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Abstract

We relate the matrix elements of the linear systems, arising in the Zibulski-Zeevi method for computing dual functions
for rationally oversampled Weyl-Heisenberg frames, to the Wexler-Raz method for computing dual functions. We give
a necessary and sufficient condition for two functions g, 7 having a frame upper bound to be dual in terms of their Zak
transforms, we characterize the minimal dual function °y and we present a necessary and sufficient condition, in terms of
the Zak transform, for a function g so that the Tolimieri-Orr condition A is satisfied. The latter result is used to show that
a g generating a rationally oversampled Weyl-Heisenberg frame and satisfying condition A has a minimal dual function
that satisfies condition A as well. '

Zusammenfassung

Wir beschreiben eine Beziehung zwischen den Matrixelementen der linearen Systeme, die in der Zibulski-Zeevi-
Methode zur Berechnung dualer Funktionen fiir rational iberabgetastete Weyl-Heisenberg-Frames auftreten, und der
Wexler-Raz-Methode zur Berechnung dualer Funktionen. Wir geben mittels der Zak-Transformation eine notwendige
und hinreichende Bedingung dafiir an, da3 zwei Funktionen g, y, die eine obere Frame-Schranke besitzen, dual sind. Wir
charakterisieren die minimale duale Funktion “y, und wir formulieren mit Hilfe der Zak-Transformation eine notwendige
und hinreichende Bedingung dafiir, daf3 eine Funktion ¢ die Tolimieri-Orr-Bedingung A erfiillt. Unter Verwendung des
letzteren Ergebnisses wird gezeigt, daB eine Funktion g, die einen rational iberabgetasteten Weyl-Heisenberg-Frame
erzeugt und Bedingung A erfiillt, eine minimale duale Funktion hat, die ebenfalls Bedingung A erfillt.

Reésume

Nous mettons en correspondance dans cet article les éléments des matrices de systémes linéaires apparaissant dans la
méthode de Zibulski-Zeevi pour le calcul des fonctions duales pour des trames de Weyl-Heisenberg suréchantillonnées
rationnellement, avec la méthode de Wexler-Raz pour le calcul des fonctions duales. Nous fournissons une condition
nécessaire et suffisante pour que deux fonctions g et y ayant une borne supérieure de trame soient duales en termes de leur
transformées de Zak, nous caractérisons la fonction duale minimale °y, et nous présentons une condition nécessaire et
suffisante, en termes de la transformation de Zak, sur la fonction g, de sorte que la condition A de Tolimieri-Orr soit
satisfaite. Ce dernier résultat est utilisé pour montrer qu'un fonction g générant une trame de Weyl-Heisenberg
sur-échantillonnée rationnellement et satisfaisant la condition A a une fonction duale minimale qui satisfait A également.

Keywords: Weyl-Heisenberg frame; Rational oversampling; Zak transform; Gabor expansion

0165-1684/95/39.50 © 1995 Elsevier Science B.V. All rights reserved
(

SSDI 0165-1684(95)00112-3



SIGH

An Int¢
A publ

Editor-
Murat
Labore
Dépanl
Ecole |
Ecuble
Télépt
Téléfa.
Télex:
E-mail

Editor
M. Bel
R. Boi'
C. Bra
V. Car
C.F.N.
TS.D
B. Esc

Editoi
Journ
Its pri
- Dis

me
~ Pre

prc
The ¢
the rt
TheJ
tains
subje
welct

Scop
ory &
featu
accol
disse
scien
pract

Subj
Sign.
Spec
Deve
Sign
Sign
Sign
ing,

Sign
cess
ing,

trial

©19

No p
recor
Amsi
Spec
trans
Spec
perst
state
forw
articl
articl
copy
obta
Nort
any 1
Althe
qual

Pub

240 AJEM. Janssen [ Signal Processing 47 (1995) 239-245

1. Introduction and announcement of results

1.1. Introduction

Let @ >0, b >0 and consider for x, yeR the
time-frequency shift operators defined by

feL (R) = fi\(t) = e®™ f(t — x), teR. (L.1)

We say that a ge L*(R) generates a (Weyl-Heisen-
berg) frame (for the parameters a, b) when there are
A >0, B< o such that

AlfI2 < X 1(f guams)> < BISfI?, feL?(R). (1.2)
The numbers 4, B are called frame lower, upper
bound for g, and we say that ¢ has a frame lower,
upper bound when the left, right inequality in (1.2)
holds for some 4 > 0, B < oo, respectively. When
g has a frame upper bound, we define the frame
operator SY associated with g by

ng= Z (f: gna‘mh)gnn.mb’ fE LZ(R) (13)
This $* maps L?(R) into itself.

