open question at the moment why there is such an apparent sensitive dependence on the
initial condition. Note that in the context of the present statistical approach this question
cannot be answered because the autocorrelation scales of the initial condition used by
Agafonstev and Zakharov (2015) are very large and most likely violate the condition that
the spectrum should be sufficiently broad.
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It is also possible to obtain the narrow-band approximation for the case of two-
dimensional propagation. This derivation is, however, quite involved and details may
be found in Janssen and Bidlot (2009) which are summarized in Mori et al. (2011) and
in Fedele (2015). As already mentioned, wave forecasting is about predicting the angu-
lar frequency, directional spectrum. For this reason, the two-dimensional, narrow-band
version of the excess kurtosis is expressed in terms of E, defined in Eq. (2.12). Excess
kurtosis is then given as function of dimensionless short-crestedness R and dimensionless
time τ in terms of a six-dimensional integral

C4 = J(R, τ)BFI2, (2.17)

where the coefficient J(R, τ) has a cubic dependence on the wave spectrum E, i.e.,

J(R, τ) = 2

∫

dν1,2,3dφ1,2,3Ê1Ê2Ê3Gr(∆ω, τ). (2.18)

Here, the wave spectrum has been normalized with the wave variance, i.e. Ê1(ν1, φ1) =
E/〈η2〉.

Note that the narrow-band approximation is basically an expansion of the interaction
coefficients and the dispersion relation ω = ω(k) around the peak angular frequency
ω0 = ω(k0) and dominant wave direction θ0 of the two-dimensional frequency spectrum,
having a frequency width δω and a directional width δθ. Here, the dimensionless frequency
ν and the scaled direction φ are defined through

ω = ω0(1 + δων), θ = θ0 + δθφ,

Furthermore,

τ = δ2ωω0t

is dimensionless time, and

∆ω = (ν3 − ν1)(ν3 − ν2)−R(φ3 − φ1)(φ3 − φ2)

is the frequency mismatch, where short-crestedness R, defined as

R =
1

2
δ2θ/δ

2
ω,

measures the importance of directional aspects of the wave spectrum with respect to the
frequency aspects. In particular, for vanishing R, corresponding to the case of infinitely
long crests, the envelope wave dynamics is determined by the balance between nonlin-
earity and the linear dispersion of the waves, while for finite R such a balance does not

exist. Finally, BFI is the Benjamin-Feir Index given by BFI = ǫ
√
2/δω with ǫ = k0m

1/2
0

the wave steepness which is the product of the peak wave number k0 and the variance of
the surface elevation m0.

Not much progress has been made with this general expression for excess kurtosis for
narrow-band waves. The only general result found thus far assumes that the spectrum has
the same form in frequency and direction, i.e., E(ν, φ) = E(φ, ν). Under this condition it
can be shown by means of interchanging integration variables that the following relation
holds for C4:

C4(R, τ) = − 1

R
C4(

1

R
,Rτ). (2.19)

This is a straightforward extension of a result found in Janssen and Bidlot (2009), who
obtained a relation for infinite time τ . This is a powerful relation because once one knows
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C4 for R < 1, Eq. (2.19) immediately gives the kurtosis for R > 1. Thus, in the remainder
of this paper we will restrict our attention to the range 0 < R < 1. From this relation it
is also clear that R = 1 plays a special role. Substituting R = 1 into (2.19) one finds at
once that C4 vanishes for all time,

C4(1, τ) = 0.

It turns out that R = 1 is the demarcation line between nonlinear focusing (for R < 1)
and nonlinear defocusing for R > 1.

Note that Eqns. (2.17) and (2.18) give the evolution in time of the excess kurtosis
subject to the initial condition that kurtosis vanishes, i.e., that initially the pdf of surface
elevation is normally distributed. Therefore, although initially the ocean waves follow the
normal law, the nonlinear interactions force the system out of the normal state, and the
question is of interest how far the system is forced out of the normal state and how long
this condition lasts. In addition, it will turn out that the answer to this question depends
in a sensitive manner on the role of the directional distribution, i.e. on the value of the
parameter R. For finite R it will be found that for large times the probability distribution
evolves towards a Gaussian. The exception is the limit of vanishing R, corresponding to
the case of the one-dimensional NLS equation. This equation is integrable, because it can
be solved by means of the Inverse Scattering Transform, its kinetic equation only allows
nonresonant interactions and for large times excess kurtosis is found to evolve towards a
non-zero value.

The first part of this question, regarding how far the system is forced out of the
normal state, has been extensively studied in the laboratory by Onorato et al. (2009)
who recorded the maximum value of excess kurtosis as function of the directional width
of the spectrum. Additional information on the dependence of excess kurtosis on the
directional width follows from Mori et al. (2011) who performed numerical simulations
for an ensemble of waves using the two-dimensional NLS equation. Time evolution and
the maximum of excess kurtosis were studied in some detail.

In order to further analyze this complicated problem, consider the special case of a
Gaussian spectrum, which is symmetrical with respect to the origin,

Ê1 =
1

2π
e−

1

2
(ν2

1
+φ2

1
), (2.20)

and J(R, τ) becomes

J(R, τ) =
2

(2π)3

∫ ∞

−∞
dν1,2,3dφ1,2,3e

− 1

2
(ν2

1
+φ2

1
+ν2

2
+φ2

2
+ν2

3
+φ2

3
)Gr(∆ω, τ). (2.21)

The time behaviour of excess kurtosis is now determined by Eqns. (2.17) and (2.21).
Numerical evaluation of the integral in Eq. (2.21) is possible for relatively short times,
but convergence problems, caused by the rapidly varying resonance function Gr, are
evident for large times. Therefore, an analytical approach was clearly desirable. The first
author realized that, based on the work of of Fedele et al. (2010), this type of integral may
perhaps be evaluated for arbitrary time, and he requested Francesco Fedele to investigate
this possibility. This was indeed feasible (see Fedele, 2015), and he was able to express the
evolution in time of the excess kurtosis in terms of a complex one-dimensional integral.
The main result found was that for 0 < R < 1 the function J will reach a maximum at
τmax = 1/

√
3R after which it decays for large times to zero. For R > 1 the function will

reach a minimum before it decays to zero.

