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Abstract. In this letter we discuss the asymptotic behaviour of the Pearcey-type integral
o0
I'(X,Y) = 2fu°+1exp(i(u4 + Xu?)) Ja(Yu)du
i

for -1 < o< %, where J, is a Bessel function, as X — 4co, Y fixed, as Y — o0, X
fixed, and as Y = p(2|X[)%/2, X — -0, p fixed. The case a = —} gives the classical
Pearcey integral whose asymptotics has been investigated recently by Kaminski and Paris.
In the case o =0, I (X,Y) as a function of Y > 0 represents the radial part of the
impulse-response function describing the image formation in high resolution electron
microscopes at normalized defocus X. We use the approach:of Paris by representing
I (X,Y) in terms of Weber parabolic cylinder functions, and we augment this approach
by invoking the Chester-Friedman—Ursell method to obtain the leading asymptotics of
IL(X,Y) around the caustic Y2 = (${X])?, X — —oo.

In (5, 6} the asymptotics of (the analytic continuation 10 complex variables of) the
Pearcey integral ;

L}

P’(X,Y):2fexp(i(u4+/\’u2)) cos Yudu ¢y
o

is presented. The Pearcey integral occurs at many places in the physics literature,
especially where a short-wavelength description of the phenomena is desired; we
refer to [3, 5, 6] and the references therein for surveys of existing literature on
Pearcey’s integral. In a recent study on the image formation in high resolution
electron microscopes [4], an important role is played by the integral

O
I'X,Y)= 2/exp (Hu"+ Xu?))Jy(Yu)udic )
0
where J, is the Bessel function of order 0. Indeed, in the terminology of [4], I'( X, )
represents the radial part of the (undamped) impulse-response function at defocus

X. Interestingly, in the hypothetical case of one-dimensional microscopy, the role of
I'(X,-) would be taken over by P'(X,-) in (1).
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In this letter we are interested, more generally, in the asymptotics of the integral
(o o]
I(X,Y)= Q/exp (i(u* + Xu?))J, (Yu)u*tl du 3)
[}

with -1 < a < %, where J_ is the Bessel function of order . For o = 0 we obtain
(2), and we have

P(X,Y)= %‘II'YI_'_]/-_,(X,Y). (4)

It turns out that we can mimic the arguments of Paris in [6] for obtaining the
asymptotics of P/(X,Y’) to a very large extent. To explain this, we note that with
& = X exp(—57i), y =Y exp(ini) we have

IL(X,Y) = 2explini(a+ 2)]/J'a,(yt)exp(—l'4 —zt?)t*Hdt =: I (z,y) (5)
0

and that we have for y # 0 the generalized Paris integral representation, see [6, (2.6)]

I (z,y) = exp[%ﬂ'i(a + 2)]‘2"30’/2"1/? yae:rzls

if

X 2%”(,[ F(s)Ds_a_l(ﬁ) (:}%)-sds . ©)

Here C is a loop starting and finishing at —oo and encircling the origin in positive
sense, and D, is the (analytic continuation to all » € C of the) parabolic cylinder
function admitting for Re v < 1 the integral representation

—z%/4 3

I'(-v) J

D, (z)=

exp(—a7® —z7)r """ )]

This enables us to derive the asymptotics of /,(x,y) when |z| — oo, y fixed and
when |y| — oo, z fixed.

In [5] Kaminski determines the asymptotics of P/( X,Y’) near the caustic Y2 =
2|X3, X — —oo, by using directly the integral representation (1) together with the
method of Chester, Friedman and Ursell (CFU-method), see [1, ch 9] and [2], for the
asymptotics of integrals with two nearly coalescing saddle points. The asymptotics
of P'(X,Y) exactly at the caustic ¥ = ($[X])?/%, X — —oo, is also determined
by Paris in [6, section 6], as a check of the validity of his integral representation
approach. However, for our case, the direct method of Kaminski is not applicable,
and we must augment Paris’ arguments of [6, section 6], by an appeal to the CFU-
method to obtain the required asymptotics near the caustic. Doing so, we obtain
the leading asymptotics for I, (X,Y’) near the caustic (and not a full asymptotic
expansion as Kaminski obtains for P/( X,Y)).

We shall now present our main results, and then indicate how these results can be
proved by using Paris’ arguments and extensions thereof. Although we could present

:
i
q
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the asymptotics of [, (z,y) when |z} — oo or |y| — oo for general complex z, y (just
as Paris does for his P(x,y)), we restrict to z = Xexp(~3ini), y = Y exp(ini)
with real X and Y > 0. We thus get

i iy e Y2 o (@m)! gy /iY?
L)~ 3 (5%) e (55 X i (5% ) ®

=, mi(iXZ)m m\ G

as X — 400, Y >0, and

.