When ge L*(R) generates a frame, there is for
any feL*(R) the L?*(R)-convergent expansion
(stable Gabor expansion)

f: Z (j; oylm.mh)glm.mhz (1'4)

where °y = (§9)"! g. For any fe L*(R) the expan-
sion (1.4) is minimal in the sense that for all double
sequences o€ [*(Z x Z) with

f= Z Om grm.mbv (15)
we have
Z |(f: g‘.‘i}nﬂ'.m.b)lz < Z |O'£nm|2 (1'6)

n,m n.m

with equality if and only if ¢ = (1, “Veaumn)s
n,meZ. We call °y the minimal dual function for
g (when ¢ generates a frame and ab < 1 there are
many ye€ L*(R) such that an L?(R)-convergent ex-
pansion (1.4) with °y replaced by y holds for all
feL*(R)). We refer to [1, Sections I. A-B-C, IL
A-B-C] and [2, Sections 3.2, 3.4, 4.1, 4.2.2] for the
general theory of Weyl-Heisenberg frames until
1992.

It is well known that no ge L*(R) can generate
aframe when ab > 1, thata g e L*(R) that generates
a frame with ab = 1 cannot simultaneously be smooth
and decay rapidly, and that there are many very well-
behaved g e L*(R) that generate a frame when ab < 1.
We refer to the cases ab > 1, =1, < 1 as undersam-
pled, critically sampled, oversampled, respectively.
We consider in this paper the cases that ab < 1.

As to the problem of computing (minimal) dual
functions there are several methods. For the com-
putation of °y by using the well-known frame algo-
rithm we refer to [1, Section II.A] and [2, Section
3.2]. An alternative to this frame algorithm, which
offers an opportunity to compute other dual func-
tions as well, is provided by the following result of
Wesxler and Raz [11] (here we give the version
formulated precisely and proved rigorously in [4]).
For any ¢, ye L?(R) having a frame upper bound
there holds

V.-"E LY (R) |:f= E (s Vna,ms) gna.mb:l (1.7)

n.m

<= Viez[( wa.ua) = ab oy, d10].

That is, for such g,y the duality for the parameters
a, b, as expressed by the first member of (1.7), is the
same as the biorthogonality for the parameters 1/b,
1/a, as expressed by the second member of (1.7).
Hence the construction of dual functions consists of
finding ye L?(R) with a finite frame upper bound
such that the linear constraint

T?y = ab &y, 0105
Tf = ((/, gk,’b.!,fa))k‘fel, fe LZ(R),

is satisfied. In the oversampling case ab < 1, there
are many y that satisfy (1.8) when g generates
a frame. One possibility to force uniqueness is to
look for the y satisfying (1.8) with minimal energy.
This minimum energy biorthogonal function, °“y, is
known as the Wexler-Raz biorthogonal function.
Other possibilities to force uniqueness are con-
sidered in [3, 6, 7, 11].

It was discovered (independently, simultaneously
and by using different methods) by Janssen [5], by
Daubechies et al. [3], and by Ron and Shen [9]
that the minimal °y = (S¢)" ! g and the Wexler-Raz
°%y actually coincide. A key observation in [3, 5, 9]

(1.8)
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is that geL*(R) generates a frame with frame
bounds A, B if and only if (I identity operator of
1*(Z?))

Al < (ab)™' M? < BI; M? = T(T?)* (1.9)

Accordingly, one can compute

Oy =% = (TY)* (My)_I g, 0= (ab by, 5ta)k,lszs
(1.10)

or, more explicitly,

y="y= ﬂbz (M)~ l)ki:oo Jk/b, lla> (1.11)
k.l

where we note that the matrix elements of M? with

respect to the standard basis of [*(Z x Z) are given

by
(MVter = (e, vy, gk,’b.l,’u)a kLK, IeZ. (1.12)

Some further results obtained in [5] are

— when g,y e L*(R) then g,y are biorthogonal if and
only if (1/ab)T" is a left-inverse of (T?)*, i.e.
1

— THTH* =T :
— T =1 (1.13)

— when ¢ generates a frame then (1/ab)T°" is the
generalized inverse of (T7)%, i.e.

