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Duality and Biorthogonality for
Weyl-Heisenberg Frames

A.J. E. M. Janssen

ABSTRACT. Leta > 0,b > 0, ab < 1; and let g € L*(R). In this paper we investigate the
relation between the frame operator S : f € L*(R) — Zn‘m (f, namb) namp and the matrix
H whose entries Hiy vy are given by (8 vija, 8ksbaje) Jor k1K, I € Z. Here f,,(t) =
expmiyt) f(t — x), t € R, for any f € L*(R). We show that S is bounded as a mapping of
LA(R) into L*(R) if and only if H is bounded as a mapping of I*(Z?) into 1*(Z?). Also we show
that AI < S < Bl ifand only if Al < (—,',; H < BI, where I denotes the identity operator of
LY(R) and 12(Z%), respectively, and A > 0, B < oo. Next, when g generates a frame, we have
that (gin7a )k has an upper frame bound, and the minimal dual function °y can be computed
asab Y, (H ™ YVi1i0.0 8/ The results of this paper extend, generalize, and rigourize results
of Wexler and Raz and of Qian, D. Chen, K. Chen, and Li on the computation of dual functions
Sor finite, discrete-time Gabor expansions to the infinite, continuous-time case. Furthermore, we
present a framework in which one can show that certain smoothness and decay properties of a g
generating a frame are inherited by °y. In particular, we show that°y € S when g € S generates
aframe (S Schwartz space). The proofs of the main results of this paper rely heavily on a technique
introduced by Tolimieri and Orr for relating frame bound questions on complementary lattices by
means of the Poisson summation formula.

1. Introduction and Results

1.1. Introduction

Let us begin by indicating how the notions of duality and biorthogonality arise in recent
engineering literature on Weyl-Heisenberg frames and Gabor expansions. Leta > 0,5 > 0, and let
g € L2(R). We consider for x, y € R the operators

f e LAR) = fiy(t) = f(t —x), teR, (1.1)
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of L2(R). We say that g generates a (Weyl-Heisenberg) frame for the shift parameters a, b when
there are A > 0, B < oo such that

AV =1 rand)P < BISIE . f e PR (12)

The numbers A, B are called a lower, upper frame bound for g, respectively. As is well known
(see [1, Chapter 4]), for g to generate a frame it is necessary that ab < 1. Since, in addition, the
case ab = 1 has been completely settled as to the problems we consider here by means of the Zak
transform, we restrict ourselves in this paper to ab < 1. Accordingly, when we say that g generates
a frame, it is understood that the shift parameters are @, b. Also, when (1.2) holds for A = B, we
say that g generates a tight frame. It is known (see [1, §3.4.4.A]), that there are ¢ € S (Schwartz
space of C* functions with rapid decrease) that generate a tight frame.

We say that g € L?(R) has an upper frame bound with shift parameters a, b, when there is a
B < oo such that

Y NS gnat)P < BIFIE feLP(R). (13)

n,m

For the notion of having an upper frame bound, it is not necessary that ab < 1; indeed, we shall
consider (1.3) also with shift parameters 1/5b, 1/a instead of a, b. When g has an upper frame bound
for a, b, one can define the frame operator S by

Sf = Z (fv gnu,mb) 8na,mb> f € LZ(R) - (14)

Then the condition (1.2) can be equivalently expressed as
Al < S< BI, (1.5)

where I is the identity operator of L2(R).
The notion of frame derives its relevance from the following fact. When g generates a frame
and f € L%(R), f can be represented, in many ways, as an Lz(R)-convergent series

f= Z Qnm 8na,mb (1.6)
n.m

with g € 12(Z?). One possibility for the a,,,,’s in (1.6) is the choice

A = (fro yna.mb) (17)

where °y = §~! g, which is usually called (the) dual function. This °y is minimal in the sense that
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forany f € L*(R) and any g € [2(Z?) such that (1.6) holds we have

Z I(faoyna.mb)lz =< Z 'anml2 (1.8)

nm

with equality if and only if a,, is given by (1.7).
One possible way to compute °y from g and S is as follows. When

2
V=l—-———3F§, .
B+ A (19
we have that
B—A
Vil < —— , 2(R); .
l f\l_.B_{_AIIfH feL @®) (1.10)
whence
2 2 ad
y=8lg=—"T (U -V)g= —— Vig. 1
2 g B+A( ) g BrA L g (L.11)

This von Neumann series expansion for °y converges fast in most practical cases, but the computation
of the terms V' g can be involved, especially when ab is small, since the series in (1.4) for Sf may
have many nonnegligible terms. We refer to [1, §§3.2, 3.4, 3.6, 4.1, 4.2.2] for generalities about
frames and specific results for Weyl-Heisenberg frames.

Inrecent literature [2, 3, 4] on finite, discrete-time Gabor expansions, one encounters a different
method for the computation of dual functions. These are based on the (finite, discrete-time version
of the) following beautiful theorem of Wexler and Raz: when g, y € L2(R)

erLz(lR) |:f = Z (f Ynamb) gna,mb:l N (1.12)

n,m

Vesez (V. 8kpija) = ab ko 810]

where 8, denotes Kronecker’s delta. One thus has that g and y are dual (for the parameters a, b)
if and only if g and y are biorthogonal (for the parameters 1/b, 1/a). See [5] where the precise
conditions on g, y ensuring that (1.12) holds are presented using an ingenious technique developed
in [6] by Tolimieri and Orr.

The Wexler-Raz result can be used as follows (here we follow the approach used in [2, 3, 4]
for the finite, discrete-time case). When g € L2(R) one can consider the mapping

f € P®) —~ G = ((f8emare), ;- (113)
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Then the right-hand side condition in (1.12) can be written as
Gy=g;  a=(abdkdlkiez - (1.14)

For the case of finite, discrete-time signals g, y and rational ab = p/q < 1, ‘the system ({ .14) of
linear equations in the sample values of y is underdetermined. Hence when G in (1.14) has full row
rank, there are many solutions y, and one may force uniqueness of y by requiring ||y |l (see [2])
or ‘y /vl —g/lgll “ (see [3, 4]) to be minimal. In either case (although this does not seem to be

generally known) this leads to the generalized inverse solution

Py = GGG a=ab Yy (GG}, .8 mi - (1.15)
k.l

We note here that the matrix G G* has entries
(GG itk = (8 pbittjar 8kybidja) k,1,k'l'eZ. (1.16)

Thus in many cases, especially when ab is small, GG* and (G G*)~! must be expected to be sparse,
and in (1.15) only a few terms should be needed to compute °°y accurately.