, YT (DY) & (@m) o iy
IL(X,Y) ~ “j‘(é’j{') ex"( 4X )ﬂgom!(ixi’)m . (4_)?)
4 27/2 g 1/2(_ x)a/2 exp(ini— LiX?)

x g(%)m%g_gm (Y\/—-%X) ©)

a8 X - —o0, Y > 0. Here Lgf;f is the (2m)th Laguerre polynomial of order a,
see [7, section 5.1]. (It is observed

here that the function a, (x) in [6, (3.4)-(3.6)]
equals (2m)! L1/ 9(x))

Next we have when X € R is fixed and W := ;}Y — 400

af3-2/3
‘u'/_gyg"—‘ exp(~ X7 4 Lmi(1 + o) — 3w/ 4 X w/s)
JY %iX:z - Cl’) _4/3 Wa/3_2/3
X{1+ 6WW2/3 +O(W )}"‘—2—\/?-—-—
X exp (—%iXQ — £7i(1 4 &) — Be"I/6 W/3 _ gnifs szfa)
X( '1'l§1X2 — Q/)e’ri/3 —a/3
X {1 = G273 + Oo(W )} (10)

Finally, when p > 0 is fixed and ¥ = P 2(RIX)3, X —

I'(X,Y) 3)1/2 X" [~1ri(2a+1) + 6 X2
alA, - G_pn expl—-37mi(2a + ]

I;(X: Y)""

—00, We have

C . - ; iC . i
ez i 16179 e AVGEIXT)|

1\'2r2|x)\*/? 4 . .
+ (;) ( 35 ) I‘—\;Iexp[am(a-I-l)-l-eA ] (11)

€ are independent of o« and satisly (B =

where §, ~, —21In p)
L

151 — 518+ £i6% + 0(8%)
3—1/3i(%ﬁ)1/2+ O(ﬁ3/2)
=3+ 18- Lip® + 0(8*)

it

6
~
€

(12)
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and

¢=3"4+0(8) ¢ =(+a)8¥+0(8?). (13)
In particular, we have at the caustic (p = 1; 8 = v = 0)

exp[—37mi(2a + 1) + 51 X7

1 —~ lywvipa/f2
I,(X,Y) N (51XD)
?”N@+3W@+aﬁéq
| X12/8 | X[473
+(2 |\’|)°'/2|XIexp[%1ri(a+])—%iXZ]. (14)

We shall next show that the representation (6) holds. To that end we observe the
formulae

= (4=
—_ (1. & 4 -
Jo(2) = (§2) ;k!f‘(k+a+1) zeC (15)
Jo(z) = O({z|71/2 el Im 2l larg z{ < 7, |z[ — co (16)
Jo(u), Jo(w), JUw) = (™) w— oo an

It then follows that [, (X,Y’) is well defined as an improper Riemann integral for
-1 < a < , and that (5) holds (on substituting v = e™/3¢ and using Jordan’s
lemma). Next we use (15) with z = yt, interchange sum and integral, substitute
v = t? in the integral, and obtain

I ( o (- lyO)k i -v?=zv k4o
x,y) = exp[i mi(a 4+ 2)](3y) Z Tl (a+k+1) /e v dv. (18)
0

Then we use (7) and the fact that I'(s) has poles of order one at s = —~k = 0, —1,
with residues (—1)*/k! to obtain (6). In (6) the contour C does not need to lle in
Res < a + 1, as would be the case when (7) were used, since D, (z) extends 10 an
entire funct:on of v.

We next show how the asymptotic expansion (8) can be derived; note that

arg(x) = —-71' since z = X exp(—17i), X > 0. Proceeding in the same (formal)
way as in [6, sectton 3(a)], we insert the expansion

€T
Preees(35)

==} o0
1.2 x (s—a—-1)...(s—a—-2m)
~ exp(—gx ) (E) Z m! z2m ( l)m
m=0

jarg(z) < 37 (19)

into (6), and obtain

m! a:2m

I(z,y) ~ exp[} mi(a + 2)] (1y)* a= ! Z

m=0
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Here

bm() = 557 [ X T()(s = a=1)...(s ~ a - 2m)ds
C

o0 !
Z (_';() (l +a+ 2m) . ([ + o+ ]) = (2m)! e™X L(zog-;z(X)' (21)
=0

From this (8) follows.
Similarly, when & = X exp(—$wi), X < 0 (so that arg(z) = 37), we use

i(2m)1/?

