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0. INTRODUCTION

This paper deals with Gabor representation of (generalized) functions. By
this we mean that a given function is to be expanded in a series involving
Gabor functions that are located in the points of a given lattice in the
time-frequency plane. We shall mainly consider lattices in which the area of
the elementary cells of the lattice equals 1.

In 1946, Gabor used these expansions for the simultaneous analysis of
signals in time and frequency (cf. |8]). Gabor stated that the above
mentioned expansions exist for every reasonable signal, and that the coef-
ficients in the expansion are uniquely determined by the signal. This
statement is true when interpreted carefully, and the aim of this paper is to
find out what kind of (generalized) functions are sufficiently well-behaved to
allow a development in a Gabor series. We shall also consider the question
of the uniqueness of the coefficients in the expansions, as well as questions
concerning convergence. It turns out that the uniqueness questions can be
handled with the aid of the main results of [10] (in particular 2.12 and
2.13); the questions on the existence of expansions are harder to answer, and
require special care depending on the particular function. We consider L?-
functions (1 < p < 2) in detail, and show existence of Gabor representation
for tempered distribution in general. .

I. NOTATIONS AND PRELIMINARIES

We use exactly the same notations as in [10]; also the preliminaries are
the same. Any notion, definition or notational convention not explained
explicitly in this paper can be found in the introduction or notations and
preliminaries section of [10]. In particular, %“(.%") is the space of test
functions of rapid decrease (tempered distributions).

* Part of the research leading to this paper was supported by the Netherlands Organization
for the Advancement of Pure Research (ZWO).
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378 A. J. E. M, JANSSEN
2. PREPARATION

2.1. In this section we introduce the notion of Gabor series, and we give
conditions on the coefficients in the series that ensure convergence. Also, we
give some results on the behavior of the inner products of (generalized)
functions with Gabor functions.

2.2. Ifa€ R, b€ R, y> 0, then the Gabor function G (a, b) is defined as

M 1/4
(@@ b)) = (=) exp (- w (t - a)® + 2nibt — ziab) (1€ R).

We can regard G (a,b) as a function located at the point (a,b) of the
time- frequency _u_m:m We note that G (a,b)=¢ "“"R_,T_, g,» Where g, =
Y2/ exp(—=ny~ ') (cf. |10, Introduction for the :oﬁm:o:m_ we also
note that G (a, b) is an eigenfunction of the operator (y/2m)(d/dt) + t, with
cigenvalue a + iby. It is easy to see that G (a, b) € S, the space of smooth
functions. The Wigner distribution W(G (a, b)) of G (a, b) is given by

W(G(a, b)) =", 2 exp(—21y ' (x — a)* — 2zy(y — b)*)

(cf. [1, 27.12.1.2]).

2.3. A Gabor series is a series of the form 33, . ¢,, G (na, mf), where
@>0, >0, y>0, and where (¢,,,)pe; mc- is a double sequence in T (we
assert nothing about the convergence of the series).

Note that we consider G (na, mff) instead of G ((n +; Da,(m+3)f) as
was done in [10, Sect. 2|. By means of |10, 2.2| we can nmm_G carry over the
results of |10], and we shall freely use these in this paper, of course with the
proper modifications if necessary. As in [10, Sect. 2| we shall assume y =

and we write G(a, b) instead of Q%P b).

2.4, The following lemmas are used to settle questions about convergence
of the series >, ., ¢,,,G(na, mp). Note that (F, G(a, b)) = e™"“"(T', R, F, g,) il

1y m

Fe ¥ aeR, beR (cf. 2.2).
Lemma. (i) Let f€.%. Then Y, ,(Gla, b), [) € 57
(ii) Let Fe .. There exists an M > 0, N E N such that
[(F, G(a, b))l < M(1 +a®)¥(1 4 b2)Y (@€ R, bER).

Proof. (i) We have Y, ., 2" exp(—n(t —a)?) f(t) € %% The Fourier
transform of this function with respect to the first variable is again an
element of . and equals Y, ,, e"**(G(a, b), f).
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(i) We have, forae R, b€ I,
:uu Ga, b: - miaewacmfﬁ Z.f ia g)
Now apply |10, 2.10] to derive the desired inequality for (F, G(a, b)). 1

Remark. Since Y, , (F, G(a, b)) is continuous if FE€ .5, it is a regular
tempered distribution (after embedding in %", of course).

2.5. Lemma.  Let (c,,,),.m be a double sequence in C with

n,m

Com = O((1 + 1*)"(1 + m*)Y) (helZ,mel?)