In this paper, we show by analytical means some further interesting properties of the
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analytical result. But, first a concise derivation of Fedele’s elegant integral expression for
the evolution in time of the excess kurtosis is given.

3. Analytical solution.

Before we start with the derivation, it should be noted that the expression (2.21) for J
can still be simplified because the form of ∆ω depends on the difference variables ν3−ν1,
ν3 − ν2, φ3 −φ1, and φ3 −φ2 only. Therefore introduce in (2.21) new variables according
to

x1 =
ν1 − ν3√

3
, x2 =

ν2 − ν3√
3

, ν3,

x3 =
φ1 − φ3√

3
, x4 =

φ2 − φ3√
3

, φ3,

and the integration over the variables ν3 and φ3 can be performed immediately. The
eventual result is

J(R, τ) =
6

(2π)2

∫ ∞

−∞
dx1,2,3,4 e−(x2

1
+x2

2
−x1x2)−(x2

3
+x2

4
−x3x4)Gr(∆ω, τ), (3.1)

and the angular frequency difference assumes the simple form ∆ω = 3[x1x2 − Rx3x4].
Hence, this involves only a 4-dimensional integral which becomes more amenable to
numerical integration. The result of this will be shown in Fig. 1 which will be compared
with Fedele’s result.

Although (3.1) looks simpler, it still involves a singularity at ∆ω = 0. Now, Fedele et
al. (2010) suggest that this singularity can be removed by differentiating J with respect
to time, and afterwards the final result will be obtained by means of an integration in
time. Indeed, with c.c. shorthand for complex conjugate, one finds

∂J(R, τ)

∂τ
= −i

3

(2π)2

∫ ∞

−∞
dx1,2,3,4 e−(x2

1
+x2

2
−x1x2)−(x2

3
+x2

4
−x3x4)+i∆ωτ + c.c. (3.2)

These integrals have the form of Gaussian integrals, which can be integrated immediately
as

∫

dx e−x
TAx =

√

πn

Det(A)
(3.3)

where n is the size of the square matrix A. In the present case things are really straight-
forward, as in (3.3) there is no coupling between the pairs (x1, x2) and (x3, x4) so only the
determinants of 2× 2-matrices, called B and C, have to be obtained. Here the relevant
matrix elements are

B11 = 1, B12 = −(1 + 3iτ)/2,

B21 = −(1 + 3iτ)/2, B22 = 1,

while

C11 = 1, C12 = −(1− 3iRτ)/2,

C21 = −(1− 3iRτ)/2, C22 = 1.

The corresponding determinants then become Det(B) = (1−(1+3iτ)2/4) and Det(C) =
(1− (1− 3iRτ)2/4). Combining all this, the eventual result for the time derivative of J
is

∂J(R, τ)

∂τ
=

−i

{(1− 2iτ + 3τ2)(1 + 2iRτ + 3R2τ2)}1/2 + c.c., (3.4)
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Figure 1. Evolution of normalized kurtosis versus time for different values of R. Results using
the expensive brute force method are shown as open circles.

so that

J(R, τ) = −i

∫ τ

0

dz

{(1− 2iz + 3z2)(1 + 2iRz + 3R2z2)}1/2 + c.c. (3.5)

Here, z is a complex variable, z = x + iy, but for the moment it is assumed that the
integration is along the real axis so that z = x is real. For the purposes of numerical
evaluation a bit more work is required since (3.5) is a complex integral and it involves
branch points. The factor 1−2iz+3z2 gives two zeroes, namely at z = i and at z = −i/3
while similarly the factor 1 + 2iRz + 3R2z2 has zeroes at Rz = i/3 and at Rz = −i.
Thus, (3.5) becomes

J(R, τ) = − 1
3 i

∫ τ

0

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2
+ c.c. (3.6)

It is now straightforward to do a numerical evaluation using for real z

(z − ia)1/2 = {z2 + a2}1/4eiθ/2, θ = arctan(−a/z), (3.7)

so that

J(R, τ) = − 2
3

∫ τ

0

dz
sin 1

2 (θ1 + θ2 + θ3 + θ4)

{(z2 + 1)(z2 + 1
9 )((Rz)2 + 1)((Rz)2 + 1

9 )}1/4
, (3.8)

with θ1 = − arctan(1/z), θ2 = arctan(1/3z), θ3 = arctan(1/Rz), and θ4 = − arctan(1/3Rz).
By means of arctan(x) + arctan(y) = arctan( x+y

1−xy ), xy < 1, the angles can be ’added’ so
that

θ1 + θ2 + θ3 + θ4 = arctan{ 2z(R− 1)(1− 3Rz2)

9R2z4 + z2(3 + 3R2 + 4R) + 1
}. (3.9)

It should be clear that the sine function in (3.8) plays an important role since the
denominator in the integrand is positive. Thus from (3.9), we see immediately that for
R = 1 the sum of the angles always vanishes, hence there is no time evolution in that
case. Also, the function J(R, τ) increases strictly for 0 < τ < 1/(3R)1/2 and decreases
strictly for τ > 1/(3R)1/2. Therefore, J(R, τ) has a unique maximum at τ = 1/(3R)1/2.
Likewise, for R > 1 it can be shown that J(R, τ) has a unique minimum.
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Figure 2. Comparison of numerical maximum value of normalized integral J/NJ with the fit
given in Eq. (3.10) and the compromise fit (4.13) based on (4.10).