D,(z)=e"" D, (~2) + Ty

e"PD_, \(-iz)  zeC 22)

together with (6), to obtain

I,(z,y) = —exp(—3mia),(~x,iy)

+ exp[%vri(a +2)+ %leg"(l"a/?)——l/?ya Iy o (z,y) (23)
where
2 1/2 ]
Iz,a("’, y) = ( ‘)‘n)'i exp(—%ma)
[(s) e _iyz)-
X I'-s+ o+ I)D‘3+a(\/§) (4\/:2- ds. (24)
c

For the first term at the right-hand side of (23) we can use (8); for the second term
we use (19), and obtain

2 - X « 2 =2 ].
L (z,y) ~(2m)Y (7) exp(3z?) ) T Im

2 m=0
1 1,002y =S I'(s)
% .-2?1]( 5¥V°) M-s+a-2m+1) ds. @)
C

Here we have used that F(—z+ 1) = 2(z+ 1) (2 + 2m — DNI(-z-2m +1).
Finally, (9) follows by taking £ = y(—1x)'/? in the identity

me-o — L 1ey—=2s F(S)
(287 o zm(€) = 27i f('f’“) I'(-s+a-2m+ 1)d3' (26)
C

We observe that the derivations just given can be shown to yield true asymptotic
series by using the methods of [6, section 4]; in fact, such a thing is implicitly stated in
[6, middle of p 422), about the asymptotics of P{™)(z, y), i.e. the case that o = n+41.
_ We next turn to the derivation of (10). This can be done as in [6, section 5]; we
Just show some intermediate steps. After replacing s — o~ 1 by s — 3 in the integral
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at the right-hand side of (6) (so that we can conveniently use [6, equation (5.2)]), we
obtain as in [6]

I, (2, y) = exp[gmi(a + 2) + La?]20+1/4 g-1/2y-a-1

x {exp(=3mi)I, ,(z,y) + exp(ini)I_ (z,y)} 7
where
1 'x i 2 -3
I o (z,y) = §-ﬂ'_lf Ms+ M (s+a+ ) D_, . (i:/_E) (;4\9/5) ds.
C
(28)

Using [6, equation (5.2)] and the result

1 1 3/2y =
P(3+2)P(s+°‘+2)=r(‘gs+g+a) (34 ) oo 3-(a1/1) [1+o(§)}

I(3s+32)
(29)
we obtain
Iy o(2,y) fff‘(t) ZEN A = ATV 4 07 exp(Fiz /173) (30)
Po;
where

2\/‘( *rgt )

B:l: = gl/2 2—5«1/3-{-1/]2 3-1/2 y4°’/3+1/3exp[=F _é_ 1ri(2a + %)] (31)
Zy = Bexp(F §mi)(Ly)*>,
With the aid of the lemma in [6, section 5], we then get

Io(z,9) =T, (2, 9) + T_ ,(2,y) (32)

where, with w = -y,

a/3-2/3 . .
T, .(z,y) = -tf—.)—\/—_hexp(——ll.,‘/ri— %ﬂia-l- é:c"’ - 3e‘”'/3w4/3—ia:e"”/ew")/a)
+ =z )a . -

X {1—(—‘6—11)"?—/3—)——6)(])(—%#1)-}-0(10 4/3)} (33)
wa/3—2/3

T_'a(m,y) = —é—\/-g—-exp( i + ma 4 1 . % — 3e™/34/3 -+ ia:e”'/ﬁw?/a)

(e + e)e . -

x{l—-“—(a—t;lfﬁmexp(%m)-l-O(w /3y 3. (34)

From this (10) follows on setting z = X exp(~1ni), y = Yexp(gri).
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We finally show the main steps in deriving (11). When we follow the steps (6.1)-
(6.13) in [6], we get (Y = pl/2(2|X])3/?)

I(X,Y) = exp[{mi(a+ 1) - §iX?*27%/212y {1 (X, Y)+ 1} (X,Y)}
(35)

where

I;’G(X, Y)~ —33/442a 1 1/291/24a /2 p-1/2—alX|—a exp(%:vri _ }-,ﬂia)
1 T-—1/4+cx . . o
X o= / -y exp(5miTX")
c

x {exp[X2f_(,0)] —iexp[X2f+(‘r,ﬁ)]}dT (36)

Ié,o,(X, Y) ~ 33/4-{-20ﬂ.1/221/2+a/2p—1/‘2—a |X|~= exp(—-};rri _ lvria)