Jor some NeN, and let « >0, f>0. The series ), . ¢, Glna, mf) is

convergent in .%''-sense, and the convergence is unconditional.

_c...:c\. Let fe.”. It follows easily from 24 that the series
3w ComlGra, mB), f) is  absolutely convergent. We conclude that
3 m Com G (na, mf) is convergent in .%”-sensc, and that the order of the

terms in the series is ‘mmaterial. N

2.6. DeFiNmION.  Let % be the class of all double sequences (c,,), ., in
C for v-hich there exists an N € N with

€ = O((1 + 1Y (1 +m™)Y) (neEZ, mel).

nm

Note that 3, . ¢, G(na, mf3) nozqmwmmm in . -sense if (¢,,,), . € %, and

that (¥, G(na, mp)), . €% if FE€ %

N 7. Remark. 1f Fis (the embedding of an) L*([R)-function, then we have
(F, G(na, mB))|* < oo. Also, if (¢, ), satisfies 37, | |c,.|* < oo, then
N“?s Com G(na, mff) converges in L’-sense. The proofs of these facts are not
hard, although not completely trivial. If F is (the embedding of an) L'(IR)-
function, then (F, G(na, mfB)) is bounded in n and m (even
(F,G(na,mfi)) =0 if n*+m’— w). We conclude by the Riesz-Thorin
theorem that »°, . |(F, G(na,mf))? < co if FEL’(R) and 1<p<2 (g

conjugate exponent of p).

2.8. The inner products of Gabor functions play an important role in this
paper. We can evaluate them explicitly.

LEMMA. ForaeR,bER, xR, y€ R we have

(G(a, b), G{x, ) = exp (— W (@—x)*— W (b — y)* + ibx — miay) .
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Proof. This follows from a straightforward calculation. W

Observe that the Gabor functions are not orthogonai.

3. TEMPERED DISTRIBUTIONS AND GABOR COEFFICIENTS

3.1 Let Fe %, and let (c,,,), ., €-#" In this section we shall investigate
what we can say about the relation between the ¢,,’s and F if it is known
that F=3" ¢, G(na, mB). We shall mainly consider the case that ¢ff = 1

(this is the case Gabor considered in his investigations).

EH.ITF=Y,

sy .=:_

3.2. Let Fe.”", and let (¢
we have

G(na, mfl), then

nm w.: N

N e, (Glna, mB), Glka, IB)) = (F, G(ka, IB)) (1)

..H .

forall ke 7, e 7. If afi < 1, and (1) holds for all & and /, then we know
from |10, Theorem 2.8| that F=3", ¢, .G(na,mp). If af > 1, and (1)
holds for all k and [, then it is not always true that F has much to do with
3 m Cam G(na, mff) (cf. |10, 2.9]). The case that «ff = 1 is more interesting,

—hn.m

and in the remainder of this paper we shall only deal with that case.

3.3. With the aid of Lemma 2.8 we can write (1) as

! g2
./I Cpm CXP AI. hmﬁ A_:_ - _\rvm wm\

n,m

(m— 1)’ + mimk — i;&
= (F, G(ka, I)) (2)
for ke, leZ. Now exp(rnimk— E.:D =exp(mi(n — k)(m — 1) — ninm +

nikl), so if we define ¢!, == (—1)"" ¢,.» di; = (—*(F, G(ka, I})), then we
get

N e exp A e (i — k)? \a\m‘ (m — 1) + mi(n — k)(m — :v 3)

n,m
forke s, e /.

3.4, With every a = (a,,), . €4 we associate the periodic distribution
F, (of two variables), given formally by

F = b a .m-ua__.aw.,rwh_._.::.

(cf. [14, Chap. VII, Sect. | and further|; the condition a € # guarantees
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convergence of the series). If we put ¢ = (¢}, )y m @ = (dy )y, a:=
(exp(—(na®/2) n* — (nff*/2) m* + minm)), .., then the m«wﬁa of equations in
3.3 (3) can be written (at least formally) as ¥, - F..=F,. This can be

Justified as follows. We note that F_ is analytic and periodic (period 1) in
both of its variables. Hence F, is a multiplier in the space of all periodic
distributions, and the Fourier coefficients of #, - /. can be calculated by

simply convoluting the Fourier coefficients of F, and F...