§ ot Ly (L)
ab ! ab ab ’
(1.14)

— when'g generates a frame then the frame oper-
ator §%, see (1.3), has the representation

1

Sy:_ 3 a U ,
§r% - (9> Grgp.rja) U

Ui f = fum.ijas fELz(R), (1.15)

in the sense that for any f,heL*(R) with
YilUufih)]? < o we have

1
(S9f.h) = Ekz; (9, gk/h,.!,'a)(Uklf; h). (L.16)

The representation (1.15) of §¢ is particularly con-
venient when ¢ satisfies Tolimieri and Orr’s condi-
tion A, see [10],

> 1(gs Gl < 0, (1.17)
k.l

for then the series in (1.15) is unconditionally con-
vergent. Especially, when ab is small and condition
A is satisfied, one can compute S% for fe L*(R)
more easily via (1.15) than via (1.3) since in the
former case, as opposed to the latter case, only
a few terms should be considered. In [5] it was
conjectured (and proved for the case that
(ab)™ ' e N) that when g generates a frame and satis-
fies condition A, then so does °y. It is one of the
purposes of the present paper to establish the latter
result for the case that abe @, ab < 1.

For the case that ab =p/q, peZ, qeZ, p <4,
(p, q) = 1, the frame operator $¢ and the computa-
tion of the minimal dual °y have been studied
in detail by Zibulski and Zeevi in [12] by using
the Zak transform (also see [1, pp. 978, 981]).
When 4 > 0 one defines the Zak transform Z, f of
an fe L2(R) by means of the L (R?)-convergent
series

(Z:f)(x, Q) = A2 i f(A(x + k))e™ 22 (1.18)

=—-mw

A convenient choice for A here is A = b™?, in which
case one writes f instead of Z, f. Now Zibulski and
Zeevi show that when ¢ generates a frame and
€ LY(R) one has

s ky Bz} " r
N 'r[’(x: Q+ _) = Z gf(x’Q)IP(x:Q + ")1
P r=0 P

k=0,...,p—1, (1.19)
where we have set for f,he L*(R)

19-1 P k
All(x, Q) ==~ (x—l—,Q+—)
¢ ) Prgof q 14
xﬁ*(x—f-‘f,9+f) (1.20)
q p

for x, QeR, k,r =0, ... ,p — 1. Hence, by the peri-
odicity relations of the Zak transform and the
inversion formula for the Zak transform, see Pro-
position 2.1, the computation of °y = §~! g consists
of solving for 0<x <1, 0< Q< p~! the linear
system

3 r k
Y Aﬂf(x,9)°?(x,§2+—)=é 0 +=],
r=0 p p

k=0,..,p—1. (1.21)
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1.2. Results

The purpose of the present paper is to present
a closer connection between the approaches based
on the Wexler—Raz result and the Zibulski-Zeevi
linear systems for computing °y than is done so far.
More explicitly we show the following result.

Proposition 1.1. Letf, he L*(R)and let k,r =0, ...,
p — 1. Then the matrix elements A} (x, Q) as defined
in (1.20) are p/g-periodic in x and I-periodic in £,
with Fourier series

Akf:'(x, Q) ~ z d"m @~ 2minxg/p e~2nim9, (1.22)
where
di’lm
2 — 2nimr/p h — _ k d
_ p ¢ (j; mj'b,—nja)a nq = (f’ )mO P>
0, otherwise.
(1.23)
Setting for f, he L*(R)
@/ (x, Q)
-1)2 p k
=(p~2f(x—1=,Q+= vy
q P)/k=0,....p—Li=0,..,q-1
(1.24)
Afk(xs Q) = (Aif (x: Q)}k.r= 0,..,p—1

= @7 (x, Q) (D" (x, Q))*, (1.25)

we have the following consequences of (1.22) and
(1.23).

Theorem 1.1.! We have that g,ye L*(R) are bi-
orthogonal if and only if (compare (1.13))

A(x, Q) = 87(x, Q) (B%(x, Q) = Iy,
a.e. x, . (1.26)

Theorem 1.2.2 When g generates a frame then we
have (compare (1.14))

P (x, Q) = (A% (x, 2)) " ¢¢(x, ),

A7 (x, Q) = (49(x, Q)" !, ae. x,Q. (1.27)

! After completion of this paper, the author was kindly in-
formed by M.J. Bastiaans and M. Zibulski (independently) that
they have found versions of Theorems 1.1 and 1.2 as well.