1.2. Results

The main purpose of this paper is to investigate the relation between the frame operator S and
the matrix GG* for the infinite, continuous-time case, thereby making the procedure just described
for computing dual functions rigourous. (The need for such an effort in the finite, discrete-time case
is less urgent, although not entirely overdone: in [2, 3, 4] the authors do not bother about the question
of whether and when the G of (1.13) has full rank. This point has been elaborated in all detail in
[7].) This is a rather nontrivial problem since already the formulation of the Wexler-Raz result for
the infinite, continuous-time case requires some care. A rigourous proof of this result, under the
condition that both g and y have an upper frame bound (for the parameters a, b), was presented in
[5]. The condition of having an upper frame bound is essential in (1.12). Atthe end of §3 we give an
example of g, y € L>(R) that are biorthogonal (for the parameters 1 /b, 1/a) while neither of them
has an upper frame bound (with parameters a, b), so that even the convergence of the series in the
left-hand member of (1.12) is questionable.

We shall show the following result. Assume that g€ L*(R),and let A > 0, B < 00. Then

8§ generates a frame with bounds A, B & AJ < —IZGG* < BI, (1.17)
a

where [ is the identity operator of /2 (Z%). Moreover, when g generates a frame, we have
oy___S—lng*(GG*)-lo_,:ooy’ (118)

where the frame operator S is given in (1.4) and ¢ is defined in (1.14).
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Let us sketch the proof of the result in (1.17). We let

Uu f = fapija s fel*®), (1.19)

and we denote the adjoint of Uy, by U}; (note that Uy, U}, are unitary operators). When g € L%(R),
we can define the frame operator S : § — S’ by

(Sf.h) =) (fr Guand) @uami 1) . fLHES, (1.20)

nm
irrespective of whether g generates a frame or not. Letting
Huor = (8keybot jas 8kjbdja) + k1K' eZ, (L.21)

we show in §2 the formulas

) 1
(£, Uy ) = = 3 Huen(f, Uiy b) (1.22)
Tkt
and
e
D Wu Sf W f 0 = — 3 HywrWu f,0)Uer f, 1" (1.23)
] ab e

valid forall f, h € S.
Formula (1.22) is particularly interesting when i € S generates a tight frame with ||k} = 1,
for then the U} h are orthonormal. In particular, we see that

1
(S U;;k, h, UI::I' h) = ;77- Hkl;k’[’ : k,leZ. (1.24)
12

Hence when H(,,) is the orthogonal projection of L2(R) onto the closed linear span (k) of the U} h,
it is seen that the matrix of [ " S‘ﬂ m asa mapp.ing of (k) into itself is given by ﬁ HT. This
argument, to be made more precise in §3, settles = in (1.17).

For <= in (1.17) we write the resolution-of-identity formula

(F, f) = / / (F iy )(f, hay) dx dy | (1.25)

withanh € S, |hll=1l,and Fe &', f € Sas

1/b 1/a

(F, f) = f f > W Fuhey) Wi fohe ) dxdy . (1.26)

0o o M
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When we then use (1.23) and (1.26) with F = Sf it is easily seen that (Sf, f) is bounded between
A fII? and B | f|>. Further details are presented in §3. This ends the sketch of the proof of the

main result.
As a consequence of the result (1.7) we show that g has an upper frame bound B for the

parameters a, b if and only if g has an upper frame bound B/ab for the parameters 1/b, 1/a.
The relation between the frame operator S and the matrix GG™* is intriguing for several other
reasons. For instance, when g has an upper frame bound for the parameters a, b, we have for S the

representation

S=— > (GC"uo0 Uk » (1.27)
k.l

1
ab
in the sense that for all f, h € L?>(R) with Zk‘, |(Uy f, W)|* < oo it holds that

1
(S h) = — > (GG")tzo0 Uit f, 1) . (1.28)
ab o

Now when g generates a frame, then so does °y, and

(‘1‘ GG"‘)_1 = Lepers Ler - (66%16 1.29
ab T ab ’ ab = ( ) ’ (1.29)

where

Tf= ((faoyk/b,l/a)) . fel’®. (1.30)

kl€Z

Moreover, in the same sense as the representation (1.27) for S,
—1 1 a1 Ok
57t =— > T T™)ki00 Ukt - (1.31)
ab o

The latter result is an instance of the following: when ¢ : R — [0, oo) is such that x—! @(x) is
continuous on the spectrum of S, then ¢(S) is the frame operator corresponding to (S‘l o( S)) 172 g,
and ¢(S) and ¢ (;15 GG*) are related to one another according to (compare (1.24))

. 1
@) Ui b, Ugy Wit iew = @ (a—b— GG*) . (1.32)

Here h € S generates a tight frame, ||| = 1. We shall not elaborate this point. but. ra if’
X . , but, rather, verif
(1.29), (1.31) in §3 explicitly. ? ’
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Let us now sketch the further results of this paper that are mainly aimed at finding out how
certain smoothness and decay properties of a g generating a frame are inherited by °y. One such
property is what Tolimieri and Orr call Condition A in [6], that is,

> (8 8igpaja)l < 00 (1.33)
k.l

We show that a ¢ € L*(R) has an upper frame bound for the parametes a, b (or 1/b, 1/a) when
g satisfies Condition A. On the other hand, we give in §3 an example of a g¢ € L*(R) that has an
upper frame bound for the parameters a, b and 1/b, 1/a, while g does not satisfy Condition A. This
Condition A is somewhat easier to verify than the upper frame bound condition. Moreover, the series
representation (1.27) for § is unconditional now since all Uy, satisfy || Uy || = 1.

In (1.11) we considered for a frame operator S with AI < § < BI the von Neumann series
expansion

S"*-—E—iV"' Vel-—25 (1.34)
- = " B+AT '

Now the condition ||V || < 1 only assures convergence of this series in the ordinary operator norm
(consider as an example (Vf)(z) = f(2t),t € R, for f € L%(R) for which [|[V| = %\/2_ while
(I = V)~! does not even map S into C). It is, however, very well conceivable that (1.34) converges
in a stronger sense when S, and whence V, are restricted to certain subspaces of linear operators of
L*(R). We shall consider in §54 and 5 the class V* of linear operators of L*(R) of the form

V=3 ouUu; Nl =Y 04k + 1) aul < oo, (1.35)
k.l kil

and the subspace V§ of all selfadjoint members of V', characterized by the fact that
Upy = afy e 2mikab ke Z. (1.36)

Here s = 0, 1, .... As an example we see thata g € L%(R) satisfying Condition A in (1.33) has a
frame operator S € V{ with

1
X = — (8, 8k/vdja) s k,leZ. (1.37)

In §4 we shall study the class V° from the algebraic point of view, and in §5 we shall study V* from
the functional analytic point of view. We show in §5 that ' is a Banach algebra when we take
operator composition as a product and

[Vigs = llels (1.38)

as a norm. This Banach algebra is commutative if and only if (ab)~! is an integer.
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We show the following property of the spaces Vg: We have
VevEt, Vi<l = (I-V)"eV. (1.39)
As a consequence, we show that when g € S generates a frame, S~! has a representation

=" Uy (1.40)
k.l

with 9y = ((1 + k| + [1|)—S) foralls = 0,1,..., and thus°y = S~' g € S. Similarly, when

g € S generates a frame, S™!/? g € S generates a tlght frame.
We conclude this section by an open problem and some comments. We noted that V* is a
commutative Banach algebra when (ab)~! is an integer. In that case it can be shown that

= lim V'l = V] (1.41)

forVeV; Asa consequence we have that for a g € L?(R) having a frame operator § € Vj the
inverse frame operator S~ € 1§ as well. In particular, when g € L%(R) satisfies Condition A and
generates a frame, so does °y. We do not know whether these results continue to hold when (ab)~!
is not an integer.