Equations (3.8) and (3.9) were implemented on the computer, and runs were made
for different values of R. It is remarked that Mori and Janssen (2006) have studied the
special case of the 1D NLS equation, i.e. R = 0 and it was found that for BFI = 1
kurtosis evolves towards the constant NJ = π/3

√
3. The evolution of J = C4/BFI2,

normalized with the factor NJ , is shown in Fig. 1. This Figure is essentially from Fedele
(2015) and we have reproduced it for the reader’s convenience. In perfect agreement with
the results by Fedele (2015), it shows that except for R = 0, J has a maximum at finite
time = 1/(3R)1/2 after which J decays to zero for large times.

The present analytical result was validated by means of an expensive brute-force
method. The integral in Eq. (3.1) was discretized in each direction on a linear grid
with a relative resolution of 0.1 and a range of ±2.5. The results are given in Fig. 1 by
means of the circles and a good agreement with (3.8)-(3.9) is noted. However, the term
involving cos∆ωτ/∆ω is rapidly varying for large time τ and therefore the brute-force
method fails, giving erratic results, beyond τ ∼ 15− 20.

Finally, the dependence of the maximum value of J over τ > 0, denoted by Jmax, on
the relative width parameter R was determined. This is shown in Fig. 2. A reasonable
fit was found using

Jmax

NJ
=

R0(1−R)

R+R0
, NJ =

π

3
√
3
, (3.10)

with R0 = 7.44
√
3/4π3, which was found by trial and error. Observe that the right-hand

side of (3.10) equals 1 at R = 0, while it vanishes for R = 1. This fit agrees with what
is given in Fedele (2015), except that there is a misprint in the definition of R0 which
seems to miss a factor (2π)2. In the sequel, we shall find several analytical results for
Jmax that are used to develop the compromise fit, also shown in Fig. 2.

4. Some analytical results on J(R, τ).

4.1. Proof that for R > 0 the integral J vanishes for τ → ∞.

It is important to prove that for large τ the integral J vanishes, J(R, τ = ∞) = 0. At
least two proofs of this are known to us. The argument used in Fedele (2015), p. 28, to
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prove this gives that limτ∞ J(R, τ) indeed exists, but it is not obvious that this limit
equals 0 indeed; also see the discussion on this matter below.

The first proof starts from Eq. (3.6) which is regarded for now as an integral along the
real axis. We have seen that the integral J has a maximum at τ = 1/

√
3R and we regard

this as a special point along the integration path. Therefore, we write

J(R, τ = ∞) = 2
3 Im[I1 + I2], (4.1)

where

I1 =

∫ 1/
√
3R

0

dz

N(z)
, I2 =

∫ ∞

1/
√
3R

dz

N(z)
, (4.2)

with N(z) = (z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2. The next step is to introduce
a transformation of variables in the second integral in such a way that the integration
range becomes identical to the integration range of the first integral. The transformation

z =
1

3Rw
, (4.3)

with Jacobian = −1/3Rw2, hence dz = −dw/3Rw2, indeed changes the integration
range from [1/

√
3R,∞] to [0, 1/

√
3R]. Now, the important point to note is that under

this transformation the function N(z) is invariant in the sense that, apart from the
Jacobian of the transformation, it equals the complex conjugate of N(w), i.e.,

N(z) =
1

3Rw2
N∗(w) (4.4)

Therefore, using the transformation (4.3) in the integral I2, we find that I2 = I∗1 so that

J(R, τ = ∞) = 2
3 Im[I1 + I∗1 ] = 0, (4.5)

i.e., the integral J vanishes for large times. The restriction to this result is that it only
holds for finite R since for vanishing R there is no maximum of J for finite time.

It is emphasized that the vanishing of the integral J , and hence kurtosis for large time,
is not a property for arbitrary spectral shape. We think that this property is closely
connected to the ’invariance’ property (4.4) of the denominator N(z) which in the end
is determined by our choice of a Gaussian spectrum (2.20). Numerical computations for
spectra that are not symmetrical with respect the peak frequency do give a non-zero
value of kurtosis for large time.

The second proof is rather involved, but in the end it utilizes the same invariance
property for N(z) to show the vanishing of J . This proof regards the integral in (3.6)
as an integral in the complex domain, and one applies the theorem that if there are no
singularities inside the domain of a closed contour then the resulting integral vanishes.
The contour was chosen to be 1) 0 < x < ∞, 2) the circle with large radius ρ and phase θ
with 0 < θ < π/2, and then back to the origin from y = +i∞ to y = 0. Now, because of
the branch points in (3.6), branch cuts need to be introduced, and basically this is done
along the imaginary axis from the largest positive branch point to the smallest negative
branch point. The phases of all relevant functions are then well defined. In addition,
for R > 0 one can show that the integral along the circle with large radius vanishes as
ρ → ∞, and therefore the integral along the real axis can be expressed in terms of the
integral along the imaginary axis. The advantage is, namely, that the integral along the
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Figure 3. Comparison of exact normalized integral J/NJ with the asymptotic expansion (4.8)
for R = 0.5, the red line showing the first term and the green line showing the sum of the two
terms in (4.8).

imaginary axis is much simpler. In fact, one finds for R < 1/3

J(R,∞) = 1
3

{

∫ 1

0

dy

N
−
∫ ∞

1/3R

dy

N

}

, (4.6)

where N = {|y−1||y+ 1
3 ||Ry+1||Ry− 1

3 |}1/2. For R > 1
3 a similar result is found. In the

final step it can be shown that the two integrals cancel each other, therefore J(τ → ∞)
vanishes. The easiest way to show this is by means of a transformation of the integration
variable in the second integral, i.e., y = 1/3Rx, which is identical to the transformation
(4.3)! For completeness details of this calculation are given in Appendix A.