3.5. We are going to study the following problem in detail: given the
periodic distribution B, find a periodic distribution K such that F, - K = B.
To solve this problem we have to analyze F,. In what follows we write

2
%, o I : ; .
B\ Ml exp AI Mml n' — % m? + 2minz + 2mimw + NSSV

n,m

instead of F,

THEOREM. (i) @(z,w)>0 (z€ R, wE R), and Oz, w) =0 if and only
if z=3(mod 1), w=3(mod 1).

76 1 FO /1 1
(i) QQAF \vvp e} 8

az2 \272 awr \2 72

mr@H_ . .
:,: mlmﬂﬁwwﬂvHo cs\(.e:.aaai.

Proof. We have, forze C, we C,

Oz, w)= H exp

m

J .Lanu . _
x./lnxﬁ A%:N +NE: AN +W5vv .

n

5

——m* mﬁ.::zv

Now

5 N ! !
Nexp Awﬁsfw 2min AN +W._:vv =0, Aa AN +imlsv .maa?-g ,

n

where ¢, denotes the third theta function (notation as in |18, Chap. XXI|).
Since #, is periodic with period = we have

\a:w‘mu

Oy(nz, e

-1 £ WN
Oz, w)= .fl exp A\ H

meven M

m odd 2

+ N exp A\w%[,_z + mﬁrzzvmu AH AN +|v _era2) |
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The two sums can be expressed as theta functions too, and we get

O(z, w) = Oy(nz, e "*"?) 8,(2nw, e %)

+ 0,(nz, e ™*7?) 6,(2aw, e 5.

Using the relations between the theta functions and their translates (cf, |18,
21.11]) we get

O3, 1) = 0,(0, e7™"?) (0, e %) — 8,(0, e=**"2) 8,(0, e~ "*).

It follows from |18, 21.51, Example 1| that @(3,1) =0 (afi = 1).

We next show that (3, 3) is the only zero of @ in the square [0, 1] % [0, 1].
Note first that 8,(zz, e **¥*) > 0, 6,(2nw, e~ ™) > 0 for all z and w in IR.
Hence, it z € |0, 1]. w € [0, 1], then @(z, w) =0 if and only if

0,(nz, e~ "*7?) 0,(2nw, e ™)
T(z)=-2— i — =: T,(w).
_ANW QFTﬂNu e aaw@v QuANﬂw:,- mlwfm.v mm_..v

We shall show that T, is minimal at z =4 (strictly), and that 7', is maximal
at w =1 (strictly). From this (i) follows at once.
We have, by [18, 2.16, Example 2|,
dr 0,(nz, e ™*"*) O,(nz, e~ "*"?)

Ll . =0
dz ™ G2 (nz, e 7%

if and only if z=m or z=m+ 3 with m € Z (cf. [18, 21.12]). It is clear that
T, is maximal at z =0 and minimal at z =3, for

%u%ou m.-:am\uv = %AAMJ.P m\w_:N\mv = N“m.n ..a.am.Eu:uu
n

Qp@ﬁ. e M.\.Nw = _.QhAOu e :huﬁv — VIJ_ Ari_ v: m. .azm_\u_:M.

n

As to T, we note that

0,Q2nw, e ™) 9,(2nw + (1/2)m, e )
0,(2mw, e %)~ 0,2aw + (1/2)m, e~ 7Y’

and that by |18, 21.6],

0

ﬁ\~. m.?.m.gaj IQN mw?“m;imvm._?um\?j \
do ?%_m::i-- T Ge

if and only if v = (m 4 3)7 with m € 7 (cf. [18, 21.12]). It is not hard to see
now that T, is maximal at w = 3.
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As to (ii) we note that it is enough to show that (8°@/8z%)(},4) > 0. We
have

7’0 ; 2
yve 2@ (nz, e~ ™7?) 027w, e~ P

+ 8(nz, e ™) 8,(2nw, e~ B},

Noting that  #/(x, e ™) = 650, e ™¥*) > 0, @(n, e ™*7?) =
04(0, e %) < 0 (cf. |18, 21.41]) and that By(m, e ™) > 0,
0,(m, e ™) < 0, we see that (8°@/8z%)(4,1) > 0.

Finally (iii). Let k and [ be integers. Now

&te 11 : 5
JA 703) =@E Y
i V

/ n,m

N N
aa 3@,_:
X exp( — _:N| A‘~v:::+~:.zu

2 2

and it is easy to see that the series equals O if k or I is odd. H

3.6. The function @ can be expanded as

M_. Frlz — Wv»ﬁ:h = w%

keven,leven

around the point (3,1). Here ryy =0, ryy > 0, ry, > 0.