The latter type of results is very reminiscent to the celebrated 1/f-theorem of Wiener on
absolutely convergent Fourier series. In fact, our approach in §5 is heavily inspired by the proof
of Wiener’s theorem as presented in [8, §150] by Riesz and Sz.-Nagy. Here the (commutative)
Banach algebra of multiplication operators My, with f a function having an absolutely convergent
Fourier series Y, a; ™', is considered both with the norm 3, |a;| and the ordinary operator norm
[My|l. It is conceivable that some of the developments in §5 could be done more economically by
using Gelfand’s theory of normed rings. However, since this theory is not generally familiar to the
practitioners of time-frequency analysis, and the author himself is an amateur in functional analysis,
we have chosen for the more down-to-earth approach of [8, §150].

2. Preparation

In this section we present some basic facts about (upper) frame bounds and the operators Uy
and the fundamental formulas (1.22), (1.23) are established under a variety of conditions on g, f,
h. We refer to §6 for a glossary of notation and definitions used in this paper. For generalities about
frames we refer to [1, §3.2] of which we redo some parts below for self-containedness. Propositions
2.1 and 2.2 are different formulations of practically one and the same result that we could state with
general shift parameters ¢ > 0, d > 0. For the present purposes, however, it is convenient to state
the two versions separately.
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2.1. Proposition

Leta > 0, > 0 (we do not assume ab < 1), and let g € L2(R), B > 0. Then we have

VfELZ(]R) I:Z {(fs gnu‘mb)l2 <B ”f”Z:I

n,m

2
2
< Bl

V('EIE(ZI) H Z Cnm &na,mb

n.m

Here the right-hand member is to be understood in the sense that the mapping ¢ € / 2(Z2, Com # 0 for
finitely many n,m — 3", Cum uamn € L2(R) extends to all ¢ € 12(Z?) and satisfies the indicated
inequality.

Proof. = Let¢ € [%(Z?), ¢pm # O for finitely many n, m. Then

E Cnm Ena,mb

nn

2
— . K
= E ( E Co'm' 8n'a,m'b gna.mb) Com

nan \n'.m'

2.2
2\ /2 1/2 @2
=< Z (Z Cnm’ 8n'a,m'bs gnu.mb) (Z ICnmlz)
nan n'.m’ nam
by the Cauchy-Schwarz inequality. Taking f =3, .. Catm’ Gw'a.mb WE get
2 ) 1/2
Z Cam Enamb|| = B Z Cn'm’ &n'a,m'h ”9”2 , 2.3)
n,m '’
so that
2
Z Cum Ena,mb <B ”Q”% . (2'4)
n.m
The proof of = is easily completed.
& Let f e L*(R). Wehave for N = 1,2, ...
2
Z (f, Bramb) 8nams| < B Z [(f, gna,mb)|2 . (2.5)
[nllm{sN Inl,)m|gN
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Therefore, by the Cauchy-Schwarz inequality,

Z I(fs gnu.mb)‘2 = ( Z (f, 8namb) na.mbs f)

|nl,Jm|<N |n],im|<N

12 (2.6)
< (B > gna_m,,)ﬁ) LfI
Inl.lml=N
so that
> A Gramn) < BISIP 2.7
Inl.lm|<=N
The proof of < is easily completed now. O

2.2. Proposition

Assume that g € L?(R) has an upper frame bound D for the parameters 1/b, 1/a. Then the
mapping G, defined by

6f = ((Frgwsu), -« fel’®, 2.8)

maps L2(R) into /2(Z?), and |G f |2 < D'/ | f]|. The adjoint G* of G, defined by

(G*e, H=(c.Gf), cel’ (@), fel’®), 2.9)
is given by
G'c= Z Cut Ek/b.ija » celX (¥, (2.10)
&l

with L2(R)-convergent right-hand side in (2.10), and maps /2(Z%) into LX(R) with |G*¢|| <
D' |ic|,. Finally, the mapping GG* maps [(Z%) into [2(Z?) with [|GG* ¢l < D |lc|l2, and
its matrix (with respect to the basis ey = (8 8)i.rez fOr k, [ € Z) is given by

(GG")t:rr = (8uybrjas 8k/bia) » kLK I'eZ. 2.11)

Proof.  This all follows from Proposition 2.1 by replacing a, b by 1/b, 1 /a. J

The following results are proved by an adaption of the technique of Tolimieri and Orr in [6].
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2.3. Proposition

Assume that 1, g € L*(R) have upper frame bounds By, B, for the parameters a, b. Then

371 gsan) P < ab By BY k) gl - (2.12)
kI

Proof. Consider the function

H(x,y)= Z (hwx‘-—,\’- hmt,mb)(gna.mb, g-.\-,----y) , x,yeR. 2.13)

mn,mn

This H is continuous and periodic in x, y with periods a, b. We have for H the Fourier expansion

1 . .
H(x, ~— . p—2nikxfa=2mil y/b , .14
(x,¥) > Lz;ckle (2.14)
where, as in [5, §2],
e = (B, getppisa)> = 0, k,leZ. (2.15)
Using the identity
S k| ; 1 sin (K + 1)9/2\2
> \tme) = : ) 2.16)
k=—K K+1 K+1 sin /2

for Féjer’s kernel, we get

I
E (-2
NS S K+1 L+1

_ /" /” (sin 2(K + Dx/a sin 7(K + 1)y/b
00

2.17)

2
H(x,y)dxd
(K+1)sinmwx/asinmy/b ) ) Y

<abmax(|[H(, y)||0<x <a, 0<y<b)<abB,/> B)*|h| gl ,

where in the last inequality the Cauchy-Schwarz inequality for the right-hand series in (2..13)
has been used. The result follows now from monotone convergence (since cy = 0) by letting
K — oc. O
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2.4. Proposition

Let f, F@, f® £ ¢ L2(R), and assume that ¥, £ have upper frame bounds for the
parameters a, b and that

Z 1D, 5 NS FE < 00 2.18)

Then

4 (3) (4) (n 2
Z (f(l)’ f;t(a,)mb)(fua.mb’ 2)) = Z (f 3) /\/h 1/u)(fk/b la> f( )) . (2.19)

n,m

Proof.  As in the proof of Proposition 2.3 we consider the continuous, (a, b)-periodic
function

H(x,y) = Z (f‘ X,—y1 n(j)mh)(fn(:)mb E.-)\').—)') ’ x,yeR, (2.20)

whose Fourier coefficients ¢y, are given by

= (D S rsd Fpigar £ - @2.21)

By assumption )", |cy| < oco. Hence H coincides everywhere with its Fourier series, since both
functions are continuous. The result (2.19) then follows by taking x = y = 0. O
We next present some results on the operators Uy, given by

(U )E) = figpajat) = ™1 ft —k/b),  teR, (2.22)

for f € L*(R), and representation results for frame operators.