The contour integration approach, as employed in the second proof, can be used to
establish further analytic results. This is done in all detail in Appendix C, where the
behaviour of maxτ J(R, τ) near R = 0 is obtained. The proof technique in Appendix
C can, furthermore, be used to obtain an expression of J(R, 1/

√
3R) in terms of the

incomplete elliptic integral of the first kind.

4.2. Decay of J(R, τ) as τ → ∞.

Having established that the integral J of Eq. (3.6) vanishes for large dimensionless time
τ , we now study how J approaches this limit. Starting from (3.6) we have

J(R, τ) = 2
3 Im

∫ τ

0

dz

N(z)
= − 2

3 Im

∫ ∞

τ

dz

N(z)
, (4.7)

where again N(z) = (z−i)1/2(z+ 1
3 i)

1/2(Rz+i)1/2(Rz− 1
3 i)

1/2. The large time behaviour
of J is now found by expanding the integrand of the second integral of (4.7) into powers of
1/z and integrating the expansion. The details of this calculation are given in Appendix
B, and the final result is

J(R, τ) =
1

R

( 1

R
− 1

)[ 1

9τ2
−
( 7

R2
+

4

R
+ 7

) 1

162τ4
+ ...

]

, (4.8)

an expansion which is valid for τ > 1/R, as is verified in Fig. 3, which compares the
exact result for R = 0.5 with the above asymptotic expansion. The first term in (4.8)
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Figure 4. Comparison of numerical maximum value of normalized integral J/NJ with the
first and second order approximation (4.10). Also, the expansion (4.12) is shown.

agrees with what can be obtained from Fedele (2015), (3.5). The second order term has
a surprisingly large impact for moderate values of dimensionless time τ .

4.3. Behaviour of maxτ J(R, τ) as R ↓ 0.

It is important to have an estimate of the severity of the sea state during extreme events.
Such an indicator may be provided by the maximum of the excess kurtosis as a function
of time. It is therefore of interest to get an estimate of the maximum of the integral J ,
which occurs at time τ = 1/

√
3R. For 0 < R < 1 we have

max
τ>0

J(R, τ) = J
(

R,
1√
3R

)

, (4.9)

where J(R, τ) is given by the last expression in (4.7). The detailed analysis is given in
Appendix C. Taylor expansion around R = 0 then gives the eventual result

J
(

R,
1√
3R

)

=
π

3
√
3

(

1− 4

π

√
3R+

(2
√
3

π
+ 1

3

)

R+O(R3/2)
)

. (4.10)

The first term of this Taylor expansion agrees with what can be found from Fedele (2015),
(4.3), (4.5). In order to assess the accuracy of the approximation (4.10), we compare in
Fig. 4 the values of the first-order approximation and the second-order approximation
with the numerically computed value of J(R, 1/

√
3R), normalized with π/3

√
3. Although

the first-order approximation deviates quite quickly from the ’exact’ result, it is rewarding
to see how much the second-order term improves the agreement with ’exact’ up to values
of R = 0.4. This is surprising as the expansion in (4.10) has a radius of convergence of
only 1/3.

Here it is mentioned that once more, we use complex analysis and Cauchy’s theorem
to simplify the integral. The contour integration approach can be used to classify the
integral J(R, 1/

√
3R) in terms of the incomplete elliptic integral of the first kind that is

available in many mathematical packages. This result is also instrumental for checking
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numerical work. It can then be shown that

J(R,
1√
3R

) =











k√
R
(F (x1, k)− F (x2, k)) , 0 6 R < 1

3 ,

1√
R

(

F (x−1
1 , k−1)− F (x−1

2 , k−1)
)

, 1
3 < R 6 1,

(4.11)

where

k =
4
√
3R

3(1 +R)
, x1 = 1

2

√

3(1 +R), x2 =
(3 +

√
3R)

√

R+ 1
3 − (1−

√
3R)

√
R+ 3

√
32R

,

and, for 0 6 x < 1, 0 6 k 6 1,

F (x, k) =

∫ x

0

dt
√

(1− t2)(1− k2t2)
,

the incomplete elliptic integral of the first kind. The proof of this result is quite involved,
and we omit it. Using the Keisan Online Calculator we found perfect agreement with the
numerical results for J(R, 1/

√
3R) in Table I of Appendix C.

4.4. Behaviour of maxτ J(R, τ) as R → 1.

In Appendix D the behaviour of maxτ J(R, τ) = J(R, 1/
√
3R) is obtained as R → 1.

The result is

J(R, 1/
√
3R) = ( 12 − 1

4

√
3)

{

(1−R) + (1−R)2
}

+O((1−R)3). (4.12)

This result is derived in a straightforward manner from the expression (3.6) for J(R, τ =
1/
√
3R) by differentiation. Observe that the coefficients of (1−R) and (1−R)2 in (4.12)

are identical. The expansion (4.12), without the term O((1 − R)3), is shown in Fig. 4,
and shows good agreement with the numerical result in the range 0.6 < R < 1.