The division problem @ - K = B of 3.5 is not of the type discussed in |13,
Chap. V|; nevertheless, one can carry out the division (compare with |14,
Chap. VII, Scct. 1, Exemples et applications 2, Equations aux différences
finies, case k= +1|). We find the following result. There exists an infinite
number of periodic distributions K with @ - K = B. Each two solutions differ
by a finite linear combination of )’ &), ® 8% , (p>0, g=0). The
prool goes roughly as follows (cf. [15] for the proof of a more general
theorem).! As B is a periodic distribution there exists a continuous periodic
function C of two variables and k € N, / € N such that B = &**'C/az* ow'.
Let m, € N, m, € N be so large that (&' //az* dw')(¢/@) is continuous if ¢ is
a test function whose derivatives of order <(m,, m,) vanish at (3, 3), and let
@ be the class of all these ¢’s. Now we can define (¢, B/@) for all ¢ € @ in
such a way that (@ - w, B/@) = (y, B) if v satisfies @ - y € @. It must then
be shown that the mapping ¢ — (¢, B/®) can be defined for all test functions
¢ in a linear, continuous way such that (@ - ¢, B/@)= (g, B). It is seen at
once that the solutions of the homogeneous problem (B = 0) are finite linear

"I thank W. A. J. Luxemburg for calling my attention to this reference.
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combinations of the functions 3, , 8,"),,,® 8% ,, with p>0, ¢ 0 (cf.
[ 16, Chap. 24, Theorem 24.6 ).

3.7. To express the non-uniqueness in the coefficients ¢/, (cf. 3.3, 3.4): if
(Chm)a,m and (c}l,), , give rise to F,, and F., with @ - F, =0 . F., = vy

nm nm e

then there exists a polynomial p in two variables such that

Com — Ch ={(=1)"*" p(n, m) heZ,me ).

nm

This is easily seen by observing that 3.  (—1)"*" n’m?(—2ni)? ¥
et 2 s the Fourier series of Y7, 61, & 89 /2> Where p and g are
non-negative integers.

3.8. For later references we caleulate 3, ¢, G(na,mp)=3", (1)

Lan,m
Com G, mB) (cf. 3.3) with ¢, = (—1)"""(a, + a,n + a;m + a,nm). For
notational convenience we consider the case with @ = = | only (the general
case presents no particular problems).

Introduce the function w by

w(t)= S (—1)"exp(—n(t — n)*) (reC).

n=—w

This w is analytic, periodic with period 2 and satisfies
Wit + 1) =—w(t), y(—t)=p(1) (teC).

We further have y(3) = y"(3)=--- =0, y'(3) # 0. With this v we find

N (=T gy ayn + aym + agnm) G(n, m)

w'(1/2)

H|NNI;/5|3._.A\:..: Anu|h.auf

Iy N .

I v m+1/2 ::TS T _\Nu«m: + 12 -
The above function is a tempered distribution and has the form >, F,,,

where F is concentrated in m + 5 for m € Z. This is of course no surprise:

we have (¢, as above)

mm

(3 cumGOnm. G D) =0 (keT.1€2)

n,m

so that we can apply |10, 2.12] (also cf. 2.2). Note that we have to shift over
a distance 3 as we consider G(n, m) instead of G(n + 1, m + 1) with integer
values of n and m.

We also see that there exist (c

LG, m)=0.

€.# with ¢, #0 such that

:..Zv_: m nrm

J.J

i, m
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3.9. If we combine 3.6 and |10, Theorem 2.12 and Corollary 2.13] then
we find the following result.

ThEOREM.  Let FE .Y and « >0, > 0, aff = 1. There exists an infinite
number of solutions (c,,,), . in 4 of the system of equations

N e, (Glna, mp), Glka, If)) = (F, G(ka, 8)) (ke Z,1€?) (%)

n,m

I (Com)ym and (d,,), . are solutions of (+) then there exisis a polynomial p
of two variables such that c,,, —d,, = (—=1)"""""" p(n, m). Also, if (Com)n.m
is a solution of () then there exists a €.’ concentrated in the point 3
such that

o

T. - VH ¢ G (net, E.Sv s Pyl = N (—1 vzmiazrﬁ__@

n.m :...ll.ll.ﬁﬁ,

Moreover, if both F and ), . c,.Gne,mf) are regular tempered
distributions, then F =73, c.. G(na, mB), where the series converges in
S -sense.