4
1 T-l/‘l-l-or o
X 21ri/ z - yi7a Pl S, )]
C

X {exp(%ﬂ'iTXQ)+exp(—§7ri7',\’2)}dr. 37
Here t = 13%/2e-7i/47-1/2 and

fe(7,8) = fo(7) + Br B=-%np (38)

with f, given in [6, (6.13)]. The main contributions to the above integrals come from
saddle points; these are (in the {-plane) among the roots of

L3t V2 - 1) =p! (39)
SO that
Lo2(31)° — pt(d1)* + 1 = 0. (40)

This equation has, for 3 close to 0, simple roots near ¢ = +3i and two pairs of nearly
coalescing roots near ¢t = +3/2+v/2; as in [6] only the roots near t = 3/2/2 (ie.
7 = —1i) and the roots near ¢t = —2i (i.e. 7 = ii) yield saddle points contributing
to the integrals. As a consequence, the leading asymptotics of I] , is determined by
the integral

2 1 7= 1/4+e 9 .12 -2
Lio(X%; 8) = 51 ) o exp[s miX°*r+ X°f_(r,0)]dS (41)
c
with nearly coalescing saddle points near 7, = —1i, and the leading asymptotics of

I . is determined by the integral

1 T 1/d+e

271 J (12— 1)1/4
5

Lo (X% 8) = exp[— 2 miXN*r + X[, (r,B)]dr (42)
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with saddle point near 7, = ii.

For L; , we must use the CFU method for which we follow the recipe given in
[1, section 9.2). We write

Lia(X*:8) = 5= [ Gu(m) explX*F_(7, 0)] dr @3)
C

with
F-(1/)4a

F.(r,8)=F_(7)+ B GQ(T)=(—;;>‘T)17Z

“449

where F_(7) = f_(7)+ Zmir as in [6, section 6). Next we introduce a regular
variable transformation 7(s) (with s close to 0) by

F_(1(s),8)=-3s°+v%s +r (45)

that should be such that r(++v) = , with 73 the two zeros of F'(r,3) near r,. It
then follows that

r=3(FL(ry, B) + F_(7_,8)) = =3r + 78— 57,6° + O(8*?) (46)
57" = F.(7,,8) = F_(1_,8) = §1,(18)*/* + 0(8°/?) (47)

the two equalities at the far right-hand sides of (46) and (47) being a consequence of
the formulas on the bottom of [6, p 419] and of

Ty =T 21 (38)/2 = 21,8 4 O(5Y?). “48)

The argument of + is to be determined using the device developed after theorem 9.2.1
in [1]; this gives in the present case

v = 37134(38)'%(1 + 0(8)). (49)

The variable transformation 7(s) is used to bring the contribution to L, , from the
saddle points near 7, into the form

27i

- -—1—/ G (r(s)) T'(s)exp[(~ 3 +v%s+ r) X% ds (50)
Cy

where C' is a portion of the Airy contour given in [, figure 2.5). The minus sign
in (50) is due to the different orientations of 7(C')) and C near r,. It then follows
from the theory in [1] that the leading asymptotics of L, _ is given as

1«

Lia(X73 ) ~ ~exp(X'r) | A7 1X1%) + 4B avoixin)] on

with _<

ag(e) = 3[Go(7,) 7/(7) 4+ Go(1_) T'(—7)] = 375/1297i/8 ro | () (52)

a,(a) = ;,I—,YIGQ(TJ,) (V) =Go(r)7'(=v)] = (§+a) 371/12e7/3 22 4 O(8'/7).
(53)
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This then completes the analysis of L, ,.
The analysis of L, . requires a much simpler appeal to the steepest descent

method for a saddle point near 7, = li. To that end we set
Fy(r,8)=F, (1) + pr (54)

and we let ,(3) be the zero of F(7,0) near r,. Using the formulae F, () =
~ 37y, Fi(ry) = 6/57;, we find that

7(B) = Ty — g‘ﬁ"'z + 0(52) (55)
while the steepest descent paths have directions %n- + O(8), —}1—1r + O(/3). Hence
we get

Loo(X?5 ) ~ 20 exp(X?0) (56)
where

) 1 . 27 AR

O(Q) - 5;}- a(T2(/3)) Ff("’g(ﬁ),ﬁ) exp[4_7”+ O(ﬁ)]
= n 23734 exp (3ni 4 Iria) + 0(9) (57)
and

v = F, (7,(8),0) =—%i+ %iﬁ— :—Giﬁ2+0(,@3). (58)

This completes the analysis of L, 4, and putting all results together we obtain ex-
pressions (11)—(13).

The author thanks Dr R B Paris, who independently noticed formula (6), for a fruitful
discussion on the subject of this letter.
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