4.5. Approximating maxτ J(R, τ) on the range 0 < R < 1.

We wonder whether it would be possible to use the approximation (4.10) and (4.12) in a
compromise fit so as to get a reasonable approximation over the whole range 0 < R < 1.
Due to the highly different nature, as a function of R, of J(R, 1/

√
3R) near R = 0

and R = 1, a simple convex combination of (4.10) and (4.12) fails to give such an
approximation. Instead we propose the approximation

J
(

R,
1√
3R

)

≈ π

3
√
3

(

1− α
√
R+ β R++δR2

)

, 0 < R < 1, (4.13)

where α = 4
√
3/π and β = ( 13 + 2

√
3/π), see (4.10), and δ to be chosen such that both

sides of (4.13) agree at R = 1. This gives the condition 1 − α + β + δ = 0 from which
δ = 2

√
3/π − 4

3 = −0.2307. The compromise fit (4.13) is compared with the simple
fit (3.10) and with the exact result obtained numerically in Fig. 2. The compromise fit
achieves a maximum absolute error in (4.13) of the order 10−3, and thus outperforms fit
(3.10) by far. Furthermore, the values of the derivatives of both sides in (4.13) at R = 1
are -0.0670 and -0.0774, respectively.

We also tried a compromise fit of the form

J
(

R,
1√
3R

)

≈ π

3
√
3

(

1− α
√
R+ β R++γR3/2 + δR2

)

, 0 < R < 1, (4.14)

with α and β as in (4.13) and γ and δ such that (a) both sides of (4.14) and their
derivatives agree at R = 1, or, (b) both sides of (4.14) agree at R = 1 and R = 1/3.
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It was found that these fits do not improve the fit (4.13), with fit (a) systematically
too small and fit (b) systematically too large on a large part of the range 0 < R < 1.
The average of the fits (a) and (b) performs about as good as fit (4.13), with parameter
values γ = −0.0070, δ = −0.2237 that are remarkably close to the parameter values
γ = 0.0000, δ = −0.2307 pertaining to fit (4.13).

5. Conclusions.

In this paper we emphasize that extreme events such as freak waves are a transient
phenomenon as soon as the wave propagation is not purely unidirectional. This follows
immediately from Fig. 1 which shows the evolution of excess kurtosis versus time. A
general evolution equation for excess kurtosis was obtained by Janssen (2003) and the
Fig. 1 shows the special case of a weakly nonlinear, narrow-band wave train, the dy-
namics of which is governed by the NLS equation. The wave spectrum is chosen to be a
Gaussian which is symmetric with respect to the peak frequency. For this special case it
is straightforward to find the conditions for which extreme events are generated. Clearly,
for surface gravity waves in one dimension wave energy is focused, even for large times.
As soon as two-dimensional effects are introduced the formation of extreme events shows
transient behaviour. A maximum in kurtosis will be reached provided the wave spectra
are sufficiently narrow in direction, i.e., R < 1. For Gaussian spectra the extremum in
excess kurtosis is reached for dimensionless time τ = 1/

√
3R, after which kurtosis will

decay towards zero for large times. From operational ECMWF wave spectra one may get
insight in the order of magnitude of the dimensionless directional width R. Values of R
then range from 0.25 to 4 indicating that in the field there is a finite number of cases
where R < 1, i.e. there is nonlinear focusing of wave energy.

It is of interest to give an estimate of timescales in terms of commonly reported values
of parameters involved. However, it should be realized that the NLS equation is a poor
approximation to the case of ocean waves because their spectra are too broad for the NLS
equation to be valid. Also, Gaussian spectra are not the norm in nature. We therefore use
as an example laboratory experiments ( Onorato et al., 2009) where spectra are generated
by a programmable wave maker. With a relative frequency width δω of 0.1 and a 5 degrees
angular width, hence δθ = 0.087, one then finds that R = 0.38 so that τmax = 1/

√
3R ≈ 1.

In real terms this means that tmax = 1/δ2ωω0 = T0/2πδ
2
ω ≈ 16T0, where T0 is the peak

period. From Fig. 1 it is seen that the decay phase is two to three times longer than the
growth phase of the extreme event so that according to this example an extreme event
lasts about 50 wave periods. Translating this to the field (but note the caveats above),
taking as typical period of the waves 10 s then such an event will last about 10 min
which is much shorter than the typical duration of a storm, which lasts 6 hours or more.
Although qualitatively correct, the NLS equation is a poor approximation to the case
of ocean waves. Nevertheless, starting from computations of the complete expressions
for skewness and kurtosis using realistic ocean wave spectra it is possible, guided by the
narrow-band expressions for the wave statistics, to obtain parametrizations for skewness
and kurtosis. This is still work in progress which is reported in Janssen (2017). Based
on these parametrizations one gets time scales for extreme events which are somewhat
longer than obtained from the NLS equation, namely 30 minutes rather than 10 minutes.
However, this is still shorter than the typical duration of a storm. In addition, using
operational ECMWF wave spectra, one may get insight in the order of magnitude of the
kurtosis and it is found for some special cases, such as the Draupner event or the Andrea
storm, that exceedance probabilities for maximum wave height increase by a factor of
two to three.



Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves 19

In this paper we have given some intriguing analytic properties of the exact solution of
the simplified problem, resulting in a new, accurate parametrization of the maximum of
excess kurtosis as function of the Benjamin-Feir Index and the dimensionless directional
width R. This parametrization will be shortly implemented in ECMWF’s freak wave
warning system.

Acknowledgement The authors much appreciate the comments of the reviewers
which improved the present paper considerably.

Appendix A Alternative proof that J(R, τ = ∞) = 0 (0 < R < 1).

Consider the integral

J(R, τ) = − i

3

∫

Γ

dz

(z − i)1/2(z + i
3 )

1/2(Rz + i)1/2(Rz − i
3 )

1/2
+ c.c.,

with complex z = x + iy and Γ a conveniently defined contour in the complex z plane.
Thus far the integration contour was taken along the real axis, but as seen from (3.8)
the resulting integral is rather complicated, involving a sine function with a complicated
argument so that it is not so straightforward to take the limit for large τ . Here, we use
Cauchy’s residue theorem together with Jordan’s lemma to explore alternative ways of
evaluating the integral J.