4. (GABOR REFRESENTATION FOR TEMPERED DISTRIBUTIONS

4.1. In this section we prove theorems about the existence of Gabor
representation for tempered distributions. The criterion in Theorem 3.9 for
the existence of such a representation is not very useful, since it is not easy
to see whether or not a particular (c,,), ,, gives rise to a regular tempered
distribution. The following theorem gives a condition that is much easier to
check. For the sake of notational convenience we take a =f =1 in this
section, although the general case presents no real problems.

THEOREM.  Assume that F € " is regular, and let (c,,), . €% be a
solution of the system of equations (=) in 3.9 such that c,,—0 if
n’+m’—co. Then F=3", ¢, G(n,m) with convergence in .5"'-sense.

Progf. 1t follows from [10, 2.11] that there exists a polynomial Q such
that

R, ﬁanE:Qﬁ:t.:v 81| =0(z)H, (2)
(= )-#)

n.m
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for z& C (cf. 10, 2.3]; g, = G(0,0)). If z € R, then

Axn AH h.:..zQAn...u .:.uvv * W_v

N e, (G, m), GO, 2))

7 47
n,m

{

Noe o ex IH_;NIINI E\nufﬁ.xwv
gL nm —U M NA. v

M",m

by 2.8. Asc,,,— 0 (n* + m?— o) we easily conclude that

nm

Ax“ A./l_ F:..Q?i,iv ,w_v -0

n.m

if z-»o0. Also, F is a regular tempered distribution, so F - g, € L'(IR).
Hence, by the Riemann—Lebesgue lemma,

RFog)=[" e ™) g () di >0

e+

if z—oo. Now H,  is periodic, and @ is a polynomial, whence H, (z).
O(z) +»0(z> o) iland only if 0=0. R

Remarks. (1) The condition on (c,,,), . can be weakened somewhat as

the proof of the above theorem shows. For example, the proof works as well
wm = 0 (n* + m? > o) by lim,, , ¢,,, = 0 for all .

(2) If Fe’ and F=3, ,¢,,G(n,m), where (c,,), . €4, then
FE=3 ac nGn,m)as FGa, b)=G(b,—a) forae R, bE R.

fun,m

if we replace ¢ m oo Cnm

4.2, Let F: IR - C be sufficiently well-behaved, so that the manipulations
below can be justified (e.g., F € .%7). In the division problem of 3.5 the right
hand side of the equation F, - K = B is given by

mAN‘ —tv o 7 ~P..u QA.‘AJ \_VV o] v_.,._. mw._q-;.n t2milw
2 |
k!

for ze& [0, 1], we |0, 1]. We can rewrite B as

B(z,w)=3 _ " F() exp(—n(t — k) — 2milt + 2mikz + 2milw) dt
kY —o0
= H NM.E;.N LR uu.?ﬁ o 3; e wiw —m —k)?
k "
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(here we applied the Poisson sum formula), and we get
Bz, w)=w,(z,w) w,(z, w)
for z€ |0, 1|, we |0, 1], where

E_AN. :J = V..H MuA:. = .:: e N:_,a_uq
m

o Y v k)2 il
wilz; W=y g =twdotkinike
_,

for z€ |0, 1], we [0, I]. Observe that w,(3,3) =0 (cf. 3.9), and that y, is
entire. We see that we can carry out the division B/@ directly (that is,
without using the result of 3.6). Assuming, e.g., that w, € L“(]0, 1] x [0, 1])
we get B/@ € LP([0, 1] x |0, 1]) for every p < 2. By the Hausdorff-Young
theorem we conclude that the Fourier coefficients of B/ are in /* for every
¢ > 2. Hence Theorem 4.1 applies, and we conclude that £ has a Gabor
representation.

If we have an F such that y, € L'(|0, 1] x |0, 1]), and such that |y, |? is
integrable in a neighborhood of (3, §) for some p > 2, then B/@ € L'([0, 1] X
[0, 1]) and ¢,,, > 0 if n* + m* - co (this also holds if w, € L'(|0, 1] x [0, 1])
and y, has a Lebesgue point at (3,3)). Theorem 4.1 applies again.

In general it does not seem to be easy to prove more precise theorems
about the convergence of the series ), , ¢, G(n, m). But if F is even, then
w,(3,3)=0. Hence B/®€&L’(|0,1]x|0,1]) under some continuity
condition on w, in (1,3). Now, 3, . |¢,.|> < o, and it follows from 2.7,

n.m

Remark that >, (—1)" ¢, G(n, m) converges in L*(IR)-sense to F.

i m

4.3. We are now going to prove theorems on the Gabor representation of
Se L?(Ik) with 1 < p< 2. We use the following theorem.