2.5. Proposition

We have
Ut = Uk_ll — p2miki/ab U_pet s (2.23)
U Upp = 72D [y o4y = 7200k b gy (2.24)
Wier f, U b)) = (f, hgmioyb, —1ryja) €1 1K 2k (2.25)

forallk,l,k',I' e Zand all f,h € L%(R).
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Proof. Tedious but simple verification. O

2.6. Proposition

Assume that g € L2(R) has an upper frame bound for the parameters a, b, and let S be the
frame operator (1.4). Then we have for all £, h € L2(R) such that 3", , |(Ux f, h)|* < co and all
K.l'ekZ

1
Wyer Sf. 1) = — ; (Upr 8, Un 8) (Uit f. h) . (2.26)

Proof.  First consider the case k' = I’ = 0. Then the left-hand side of (2.26) equals
2 um (fs &nanb) (&namp, h). Now when Yokt W f, m)> < oo, it follows from Proposition 2.3
that the right-hand side of (2.26) converges absolutely. Hence the result for &' = [’ = 0 fol-
lows from Proposition 2.4. For general k’, I the result follows by using the identities in Proposi-
tion 2.5. O

2.7. Proposition
Let g € L?(R) and define S by

(Sf. 1) =D (f: gnams) Gnamp,B),  fhES. 2.27)

n,m

Then S maps S into S’. Furthermore, we have forall f, h € S and all k', € Z the formulas
1
(Uer S0 = — Y (Upr 8. Uu g)(Ua f, b) (2.28)
ab ¥
and

ab

1
Z Uu SF, WUk £, 1) = — Z Upr g, Un 8) Ui f, B)Y(Upr f, )" . (2.29)
%l s

Proof. Let f,h € 8. Since f, h have upper frame bounds for the parameters a, b and
(Uy f, k) decays rapidly in k, [ while (g, Uy, g) is bounded, we see from Proposition 2.4 that

1
> (s Gt} Grams 1) = — D (&, Uu Wi £ 1) - (2.30)
nm k.

Now when 2 € S, b — 0 in S-sense, we have that 3", , |(Uy f, 2®?)| — 0. It follows easily
that (2.27) defines an element Sf of &'. Similarly, formula (2.28) follows.
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To show (2.29) we note that by rapid decay of (Uy f, h) and (2.28)

L Z (Ur g8, U 8) (U [, BYUpr fo )"

ab %,

= Z {% Z(Uk’l’ga Uy 8)(Un 1, h)} Upr fr B)* 2.31)
i

k1

=Y (Uer Sf, W Uer £, b)*

70
as required. O

We finally present a result for functions satisfying Condition A.

2.8. Proposition
Assume that g € L2?(R) satisfies Condition A, so that

E:=)"|(g ki)l < 0. 2.32)
k.l

Then g has the upper frame bound E for the parameters 1/b, 1/a and the upper frame bound E /ab
for the parameters a, b. The frame operator S of (1.4) has the unconditional series representation

1
§=— Z(g, Uk 8) Ugs - (2.33)
ab T

Proof. We compute for ¢ € I2(Z*) by using Proposition 2.5

2

< Z lewt| lewr | 18y 8k=kry/b, t—inyya)] - (2.34)
kLR

Z Ciki 8k/b.lja
kI

It is an elementary fact from the theory of Toeplitz forms that the right-hand side of (2.34) is
bounded by E ||c||3. Hence the result for the parameters 1 /b, 1/a follows from Proposition 2.1 with
a, b replaced by 1/b, 1/a.

The result for the parameters a, b was already given in [6, Theorem 2], and the formula (2.33)
follows from Proposition 2.6. O

3. Proof of the Main Result and Computation of Dual Functions

In this section we show the main result (1.17) on the equivalence of boundedness and positive
definiteness of S and GG*, that °y can be computed according to (1.18) and that the further results
(1.27)-(1.31) hold when g generates a frame.
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3.1. Theorem

Assume that g € L2(R); and let A > 0, B < co0. Then we have
1
AISSSBI@AISEGG*SBI, (B.D

where the respective I’s denote the identity operator of L2(IR) and /2(Z?), in the sense that when one
of §, GG* is well defined as a bounded linear operator of L2(R), /2(Z?) then so does the other and
the equivalence in (3.1) holds.

Proof.  Assume that Al < S < BI,and let 1 € S generate a tight frame, ||h] = 1.
Then the functions U} & are orthonormal as readily follows from the Wexler-Raz result (also see
[6, Theorem 101). Now consider (2.29) with an f of the form f = Zk, ) ¢k Uy h where ¢y # 0 for
finitely many k, /. Then the left-hand side of (2.29) equals (Sf, f), and therefore

1 \
SfH=— k;l (U g, Uk 8) cow ¢}y - (3.2)
Furthermore,
AIFIP<SAH <BIAP:  I1P=)] leul . (33)
kil

Hence the right-hand side of (3.2) is bounded between A |ic|3 and B ||c[3. As in the proof of
Proposition 2.1 this implies that g has the lower and upper frame bounds Aab, Bab; whence Al <
== GG* < BI, as required.

For the proof of the converse we note that for F € &', f € S we have the resolution-of-the-
identity formula

00
(F. ) =ﬂ (F, hey)(f b y)* dx dy (3.4

w00

when h € S, ||k = 1. Here it should be noted that (F, k, ) has at most polynomial growth in x, y
while ( f, hy.,,) decays more rapidly than (1 4 |x| + |y[)™* for any s > 0. Since

(F, hx--k/b,y-l/a)(f» hx——k/l:,y—-l/a)* = (U F, hzy)(Un £ h.v.y)* (3.5

forallk,! € Z and all x, y € R, we can write (3.4) as

176 1/a

Ffy= [ [ X WuF bW fohesy dxay. (3.6)
o o K

Hed ‘
S
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Now use (3.6) with F = Sf (see Proposition 2.7). Then it follows from (2.29) and Al < ﬁ GG* <
BI that

/b 1/a

(Sf,f)xc—llz// Z (Upr 8 Ui &)Ut fr he,y) (Ui f, by y)* dxdy 3.7

kR

lies between ADy and B Dy, where

16 1/a 0o 00
o= [ [ Siwishitardy= [ [ (fhpParay=1sF. @3
0 0 kil —00 —00
It is concluded that
ANFIP < (SF £ =Y 1(f guamn)? < BIFI2, (3.9)

n,m

and since f € S is arbitrary, the proof is easily completed. O

‘We have the following consequences of Theorem 3.1.

3.1. Proposition
Letg € LX(R).

1. g has the upper frame bound B for the parameters a, b if and only if g has the upper frame
bound Bab for the parameters 1/, 1/a.