From the form of the integrand it is evident that there are branch points in this problem
at z = i, z = −i/3, z = −i/R, and z = i/3R, and branch cuts need to be introduced
because when one loops around such a branch point jumps in the phase occur. Here, a
branch cut is introduced from −i/R to i along the imaginary axis. For real a one may
write

(z − ia)1/2 = ρ1/2eiθ/2,

with ρ =
√

x2 + (y − a)2, and θ = arctan[(y − a)/x]. In general, the integral J may
therefore be written as

J(R, τ) = − i

3R

∫

Γ

dz
e−i(θ1+θ2+θ3+θ4)/2

(ρ1ρ2ρ3ρ4)1/2
+ c.c., (A1)

where the index ’1’ corresponds to (0, 1) in the complex domain, ’2’ to (0, 1/3), ’3’ to
(0,−1/R) and ’4’ to (0, 1/3R).

Let us now apply Eq. (A1) for a particular contour Γ given by three segments: ΓR,
x = +0 → ρ, y = 0; ΓC , circle with radius ρ and θ from 0 → π/2; ΓI along the imaginary
axis from z = iρ to z = 0 to the right of the branch cut.

Since there are no singularities inside the domain bordered by Γ we have
∫

ΓR

+

∫

ΓC

+

∫

ΓI

= 0. (A2)

We have already derived the integral along the real axis in Eq. (3.8), but, as already
noted, from this expression it is hard to determine the large time behaviour of J . Let us
therefore consider the integral along the segments ΓC and ΓI .

The contour ΓC

Let us consider now the contour ΓC for large radius ρ. Then

ρ1ρ2ρ3ρ4 → ρ4,
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so that

JC → 1

3Rρ

∫ π/2

0

dθe−2iθ + c.c.,

hence if R 6= 0 then

lim
ρ→∞

JC → 0.

The contour ΓI

Consider now the contour ΓI . Two cases need to be distinguished, namely R < 1/3
and R > 1/3. Consider first R < 1/3. Then for y > 1/3R we have (with x → +0):

θ1 = π/2, θ2 = π/2, θ3 = π/2, θ4 = π/2,

while for 1 < y < 1/3R we have

θ1 = π/2, θ2 = π/2, θ3 = π/2, θ4 = −π/2,

while, finally, for 0 < y < 1 we have

θ1 = −π/2, θ2 = π/2, θ3 = π/2, θ4 = −π/2.

In other words, everytime one passes a branch point the phase of the corresponding factor
in the integrand jumps by −π. As a consequence JI becomes

JI =
1

3

[

∫ 1/3R

∞
dy

e−πi

N
+

∫ 1

1/3R

dy
e−πi/2

N
+

∫ 0

1

dy
e0

N

]

+ c.c.,

with N =
{

|y − 1||y + 1
3 ||Ry + 1||Ry − 1

3 |
}1/2

.
Now apply (A2) then, as the integral over the quarter circle vanishes, we have

∫

ΓR

= −
∫

ΓI

,

and the kurtosis becomes

J = −
∫

ΓI

+c.c.,

or, for R < 1/3,

J =
2

3

[

∫ 1

0

dy

N
−
∫ ∞

1/3R

dy

N

]

,

while in a similar fashion one finds for R > 1/3

J =
2

3

[

∫ 1/3R

0

dy

N
−
∫ ∞

1

dy

N

]

,

In the final step, it needs to be shown that the two integrals cancel each other, therefore
that J(τ → ∞) vanishes. In order to show this, consider the case R < 1/3 and define

A =

∫ ∞

1/3R

dy

N
, B =

∫ 1

0

dy

N
.
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Introduce as integration variable x = 1/3Ry then

A =
1

3R

∫ 1

0

dx

{

| 1

3R
− x|| 1

3R
+

x

3
||1
3
+ x||1

3
− x

3
|
}−1/2

,

and this equals B as is easily found after some algebra. Therefore, it has been shown that
J vanishes for τ → ∞ for R 6= 0.

The case R = 0.

The case R = 0 is an exception. First of all, the phase is then zero and the integral along
the real part can be evaluated immediately. Secondly, it turns out now that the integral
along the quarter circle does not vanish, but amounts to a value of π

√
3/3, while also

the integral along the imaginary axis gives a contribution in such a way that the sum
−ΓC − ΓI equals π/3

√
3, which is the usual result for kurtosis in the one-dimensional

case for large time.

Appendix B Decay of J(R, τ) as τ → ∞.
We have by the main result in Sec. 3 and J(R,∞) = 0 that for 0 < R < 1

J(R, τ) = 2
3 Im





τ
∫

0

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2





= − 2
3 Im





∞
∫

τ

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2



 .

(B1)

We develop the integrand in (B1) in powers of 1/z. Thus

(z − i)−1/2(z + 1
3 i)

−1/2(Rz + i)−1/2(Rz − 1
3 i)

−1/2

=
1

Rz2
((1− v)(1 + 1

3v))
−1/2((1− w)(1 + 1

3w))
−1/2 , (B2)

where we have written v = i/z, w = −i/Rz. Now

((1− u)(1 + 1
3u))

−1/2 = 1 + 1
3u+ 1

3u
2 + 7

27u
3 + ... . (B3)

Using this in (B2), we get

(z − i)−1/2(z + 1
3 i)

−1/2(Rz + i)−1/2(Rz − 1
3 i)

−1/2

=
1

Rz2
[1 + ( 13w + 1

3v) + ( 13w
2 + 1

9wv +
1
3v

2)

+ ( 7
27w

3 + 1
9w

2v + 1
9wv

2 + 7
27w

3) + ...] . (B4)

When we take the imaginary part in (B4), recalling that v = i/z, w = −i/Rz with z > 0,
only the terms wkvl with k + l odd remain, and we get

Im [(z − i)−1/2(z + 1
3 i)

−1/2(Rz + i)−1/2(Rz − 1
3 i)

−1/2]

=
1

Rz2

[

− 1

3z

( 1

R
− 1

)

+
1

27z3

( 7

R3
− 3

R2
+

3

R
− 7

)

+ ...
]

. (B5)
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Inserting (B5) into (B1) and performing the integration over z, we then obtain 4.8 where
we also have used that 7x3 − 3x2 + 3x − 7 = (x − 1)(7x2 + 4x + 7). Evidently, due to
the factor (1 + i/Rz)−1/2 in the second line of (B2) with 0 < R < 1, the validity range
of the expansion is τ > 1/R.