TueoreM. (i) If f€ L¥(R), then Tf =\, ,, Y% __ f(w—n)e’"" g

W) Lan = -

L*([0, 1] X [0, 1]). Also, T is bijective and norm preserving.
(i) If SEL'R), then Tfi=\Yy,\ 20 . f(v—n)er™e
F_:D, L x [0, 1]), and || w;\.___._o___x_._;_ < u“.\_r,r.

Proof. (i) Take f& L*(R). The functions Yo Sw —n)e ™" are
orthogonal, so

[

[ve) 2
SN fw—n)e ™| dzdw

n= —o0

o = s | )
= ¥ % —CA:,I_.:m;?s%&m&é

n=—ow “0 “0

~ 00

_ [ SO dw.
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Hence 7 is well-defined, maps L*(R) into L2(|0, 1]) X [0, 1]) and is norm
preserving.

We now show that T is bijective. So let g& L*([0,1]x [0,1]). Let
(Cumdu,m the sequence of Fourier coefficients of g, and put g, := o
Came ™ for n€Z. Then g,€LX[0,1]), and [}|g,(w)*dw=
Z= o |Cunl’ 16 we define f(w—n):=g,(w) (wE[0,1], nE€Z), then

fE€ LX), and the Fourier coefficients of Yo 2 oo S(w — n) e~ 2min
equal those of g.

(i) Letf&€ L'(R). Then

[ 2 : Azl
(]S sw=me lzaws< [ [ S | 700—m|dzaw
=) n=-—0a0 070 n=-o0

-|

- 00

| SOw)] dw.

Hence TS € h_ﬁ_ou 1 _ X _Ou _; and || d;:_._o.:x_c,: <l ___.____. i

Remarks. (1) By the Riesz—Thorin theorem the mapping T extends to
LP(1t) and maps LP(R) into L?(]0, 1] % |0, 1]) such that NT N 0.0 0,11 S
Sl for fE€ LP(R) (we assume | < p < 2).

(2) T cannot be defined on L”(R) with p > 2: there is an fe L?(R)
such that Y., ., 3" _ f(z—n)e*™™" belongs to none of the spaces
LA([0, 1] x [0, 1]) with g > 1 (cf. also [19, Chap. XI1, 2, p. 102]).

4.4. We know from 4.2 that for a well-behaved function f the Gabor coef-
ficients are found by taking (—1)""e¢,,, where c,, is the (nm)th Fourier
coefficient of y, - Tf/©@ (w, and © as in 4.2; Tf as in 4.3). For an SEL(R)
with 1 < p <2 this is not possible in general. However, if f&€ L7(IR), then

nm "

ANV s
’ -— «minz lmw o — — n+m Q & 1
5 .r ._c Oz, w) (e =1 I

makes sense for integers n and m, and we show in 4.6 that f= 2w
e, Gn, m).

4.5. Let f&€ L"(R) with 1 <p< 2, and let ¢/, be as in 4.4.
LemMma. (i) If 1 < p <2, then there is a C > 0 such that
ol SCULN A"+ m[#~")  (nEZ,me Z).

(ii) If p=2, then there is a C > 0 such that

[¢hml < ClISIL((og [r])* + (log [m|"?)  (n€ Z,meE Z).
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Proof.  Assume 1 < p < 2. By Holder’s inequality and 4.3, Remark | we
get for n€ Z, m € Z (q denotes the conjugate exponent)

1 km.\ Pwinz —2nimw Alwv: +m ﬁa

el <1, (|| T

1/q
X |wy(z, w)|¥ dz &:_v g

We have by 4.2 and 3.5 for some C > 0

vz, w) 1\2 Ly 2y 2
——— 1L C - - |w—— ;
o |<C((=7) +(v3))
So we must estimate (replace z — 1 by z and w — 3 by w)

A=

/2.2 TN\TZ.:N = 2uimw 1 7: I/g

dzdw) .