2. Assume that g has an upper frame bound for the parameters a, b. Then for all ¢ > 0 there
isac € *(Z%) suchthat | 3, ,, Cum &na,msll < £ lcll2-

3. Assumethat g generatesaframe. Then thereisan0 % h € L2(R) such that (4, 8kipifa) =0
forallk,l € Z.

Proof. 1. This can be easily distilled from the proof of Theorem 3.1.
2. For the proof of <« in Theorem 3.1 we do not need that ab < 1 since the 4 in (3.4) only
needs to be in S and have norm 1. Now when || Zn_m Cnm 8na,mb|l = C |ic||2 for some C > 0 and

allc € IZ(ZZ), the matrix ((gn‘u.m'bv gna,mb))n —_
Theorem 3.1 with 1/b, 1/a instead of a, b, we sé'é’that g generates a frame for the parameters 1/b,
1/a. This is impossible.

3. Since GG* is bounded and positive definite, the set {Z“ Cul 8ribasa | € € 2(Z) is a
closed linear subspace of L*(R). Suppose that it is all of L%(R). Then take any f € L*(R) and
write f = Zk‘, Cki 8k/bi/a With C|iclla < || fIl < D |lcl2 for some C > 0, D < oo independent

of f. Now 2o (fs 8ispasa)? = |GG* ¢|?, and it follows easily that g generates a frame for the
parameters 1/b, 1/a. This is impossible.

is bounded and positive definite. Using <= of
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Note.  Proposition 3.1.3 holds for general g € L*(R) as was pointed out in {2, p. 978] to
follow from certain results of Rieffel in [9] that are far from elementary. The author is indebted to
I. Daubechies for showing how this can be used to prove that for any g € L?(R) having an upper
frame bound there is a 0 # ¢ € [2(Z?) such that Y nm Cnm &namb = 0.

‘We next show that (1.18) holds. This would follow immediately from Proposition 3.4, but the
results we prove here give somewhat more.

3.2. Proposition

Assume that g € L2(R) generates a frame. Then °y is the unique element y of L*(R) of
minimum norm such that Gy = g; see (1.14). Also, °y is the unique solution to the problem (see

(1.15))

4 8

v gl

minimize ‘ overall y € LYR) with Gy =g . (3.10)

Proof. Let i € S generate a tight frame, and assume that y € L*(R) satisfies Gy = ¢.
We shall show that

h= Z (s Yua,mb) &namb - (3.11D)

nm

We first observe that 3 [(h, Yuamp)|? < 00 since h € S; whence the right-hand side of
(3.11) converges in L?(IR)-sense. Now let f € S. We get by Proposition 2.4

1
Z (v, hml.mh)(ﬁm‘mlh g) = ;l_[; Z (f, hk/h,l/a)(yk/b.l/uy g) . (3.12)
Tkl

n.m

The right-hand side of (3.3) has only one nonzero term, viz. for k = I = 0, and equals (f, k). The
left-hand side of (3.12) can be rewritten as

(fm Z (h, yluunh) gnu.mb) . (3.13)

n,m

From this (3.11) follows.
Since h generates a tight frame, it has the frame bounds A = B = 1/ab. We thus find from

the minimality property (1.8) that

1 . 1
= IV IP = 3 1 Va5 3 10 pam)* = 5 7 I (3.14)

n.m n,m

with equality if and only if (A, °Vua,mb) = (B Vna,mb) for all n, m; i.e., °y = y since h generates a
(tight) frame.
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To show that °y is the unique solution to the problem in (3.10) we just observe that for any
y € L*(R) satisfying Gy = o we have

“.L...i“:2—2l{e_.(_y;§_)_=2(1— ab ) (3.15)
vl llel lyilgl Iviigl
and ab = (°y, &) < [I°vIlllgl < lvillgl. O
3.3. Proposition
Assume that g generates a frame. Then
oy — G*(GG*)—I o =: uoy : “uy”2 —_ (5117)2((;(;*)(‘)'”1;“0 . (3.16)

Proof. According to Theorem 3.1, GG* is a bounded, positive definite operator of / 2(7%);
whence *°y € L?(R). We have obviously G *°y = ¢. Now let y € L*(R) and Gy = ¢. Then

(¥ =y, *°y) = (G(y =), (GG*)'a)=0. (3.17)
Hence
IvI® =12y 12+ lly =y I? = |y (3.18)

with equality if and only if ¥ = °°y. This shows that “°y is the minimum energy solution y of
Gy = o. Hence °y = °°y by Proposition 3.2.
We compute

IPYIP = 16*(G6M ™ el = (6697 ¢, o) = @h)* (GG, (3.19)

o000 ?

and this completes the proof. O

We proceed by showing (1.27)-(1.31). Theresult(1.27) is just Proposition 2.6 with &' = [’ = 0.

3.4. Proposition

Assume that g generates a frame. Then °y also yields a frame, and we have

-1
_]'_GG* — _l_ol-snl—\*
2b =7 ) (3.20)
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where

o= (o), FEL®. (321)

Moreover, we have for all f, h € L2(R) such that )", , |(Uy f. h)[> < oo that
1
Ur ™' foh) = — 3 (Ui v, U °y) Wn £ 1) (322)
' kit

for all &', !’ € Z. Finally

1
—°T'=(GG")'G. (3:23)
ab

Proof. It is well known that °y generates a frame; whence Theorem 3.1 applies to °y, in
particular °I" °[™* is a bounded mapping of /2(Z?) into itself.
By Proposition 2.3 we know that

3 gyl D 1CY Vi) (3.24)
ki, k!

are both finite. Then by Proposition 2.6

ab Sy Sy = (8 ptrjas “Verspara) = Ui Sy, Ui °) (3.25)

Il

1 o
= > Uir 8, Uit &) Wi °y, U ) -
a5

That is,

abl = —177- GG*°r°r+, (3.26)
a

as required. '
Next to show (3.22) we just note that §-! is the frame operator corresponding to °y since for

f e LAR)

s f= Z (f. “Vnamb) *Yna,mb » (3.27)

n,m

and we apply Proposition 2.6 with §~', °y instead of S, g.
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Finally to show (3.23) we let & € L2(R). When we take f = g in (3.22), so that 7! f =°y
and )", [(Uy f, )|* < oo, we see that

o 1 (o] ok
CViesprar h) = = %:( LT Yt k0,00 (8ksotfas 1) (3.28)

forall k', !’ € Z. By (3.20) and the definitions (2.8) and (3.21) of G and °T" it thus follows that
°I'h=ab(GG") ' Gh, (3.29)

and this proves (3.23). 0

We conclude this section by presenting some examples. To that end we need the Zak transform,
defined for f € L2(R) as the L2 _(R?)-convergent series

loc

ZHEvy= Y fe—-pe,  @v)eR. (3.30)

p=—00

We refer to [1, Chapter 4, §1] for the main properties of the Zak transform that we shall use without
further referencing.