The ratio between the second and first term in the expansion in (4.8) gives an indication
of the relative accuracy RA of the first term as an approximation of J(R, τ). We thus
find

RA ≈
( 7

R2
+

4

R
+ 7

) 1

18τ2
. (B6)

Appendix C Behaviour of maxτ J(R, τ) as R ↓ 0.

We have for 0 < R < 1 that

max
τ>0

J(R, τ) = J
(

R,
1√
3R

)

, (C1)

where J(R, τ) is given by the second line of (B1).

We proceed as in Appendix A, where we assume that 0 < R < 1/3 so that

1 <
1√
3R

<
1

3R
. (C2)

Thus, we have by Cauchy’s theorem

J
(

R,
1√
3R

)

= 2
3 Im







i
√

3R
∫

i·∞

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2







+ 2
3 Im









1
√

3R
∫

i
√

3R

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2









=: J1 + J2 , (C3)

where the first integral is along a portion of the positive imaginary axis and the second
integral is along the quarter circle in the first quadrant with center 0 and radius 1/

√
3R.

We evaluate J1 in (C3) as in Appendix A, where we observe that there is no contribu-

tion
0
∫

1

by (C2) and that the contribution
i/
√
3R

∫

i/3R

vanishes upon taking imaginary parts.

Thus we get

J1 = 2
3

∞
∫

1/3R

dy

(y − 1)1/2(y + 1
3 )

1/2(Ry + 1)1/2(Ry − 1
3 )

1/2
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= 2
3

∞
∫

1/3

dt

(t−R)1/2(t+ 1
3R)1/2(t+ 1)1/2(t− 1

3 )
1/2

, (C4)

where we have substituted t = Ry. We expand

1

(t−R)1/2(t+ 1
3R)1/2

=
1

t
+

R

3t2
+O

(R2

t3

)

. (C5)

We evaluate, using the substitutions v = 1/t, w = 1
2 (v − 1),

∞
∫

1/3

1

t

dt

(t+ 1)1/2(t− 1
3 )

1/2
=

3
∫

0

dv
√

(1 + v)(1− 1
3v)

=
√
3

1
∫

−1/2

dw√
1− w2

= 2
3 π

√
3 , (C6)

and similarly

∞
∫

1/3

1

t2
dt

(t+ 1)1/2(t− 1
3 )

1/2
= 3 + 2

3 π
√
3 . (C7)

Inserting (C5), (C6) and (C7) into (C4), we then get

J1 = 4
9 π

√
3 + 2

9 (3 +
2
3 π

√
3)R+O(R2) . (C8)

We next consider J2 in (C3). By the substitution

z =
eiϕ√
3R

, ϕ :
π

2
→ 0 , dz =

i eiϕ√
3R

, (C9)

we get

J2 = 2
3 Im







0
∫

π/2

I(ϕ ; R) dϕ






, (C10)

where

I(ϕ ; R)

=
ieiϕ/

√
3R

(eiϕ/
√
3R− i)1/2(eiϕ/

√
3R+ 1

3 i)
1/2( 13

√
3Reiϕ + i)1/2( 13

√
3Reiϕ − 1

3 i)
1/2

.

(C11)

We have

(eiϕ/
√
3R− i)−1/2 = (3R)1/4 e−

1
2 iϕ(1− i e−iϕ

√
3R)−1/2 , (C12)

(eiϕ/
√
3R+ 1

3 i)
−1/2 = (3R)1/4 e−

1
2 iϕ(1 + 1

3 i e
−iϕ

√
3R)−1/2 , (C13)

( 13
√
3Reiϕ + i)−1/2 = i−1/2(1− 1

3 i e
iϕ

√
3R)−1/2 , (C14)
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( 13
√
3Reiϕ − 1

3 i)
−1/2 = (− 1

3 i)
−1/2(1 + i eiϕ

√
3R)−1/2 . (C15)

Inserting (C12–C15) into (C11), we get

I(ϕ ; R) =
i
√
3

|1 + i eiϕ
√
3R| |1 + 1

3 i e
−iϕ

√
3R|

, (C16)

where we have combined twice 2 factors that appear as conjugate pairs. Using (C16) in
(C10), we get

J2 = − 2
3

√
3

π/2
∫

0

dϕ

|1 + i eiϕ
√
3R| |1 + 1

3 i e
−iϕ

√
3R|

. (C17)

We next develop

|1 + i eiϕ
√
3R|−1 = (1− 2

√
3R sinϕ+ 3R)−1/2

= 1 +
√
3R sinϕ− 3

2R+ 9
2R sin2 ϕ+O(R3/2) , (C18)

and

|1 + 1
3 i e

−iϕ
√
3R|−1 = 1− 1

3

√
3R sinϕ− 1

6R+ 1
2R sin2 ϕ+O(R3/2) . (C19)

By combining (C18) and (C19), we then get

|1 + i eiϕ
√
3R|−1 |1 + 1

3 i e
−iϕ

√
3R|−1

= 1 + 2
3

√
3R sinϕ− 5

3R+ 4R sin2 ϕ+O(R3/2) . (C20)

Therefore, using (C20) in (C17), we find

J2 = − 1
3π

√
3− 4

3

√
R− 1

9π R
√
3 +O(R3/2) . (C21)

Finally, returning to (C3) and (C21), we get (4.10), i.e.