C 172 . ~12 (z° + wh)? v

Write e~ 2*m=2xmv _ | — f (2, w) + fo(z, w) + f3(z, w), where falz,w) =
gtz . L fizow)=f0w,2), [, =1, - fy. By Minkowsky’s inequality we get

x| filz w)f
S0 e

2 2 2
Doyl @ w)Y

A<

Iiq
dz dw v .

i1

To estimate the second term in the above sum we note that |fo(z, W) <
2n min(|nz|, 2). Hence the gth power of the second term can be estimated by

[ " ﬂ_ﬁ ded [ [ Mﬁw “wmw_ _
12l = 1/n 1/2 lzl = ln - 12
Now
_. _,E s.IIF_N_c dz dw
Jetqynd —yp @F+ wH7?

|

Tzl n

12| Q‘E:_ dv

LI Am n tuu:\u v dz m h =2

as g = 2. And

&_N f k_\e _ dv
= oaan — | W . MU
__n_w:_m (z* + w2 ) — 1+ )7

alw|' “min(1, (n|w])?").

I\
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Hence, if p < 2,

5oy dz dw
2 -2 (z* + :_JaN

_‘__Q _‘:N |fo(z, w)?

2172
& WpgBrli=2 o A_ [w]" =% min(1, (n| __\:un\_v dw
7 2

o H\
m(2mn)?

~1/n - 3
——+nx C n' " tdw + - [w|' 4 :.:v Lan?,
n

/A

= ¥n Slwl = n

where a = 27" + 27 + 2/(2 — q). And if p= 2, we get *

A2 12 a
_ _ _A(zw) dz dw < 297" + 2n + 2m log n.

3
Syl (z'+wh)?

The first and the third terms in the above sum can be treated in a similar
way. We find

b
I

O(|n|* 2+ |m|1 )" or
O((log |n| + log [m|)"?)

.Fno_d_:m as 1 < p < 2or p=2. Now note that (x + )" < x" + »" for all
x20,y20, 921, and that (g —2)/g=2/p— 1.

The case p =1 can be handled in the same way (there is only notational
difference). § -

4.6. Now let /'& LP(R) with 1 < p < 2. Let (f,), be a sequence in .% such
that f, =/ in LP(IR)-sense. Now 7f, (cf. 4.2 and 4.3) is continuous. Let ¢*!

nm

be (—1)" times the Fourier coefficient of 77, - w,/@ (that is, the ¢*”s are

nrm

the coefficients in the Gabor representation of f,). Let ¢/, be as in 4.4, and
let ¢, == (—1)"¢

nm

We have

: m*

h.:C — A 1 v:..:

rin

Ut (T w) wo(z, w)
Jo vﬁc Oz, w)

X Am 2ainz - 2aimw ﬂ\\_%I _.xv dz dw + A|Hu._ +m+nm h.;vu

where

dz dw.

£ .l_‘ _._ (T )(z, w) walz, w)
Oz, w)
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Put d) = ¢k} — (—1yrtmtnm o) Now d®) e (k- o) for all n and m

nm nm nm

by 4.3, Remark 1 as f, — f in L”-sense. And

L= el Gn,m)

2. Cam
n,m

=3 dR G m)+c® Y (1) Gn, m)

n,m H,m

/J d'® G(n, m)
: m
by 3.8. It is easy to see from Lemma4.5 that }’, , d\G(n,m)-3",
€y G(n,m) in '-sense. Hence f'= 3", , c,, G(n, m).
We thus proved the following theorem.
THEOREM. Letf f'€ LP(R) with 1 <p< 2. If ¢, = (—1)"™ ¢, where ¢,

is as in 4.4 for all n and m, then

o
Il

nm

O(r|¥" "+ |m|¥ 1 or

O((log [n])"? + (log [m|)"?)

according as 1<p<2 or p=2, and f= G(n,m), where the

convergence Is in % '-sense.

[ H,m _.._ m

Remark. From 4.3 and the proof of 4.5 it follows that there exists an
S € L*(R) whose Gabor coefficients are unbounded. This is shown by using
the Banach—Steinhaus theorem.

4.7. Theorem 4.6 enables us to prove existence of Gabor representation
for arbitrary tempered distribuiions.

ﬁ:mowmz Let F € % There exists a sequence (d,,), , in % such that
= 5 G(n, m), where the series converges in .%'-sense. -

Lan,m :..:

Progf. Define the operators A, and A4, of %' by A4,G:=
((12m)(d/d) + 1)G, A,G = ((—1/2n)(d/dt) + )G (G € .%""), respectively.
Let v, denote the nth Hermite function for # =0, 1,... (normalization as in
[1, 27.6.3]). Then

Ay, =0/a)y,_ (h=1,2..),
Ay, =((n+ :\av:m Wapy (=20, 1)

by [1, 27.6.3]. We know from [12, Appendix to V.3] that there is an integer
k >0 such that ((F,w,)n %), €L
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Now solve the equation A*G=F (G &€.%") in terms of Hermite coef-
ficients. We get

ﬁmﬁ __Tau - A\A w»n.\m_ ﬁ\;v = nQv\AwhEav l ﬁ.:_._.,ﬁhww f\a F w»v...
where

Cpi = :: + —VA: + Nw A_Z I M...f,vu_._.m -

for n=0,1,... So G:=3,c iF,w,)w,,  satisfies F=AX*G, and
G € L(Ih).