Example 3.1.  We construct g,y € L%(R) such that Gy = g while neither g nor y
generate a frame. Letg = %, b= 1. Anh € L*(R) generates a frame (see [10, p. 981)), if and only
if

{ A=essinf ([(Zh)(t, ) + [(ZW)( + L, )P} >0
(3.31)

B :=esssup (|[(Zh)(t, v)I* + [(Zh)(t + 1, 1)} < o0,

and the lower and upper frame bounds are A, B, respectively. The condition Gy = ¢ can be
expressed in terms of Zak transforms as

1 1
[ [ @neozere e g, < ta,s,. (332)
0 0

Hence choose a g € L*(R) such that h = g does not satisfy either condition in (3.31) while
nevertheless 1/Zg € L}, (R*),and take y € L2(R) such that Zy = 1 /(Zg)* (this is possible). Now
(3.32) holds while » = g nor h = y satisfy any of the conditions in (3.31).

Example 3.2.  We shall constructa g e L?*(R) such that g has an upper frame bound for
the parameters a, b (and, whence, for the parameters 1/b, 1/a) while g does not satisfy Condition
A; see Proposition 2.8. Leta = 3,b = 1, and take g € L?(R) such that the second condition in
(3.31) is satisfied. Then g has an upper frame bound for the parameters %, 1 (and 1, 2). Suppose that
g satisfies Condition A so that 2 ks 1(85 820)| < co. It can be checked that then
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D (g gra) TR = L(Zo) (1, 0IP + 5 UZ)(E + 5. 0P (3.33)
k.l

almost everywhere. The left-hand side of (3.33) is continuous in ¢, v, while the right-hand side is
only required to be essentially bounded. Hence counterexamples abound.

Example 3.3. We shall construct a g € L*(R) such that 3, . 1(g, gua,ms)|* and
Yora 18 &kybisa) |2 are both finite while g has no upper frame bound for the parameters a, b (or 1/b,
1/a); see Proposition 2.3. Again take a = %, b =1, and take g € L*(R) such that

|(7s)(r WP+ = |(2g)(r+— v (3.34)

is in le,t(Rz) but not in L®(R?). The Fourier coefficients of the function in (3.34) ar<, (g, gka)s
whence Z,\ ) g e, 2)|* < 0o. Also, g has no upper frame bound for the parameters 2, 1(or1,2).

We must check that 3, 1(g, g1,,,)|* < 0. Let h € L*(R) be such that |Zh|* € L% (R?). Then
it is not hard to check that

Dot gea)P =) (Zh, Zgea)
k. k.

1 1
1 1
-2 o 3.35
_2//‘(2;1)( tv)(lg) (21‘,\)) (3.35)
0 0
Zh lz ! v)(Z )*(it+£ v) [*dtdv < oo
+( ) 2 +21 g 2 2: .

Taking i = g, , withx = 0, 3, y = 0, 1 we thus see that

1 1

g gy = D Y 18 gragan)l* < 00, (3.36)

nam r=0 s=0 &,/

as required.,

4. The Operator Algebra V

In this scction we consider the set V of linear operators of L2(R) of the form

= Z akl Ukl (4.1)
k!l

where o € I (Z%), so that |||, = 2 4 law| < oco. The set of selfadjoint members of V is denoted
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by Vo. As an example of a V € V), we have the frame operator S corresponding to a g € L*(R)
satisfying Condition A; in this case

1
= (8> 8ksboisa) » k.leZ. (4.2)

The class V), also contains members V that do not arise as a frame operator; an example is the V in
(1.9) provided that g satisfies Condition A.

In this section we concentrate on the algebraic properties of 1 while in §5 we consider certain
subspaces V* of V from the functional analytic point of view. The ultimate goal of §84 and 5 is to
present a framework that can be used to find out how certain smoothness and decay properties of a
g generating a frame are inherited by the dual function °y.

Along with V, V, we shall also consider the set W of linear operators of /2(%?), the matrix of
which is of the form

W =W = (g y—p e ORIy, ke (4.3)
with & € 11(Z?). The set of all selfadjoint members of W is denoted by W.

Definition 4.1.  Forg, 8 € I'(Z?) we let

- ~2mikl/ab

o= (aik,_z gkl kleZ » 4.4)

a¥p= (Z Qi By €Tk /“”) . 4.5)
kb kleZ

4.1. Proposition

For any a € [1(Z?) the operator £V in (4.1) is well defined, and we have
el < 15V < llal . (4.6)

where || V| is the ordinary operator norm

VIl = sup [Vf] 4.7
1f1=1

for bounded linear operators of L2(R). Furthermore, when i € L2(R) generates a tight frame and
I2]] = 1 we have

oy = (*Vh,Uyh), kleZ. (4.8)
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Also, for o € 1'(Z*) we have
@Evy =4y | 4.9)
and when g, 8 € 11(Z*) we hav y:=akfe 14Z%) with ||y [l < lleells [|B]1 while
eyby =ty (4.10)
Proof.  Since |Uyl|| = 1 for all k, [, the right-hand side series in (4.1) is convergent in
operator norm, and
1£VI= Y ey Un| < ) lowl =l - @.11)
Y] &l
(4.12)

Next let # € L2(R) generate a tight frame, ||| = 1. Then the Uy, h are orthonormal, and

1£VI2 2 jeVhP = Y awed,(Uah Usrh) = N2l -
ks kU

Since ||4| = 1, we get the first inequality in (4.6). We also see that the oy, are given by (4.8).
The proofs of (4.9) and (4.10) consist of simple verifications using Proposition 2.5. We note
(4.13)

> lewr| 1Be-p sl = ezl 1811

here that
>yl < >
ki K

k.l
and the proof is complete. O
4.2. Proposition
Forany ¢ € 11(Z?) the matrix €W maps 12(Z*) into 12(Z?), and we have
fella = 1W< lleells (4.14)
4.15)

where || W] is the ordinary operator norm
Wi = sup |W§ll2
18l2=1

(4.16)

=4

for bounded linear operators W of / 2(7Z%). Also, for g € 12(Z*) we have
EwW) =W,
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and when o, f € 1'(Z*) we have

e by =Sw §=B%a (4.17)
Proof. Leto € !(Z%), B € I'(Z*). Then we have
Z EWaper Ber| < Z otk | | Bk t—rr] - (4.18)
P P

Since || B.—g,.—rll2 = ||Bll2, the second inequality in (4.14) follows from the triangle inequality for
| 1l2. Also, we compute

IEWel? = D 1EWel* =Y lawl* = i} 4.19)
k.l k.

when e = (8, 81)k,1ez; Whence the first inequality in (4.14) follows.
The statements in (4.16) and (4.17) are proved by simple verification. O

4.3. Proposition
Leta € [*(Z*). Then we have for ¥, I’ € Z

Ugr 2V = Z EWeir Uyt - (4.20)
Kl

Furthermore, for any f, # € S we have

Z UV ) Uu f, h)* = Z EWirpor (U f, W) (Upr £, h)* . 4.21)

k.l kb

Proof. The proof of (4.20) consists of a simple verification using Proposition 2.5. For the
proof of (4.21) we use (4.20) together with rapid decay of (Uy f, h) to write the quadruple series at
the right-hand side of (4.21) as a repeated double series. |