J
(

R,
1√
3R

)

=
π

3
√
3

(

1− 4

π

√
3R+

(2
√
3

π
+ 1

3

)

R+O(R3/2)
)

, (C22)

where the factor π/3
√
3 on the last line of (C22) has been taken out for normalization

purposes as in Figures 1, 2.

To assess the accuracy of the approximations following from (C22), we compare in
Table I the values of

1− 4

π

√
3R , 1− 4

π

√
3R+

(2
√
3

π
+ 1

3

)

R (C23)

for 0 6 R 6 1 to the numerically computed value of 3
√
3 J(R, 1/

√
3R)/π. It is remark-

able that the second approximation in (C23) is reasonably accurate on the whole R-range
0 < R < 1/3 to which we have restricted ourselves.
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R 1− 4

π

√
3R 1− 4

π

√
3R+

(2
√
3

π
+ 1

3

)

R 3
√
3 J

(

R,
1√
3R

)

/π (num.)

0.00 1.0000 1.0000 0.9936
0.01 0.7795 0.7938 0.7935
0.02 0.6881 0.7168 0.7162
0.03 0.6180 0.6611 0.6601
0.04 0.5589 0.6164 0.6151
0.05 0.5069 0.5787 0.5770
0.06 0.4598 0.5460 0.5440
0.07 0.4165 0.5170 0.5148
0.08 0.3762 0.4911 0.4885
0.09 0.3384 0.4676 0.4647
0.10 0.3026 0.4462 0.4429
0.15 0.1459 0.3613 0.3557
0.20 0.0138 0.3009 0.2921
0.25 -0.1027 0.2563 0.2429
0.30 -0.2079 0.2229 0.2036
0.35 -0.3047 0.1979 0.1714
0.40 -0.3948 0.1796 0.1444
0.45 -0.4794 0.1668 0.1217
0.50 -0.5594 0.1586 0.1022
0.60 -0.7082 0.1534 0.0707
0.70 -0.8451 0.1601 0.0465
0.80 -0.9725 0.1763 0.0275
0.90 -1.0921 0.2002 0.0123
1.00 -1.2053 0.2307 0.0000

Table I. Comparison of the normalized approximations in (C23) to the normalized
values (numerically) of J(R, 1/

√
3R) for 0 6 R 6 1.

Including a few more terms into the approximations does give more accuracy for small
values of R (say, R 6 0.01), but fails to do so for larger R (say, R > 0.05). This is due
to the fact that the expansion of J1 in (C5) into powers Rk has a radius of convergence
of only 1/3 so that the power series coefficients grow like 3k, This makes the accuracy of
the second approximation in (C23) even more remarkable.

Appendix D Behaviour of maxτ J(R, τ) as R → 1.

We have

J(R, τ) = 2
3 Im





τ
∫

0

dz

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2



 . (D1)

From Sec. 2 we know that maxτ>0 J(R, τ) is assumed at τ = 1/
√
3R, and that

Im
[ 1

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2

]

z=1/
√
3R

= 0 . (D2)
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From the integral result

d

dR







τ(R)
∫

0

f(R, z) dz






= τ ′(R) f(R, τ(R)) +

τ(R)
∫

0

∂f

∂R
(R, z) dz (D3)

and (D2) we get

d

dR
[max
τ>0

J(R, τ)] =
d

dR

[

J(R,
1√
3R

)]

= 2
3

1/
√
3R

∫

0

Im
[ ∂

∂R

( 1

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2

)]

dz .

(D4)

We compute

∂

∂R

[ 1

(Rz + i)1/2(Rz − 1
3 i)

1/2

]

R=1
=

∂

∂R

[ 1

(R2z2 + 2
3 iRz + 1

3 )
1/2

]

R=1

= − z2 + 1
3 iz

(z + i)3/2(z − 1
3 i)

3/2
. (D5)

Hence,

Im
[ ∂

∂R

( 1

(z − i)1/2(z + 1
3 i)

1/2(Rz + i)1/2(Rz − 1
3 i)

1/2

)]

R=1

= − Im
[ z2 + 1

3 iz

(z − i)1/2(z + 1
3 i)

1/2(z + i)3/2(z − 1
3 i)

3/2

]

=
1
3z(z

2 − 1
3 )

(z2 + 1)3/2(z2 + 1
9 )

3/2
. (D6)

Using this in (D4) for R = 1, we then get

d

dR
[max
τ>0

J(R, τ)]R=1 = 2
9

√
1/3

∫

0

z(z2 − 1
3 ) dz

(z2 + 1)3/2(z2 + 1
9 )

3/2
. (D7)

The remaining integrals can be evaluated using basic calculus, and we obtain

d

dR
[max
τ>0

J(R, τ)]R=1 = 1
4

√
3− 1

2 . (D8)

For the normalized quantity J/NJ , NJ = π
3
√
3
, we then get

d

dR

[

max
τ>0

3
√
3

π
J(R, τ)

]

=
1

π
( 94 − 3

2

√
3) = −0.110796099 , (D9)

and this matches quite well with the numerical values of J/NJ in Table I.
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A similar, but considerably more complicated, calculation shows that

d2

dR2
J(R,

1√
3R

)

∣

∣

∣

∣

R=1

= 1− 1
2

√
3, (D10)

giving the remarkable result that the second derivative is minus twice the first derivative.
As a curiosity, we mention that d3/dR3 J(R, 1/

√
3R) |R=1 = 117

64

√
3− 7

2 = −0.333594617.
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