Let (e,,), . be such that G =13, e, G(n, m), where the series converges
in .%"’-sense (cf. Theorem 4.6). Then

= .M_. m..::fa + ___.Z\mv; Qﬁ:u _::

n,m

according to 2.2. It is obvious that (e, (n + im)*), . €%, and that the
series converges in .%'-sense.

5. FinaL REMARKS

We conclude this paper by some remarks and comments. In 1946, Gabor
claimed that every signal F can be developed (affi=1) as
2 wom Cam G (na, mf), and that the coefficients ¢, are uniquely determined by
F.

The statement about the uniqueness of the coefficients does not hold if F is
a tempered distribution (cf. Theorem 3.9), and even the case that F is an
element of L*(IR) is not easy to handle (cf. 4.6). Nevertheless, aff = | seems
lo be the only reasonable choice. For if ¢ff < 1, it will be hard to find a
canonical solution (c,,), ,, to the coefficients problem (it is likely that we
have many solutions in this case; if we have a solution, then the
corresponding series represents F by 3.2). And if af > I, then the series
corresponding with a solution of the coefficients problem has in general not
very much to do with F. It is likely that in the latter case the coefficients
problem is easy to solve (if, e.g., aff = 2, then we can introduce a function &
as in 3.5, and this @ turns out to be strictly positive; also, the mapping

(crdii™ A./M exp A —na’ (k—n)—— Q\ m) v n.:v

kit n.m

is invertible as a mapping of /” with 1 < p < o if a’ 2 1.005).
Among the functions that can be developed in a Gabor series are the
polynomials and the distributions with period 1. If F is a periodic tempered
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distribution (with period 1), then the Gabor series for F has the form
2um(—=1)"" ¢, G(n, m), where the c,’s are the Fourier coefficients of the
periodic distribution F/g with g =\, ", exp(—n(t — n)?). This is one of the
reasons that we did not restrict ourselves to Gabor coefficients that are in /',
? or ™, Another reason is that certain physical interesting signals F have the
property that (¥, G(a, b)) is unbounded as a function of a and b. It may be
proved, e.g., that this is the case for almost every realization F of a Gaussian
white noise process.

We finally make some comments on related results on the subject in
literature. There is a connection with certain classical interpolation theorems
stated in |17, Chap. V, Sect. 12]: if f is an entire function with lim sup;
M(&)/E < m/2, where M(&) = max,, i~ |f(2)], then we have

0

fz2)=0(z) N exp A\‘? +m yv&?;w im)/(z — n—im),

n,m

where o is the Weierstrasz o-function. We could use this result with f=
Y exp(nz?/2)(R.F, g), where FE.%" and g =", exp(—=nz?), but unfor-
tunately such an / will satisfy lim sup, ., M(&)/E = n/2 in general,

Some of the sums arising in the proof of Theorem 3.5 can also be found in
[5. 6, 11|, where completeness properties of the functions G(n,m) (ne Z,
m € I') are considered (in the references just given, and in 4], completeness
means: if f€ L*(IN) satisfies (f, G(n,m)) =0 for all n and m, then f=0;
compare also [10]). In [11, (38)] an example of coefficients (c,,,), , with
2w CamG(n,m) =0 is given (cf. also 3.8); here the expansion problem is
considered briefly.

The operator T of 4.3 also occurs in |5 and [4], and can be used to give
a quite simple proof of the completeness (in the sense of the previous
paragraph) of the G(n, m)’s.

We refer to [1, 27.12.1.5; 9; and 2, Theorem 2.6] for continuous versions
of Gabor representation of generalized functions. 3

In a recent paper [3], the expansion problem is also considered, i.e.,
expressions for the coefficients are given; the methods used there are
somewhat different from ours, and are probably more closely related to the
approach suggested above in connection with the classical interpolation
theory.

Some numerical results are given in |7],> wherc it was found that the
Gabor expansions have poor convergence properties in general. This is no
surprise, of course, in view of the behavior (and non-uniqueness) of the
coefficients (also cf. 4.2 and 4.5).

1 thank Alan Weinstein for calling my attention to this reference.
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