4.4. Proposition

Leta € [/(Z*)and r = 1,2, .. .. Then we have

&V = Z ) Uy 4.22)
k!
where
r — 1 times
e N
Q= (QW)'—lg_ - ((gw)r) = a¥---Fqa . (4.23)
kl;00
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Proof. It follows from Propositions 4.1 and 4.2 that

r — 1 times
) — m
o= gk Fa e W = EwW)" . (4.24)
Hence, by definition
o((") = (W) )
- (( ) >kl;oo (4'25)

Finally we have for g € 14(Z*) by (4.20)

byey =3 P U™V = CWBu Uu (4.26)
K kol
Hence by taking 8 = " ~! we see that
oV =pFa=tWh=2Wa" V= = W) e, 4.27)
and this completes the proof. O

4.5. Proposition
Leta €/ (Z*) such that ¢ = &. Then 2V, %W are selfadjoint, and for A, B € R we have

Al <&V < Bl & Al <*W < BI. (4.28)

Proof. The statement about selfadjointness follows from Propositions 4.1 and 4.2.
The statement (4.28) follows from (4.21) in exactly the same way as Theorem 3.1 follows from

(2.29). O

4.6. Proposition
Letg € (1(Z*). Then |2V = [EW].

Proof. By Propositions 2.1 and 2.2 we have
eyeyy =Ly,  @EWyew =Ew, (4.29)

where g = ¢ % &. Since g = B we can use Proposition 4.5 with g instead of o and conclude
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that we can take in the inequality 8y < BI the same value for B as in the inequality Lw < BI.
This completes the proof. O

5. The Operator Banach Algebra )’ and Invertible Frame Operators

We consider in this section certain subspaces V* of V with the property that any positive definite
V that belongs to all }* has an inverse V! that belongs to all V* as well. As an application we
show that when g € S generates a frame °y € S and that S™1/2 g € S generates a tight frame. At
the end of this section we raise the question of whether °y satisfies Condition A when g satisfies
Condition A and generates a frame. This question is answered affirmatively in the case that (ab)™!
is an integer, while for the general case it is shown that °y satisfies Condition A when g generates a
frame and

1
Y (g gippaga)l =o(ﬁ) ., N—>o. (5.1)

max(Jkf,|[|)>N

Definition 5.1. Fors =0, 1, ... wedefine }* as the set of all linear operators V = £V € V
for which

15V lles = llelly,s == Z (L + [k + [ID* || < 00 (5.2)
ki

Furthermore, we let 1§ be the set of all selfadjoint members of 1*.

Definition 5.2. ForN =0, 1,... wedefine 'V as the set of all linear operators V = 2V ¢
V for which

ay =0, max(lk|, |I|) > N . (5.3)

Furthermore, we let ¥V be the set of all selfadjoint members of M.

5.1. Proposition

V¢ is a Banach algebra when we take operator composition as a product and || |4, as a norm.
Proof. It is not hard to check that V* is a Banach space with || [|4.,. We must verify that

1V EV llgs < 12V Il 12V 1 (5.4)
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when ¢V, &y ¢ Vs, Well, we have (see Proposition 4.1)
1V EV gy = D (L + [k + (1D 1@ B
k.l

< D AN Y lowor] 1Bt vl -
k.

K.
Now using that s > 0 and
Lkl + 1 s A+ KT+ DA+ k=K +11-1), kLK UeZ,

we easily get (5.4), and this completes the proof. O

5.2.  Proposition
We have for &£V e V*

lellz = 1=VIES 1%V l4s »
and when V e NV we have fors > 0
IV lls,s < @N + D" llal2 -
Proof. Statement (5.7) is a consequence of (4.6) and the fact that
el = 1%V ilgo < 1%Viws,  s20.
To show (5.8) we note that for £V € ¥V we have

12V g = 3 (L k] + D) o] < @N +1)° ) letal
k k.l

Now by the Cauchy-Schwarz inequality

1/2
> lowl < ((2N +02 Y |ak,|2) = @N + D el
k.

k.l

and (5.8) follows. O

429

(5.5

(5.6)

(5.7)

(5.8)

59

(5.10)

(5.11)
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5.3. Proposition
Let V e MV,. Then

WVIT < IV iy < @ N +DSVIE, r=0,1,.. (5.12)

When, in addition, || V|| < 1 we have (] — V)~! € Vj and

I = V) Yy < 14+ QN+ D+ DIV (L= V)2 513
< E(N+ D A= VID™2,  s=01,.... '
where
E,=1+4+2% (s + 1. (5.14)

Proof. Since V is selfadjoint, we have ||V||" = ||V"|| by the spectral mapping theorem. It
is furthermore easy to see from Proposition 4.1 that V" € "¥V,. Hence, by Proprosition 5.2 applied
to V' instead of V,

(V sy < @rN + THVT I = @ N+ D VT, s20. (5.15)

Assume, in addition, that |[V|| < 1. Then fors > 0

o0

o0 o0
STV e =D @N+DHVIT S 1+ QN+ DY VT, (5.16)
r=0 =0

r=1

so that the left-hand side of (5.16) is finite. It follows that (] — V)~! = Y, Vel
Consider the functions p,(x),n = 1,2, ..., defined by

a d\" 1
n(x) = (1 —x)"*! "x" = (1 —x)tt -—) , <x<l. (517
pa(x)=(1-x) ;r x (1 —-x) ldx T 0<x < ( )

The p,’s satisfy the recursion
Pnx) =x(1 —x) py_ (x) +nx py_i(x), n=12,..., (5.18)

with initialization po(x) = 1. It follows then easily by induction that p, is a polynomial of degree

n with nonnegative coefficients satisfying p,(0) = 0,n = 1,2,.... Hence
sup x! p(x) = pa(1) =n!, n=12,..., (5.19)
O<x<l

and from this the result follows. O
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Note.  The author is indebted to S. J. L. van Eijndhoven for proving the present version of
(5.13), which sharpens the one found by the author.

Note. Define for V € V* the spectral radius rir* of V by
rhs = = lim ||V & (5.20)

(by the theory of spectral radii this limit indeed exists; see also [8, §1501). It follows from Proposition
4.3 that

r' =1V, veVy. (5.21)

5.4. Proposition
Let S = £v ¢ V2‘+1 and assume that A > 0, B < oo are such that A] < § < BI. Then
S~tevs.

Proof. Write

S=Sv+Ty;  Sv= ),  Bulu (5.22)
max(lk}, [[)sN

with N = 0, 1, ... to be determined later. Then Sy € ¥V, Ty € Vz”'l and ||Twl#2s+1 — Oas
N — oo. Since

A-ITwIDI =S=Ty =Sy < (B+|TnIDT, (5:23)
we can take Ny so large that
Al <8y < Byl , N = Ny, (5.24)

for some A, > 0, B; < oc.
Now consider

SN € NVo , (525)

B+ Ay

so that

Bi+ A : cB-A (5.26)
se=2E gy W= g
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1t follows from Proposition 5.3 that

2E, (B1 + A
Ay

s+2 s+1
o ) (N + 1. (5.27)
1

2
Sytlles = I = V) My <
1S3 les = 3 lH¢ M < 5

At the same time we have

ITllas = o((N +D™1), N oo, (5:28)
since
ITnles = D (L+1kl+ 1D [Bul (5.29)
max(|k[,l)>N
s+1
< (#2) ' S AR I Bl -
N + max([k],|/)>N
Now take N so large that
1T Syl < I Twlls ISy Hles < 1. (5.30)
Then
o0
S =Sy + T =S U+ Ty Sy =S5 Y (=1 (T Sy (5.31)
r=0
is an V*-convergent series, so that S™! € V3, as required. O

5.5. Proposition

Assume that ¢ € S generates a frame. Then °y € S.
Proof. We have
@ gima) = O((L+ kI + D7), 520, (5.32)

Hence the frame operator S satisfies

1 25+1
S= pry ; (&, 8k/baya) U € V§' T, s>0. (5.33)
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Therefore the inverse frame operator S~! has by Proposition 5.4 a representation

S = 0y Uy du=O0(L+1H+1D™),  sz0. (5.34)
kI
It thus follows that
y=S8lg=) OyUug. (5.35)
k.l

This implies that °y € S since it follows easily from (5.34) and g € & that
Yo =0+ po=o(A+pd), 520, (536

where "y denotes the Fourier transform [ =21 ©y (¢) dt of °y . This completes the proof. O

5.6. Proposition

Assume that ¢ € S generates a frame. Then h := §~/2 g € S generates a tight frame.

Proof. We have forn,m € Z
hna.mb = S_llz 8na,mb (537)

since S, and therefore $~!/% commutes with all time-frequency shift operators over distance na, mb.
Hence for all f € L*(R)

f =S5 i S S—l/z f = Z (fs hna,mb) hna,mb ) (538)

n,m

showing that s generates a tight frame.
To prove that & € S we shall show that $~!/% € Vj for all s > 0. To that end we consider the
Dunford representation

gin_ L

. f ool - 8§ do , (5.39)
2mi

e
where C is the circle [0 — 4 (B + A)| = R with R a real number between 5 (B — A) and 3 (B+A).
We write

1 § — (BEA)
ol —§ = (a-— 5(1B+A)> (1» V(a)); Vi) = :’@@T’ (5.40)
2
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Proceeding as in the proof of Proposition 5.4 we write V(¢) = Vy (o) + Tn(0), where fors > 0

Vo) eV 1Ty (@) l2s+1 = 0, VN (@) = [IV(0)]| = <1 (54D

as N — oo uniformly in o € C. Using Proposition 5.3 with V = (a - %(B -+ A)) V(o) /o —

1 (B + A)| € "V, we easily see that Vy (o) satisfies (5.12), whence (5.13). Therefore, as in the
proof of Proposition 5.4,

(0l — ' = (a - % (B + A))vl (1 -~ VN(J))A(I - TN((I)([ - vN(a))“l) eV (5.42)

with ||(cI — S)7!|l4,, uniformly bounded in & € C when N is sufficiently large. This implies
that $1/2 € V§ for all s > 0, and the proof is completed in the same way as the proof of Proposi-
tion 5.5. U

5.7. Proposition

Assume that g generates a frame and that

1
Z 18, 8k/bija)| = 0(7\,—) , N = 0. (5.43)
max(|k,}{|)>N

Then °y satisfies Condition A.

Proof.  Consider the proof of Proposition 5.4 for s = 0. In (5.30) we only need that
1 Twll4.0 = o(N~"); see (5.28), i.e. (5.43). It follows that S~! € V{. Hence S~ has a representation

ST =" Oy Uy > ul < oo (5.44)
ki kd
Therefore °y satisfies Condition A since

1
0 _— — (8] 13] 5.
W= CVs "Vibiaga) (5.45)

by Proposition 3.4, and the proof is complete. O

5.8. Proposition

Assume that (ab) ™! is an integer and that g generates a frame and satisfies Condition A. Then
°y satisfies Condition A.
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Proof. The Banach algebra V0 is commutative. It can therefore be shown as in [8, §149]

that
rely SR, vuell. (5.46)
Here r** is the spectral radius defined in (5.20). Now consider the proof of Proposition 5.4. Then
2 2 -2
Z:=1- S= I——*——S)—}— T) 5.47
B, + A, ( B+ A N Bi+4A " 47
satisfies
B —-A
ho o L0 Ly o < 1 5.48
S At [ Tleo (5.48)

when N is sufficiently large (here we also use that rg‘" < |U|l#,o for U € V). Now it is easily

concluded that

sl=—2 -zt ey (5.49)
B+ A ’
and the proof is completed in the same way as the proof of Proposition 5.7. O

6. List of Notation and Definitions

L*(R) set of square integrable functions with ordinary norm || || and inner product (, )
IP(Z?*)  set of all double sequences ¢ with Jiat|l, = (3, low|?)/? < oo as a norm
S, 8 Schwartz space of C™ functions of rapid decrease, dual of S
I identity operator, either of L?(R) or I2(Z?)
(Nl ordinary operator norm || V|| = sup (| V| | f € L*®R), || fll = 1)
or [W =sup {|WBl2 | B € 2(Z7), |l =1}
for bounded linear operators V of L2(R) or W of 12(Z?)
fo Fey () =¥ f(t —x),t € R, for f € L*(R)
Uy U f = fijpija for f € LHR)
S frame operator f — " (f, &a,mb) &na,mb
5 forg € L*(R) the mapping f & L*@®) — ((f. gibu)
A, B lower, upper frame bound for the parameters a, b
Cc,D lower, upper frame bound for the parameters 1/b, 1/a
°y °y = §~! g minimal dual function

kleZ
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a o = ab 8o 810, k, 1 € Z, with 8, Kronecker’s delta

°0y 0y = G*(GG*)~'g minimum norm biorthogonal function

1% all linear operators V of L(R) of the form V =2V = Zk', ap Uy witha € 1MZ%
Vo  all selfadjoint members V of V

i all linear operators V of L2(R) of the form V =2V = Zk‘, oy Uy with

12V Iy = N = S (L + [k] 4 1D fora] < 00
k.l

i the spectral radius lim, .o |V'[|y/7 of V € V¥
Vy  all self-adjoint members V of V¥
Ny all V =42V e V with o = 0 when max([k[, |[|) > N
Ny, all self-adjoint members of ¥V
W all linear operators W = £W of | 2(Z*) with matrix of the form
(g pp @™ FTHTRSay ) with @ € 11H(ZP)
Wy  all selfadjoint members of W
~ Gy =at, ek ke, fora €l'(Z?)
* @F B = Loy ke By—ip gy e 2RI k1 € 7, fora, B € 1'(ZY)
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