2 See footnote 1.

Theorem 1.3. 4 ge L*(R) satisfies condition A, see
(1.17), if and only if A%(x, Q) has an absolutely
convergent Fourier series.

Theorem 1.4. When g generates a frame and satis-
Jfies condition A, then so does °y.

2. Derivations

We start this section by presenting the (well-
known) properties of the Zak transform, as far as
relevant for our purposes.

Proposition 2.1. Let A > 0, g, fe L*(R). For he L*(R)
the series

(Z3 h) (x, Q)= A2 i h(A(x + k) e~ 272 (2.1)

is L} (R?) — convergent. There holds

(a) r g f* () dx

=j j (Z39) (x, Z, f)* (x, Q) dx de,

0Jo
(b) AM? g(Ax) = j (Z;9) (x,2)dR, ae. x,
0

©) (Z,9)(x +1,Q) =e*™Z,q9)(x,Q2), ae.xQ
(d) (Zlg)(xsg + 1) = (Zig)(x)g): a.c. X,Q,

(e) for any ZeLL.(R?) such that Z(x + 1,Q) =
2™ Z(x, ), Z(x,Q2 + 1) = Z(x,Q), ae.xQ,
there is a unique g€ L*(R) such that Z = Z,g.

Now let ab=p/g with pgeZ 0<p<y,
(p.q) = 1. We consider in the remainder of this
paper the choice A = b~ !, and we write, as Zibulski
and Zeevi do in [12],

h= Zy h, heL?*(R). (2.2)
We shall next be more precise about formula (1.19)
in case that ¢ has a frame upper bound. The deriva-
tion given in [12] of (1.19) is entirely correct as long
as we consider g, ¥ smooth and of bounded sup-
port; in that case (1.19) holds pointwise as an iden-
tity between two smooth and bounded functions
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of x,QeR. Accordingly, there holds, see [12],

formula (13)
S p 'b 1 1 1/p qil pil p r
(“l,z)=—J‘J g‘(x—!—,Q+—)

PlJodo 1=o0lr=0 q p

xnf)*(x,Q -{—ﬁ)
p

for such functions g,y. Next, when ¢ has a frame
upper bound and ¥ is smooth and of bounded
support, formula (1.19) holds as an identity between
an L .-function on the left-hand side and an L },.-
function on the right-hand side. This is so since
deLi.(R?), JeLi(R?, and g and $?y can be
approximated arbitrarily well by h and S"y with
h smooth and of bounded support. Also, formula
(2.3) is valid in this case. Now since the sets of all
Y and all Y, with  smooth and of bounded
support are dense in L?(R) and L?([0, 1]%), respec-
tively, it follows from (2.3) that g has a frame upper
bound if and only if

“dxdQ (23)

esssuplg| < . (2.4)

Hence, when ¢ has a frame upper bound and .

Ve L*(R), the formula (1.19) holds as an identity
between two Li.(R?) functions, since iy can be
approximated arbitrarily well by smooth functions
of bounded support and § e L. (R?). Note that in
the notation of (1.2) and (1.25) we can express the

identity (2.3) as

1 p1y
(S99, lb)=J J p{A“”(.\c,Q)v"’(x,Q), (x,Q)dxdQ

0J0
(2.5)

with v¥(x,Q) = (J(x,Q + r/p)=0.... p-1 €C? and
(,) the usual inner product in C*.

Proof of Proposition 1.1. From Proposition 2.1 it is
clear that A7, is well-defined as an L. (R?) function
when f,he L3(R), k,r =0, ...,p — 1. The 1-peri-
odicity of AL (x, Q) in Q also follows from Proposi-
tion 2.1. Next we compute for a.e. x, Q

ez} ) k
Afj'(x—g,fz):— (xm 1+ 1)~,Q+—)
' q p LI\x- g ' p

xﬁ*(x —(+ 1)E,Q+f)
g p

=1 d

xﬁ*(_\:—zf,9+5>
¢ p

+f(x —p,Q + g)

1)7=d p k
=— f(.\'—1~,§2+—)
p Z [ P

x h*(x i S f). (2.6)
P

Now since by Proposition 2.1(c) for any € L*(R),
sel

" (x —p, Q2+ :> = g~ 2@ +sIp) p)fy (x,Q + E)
12 P

— g~ 2nigp lp (x, Q4+ %)1 (2.7

we see that AL (x — p/q, Q) = ALl (x, Q) for ae. x, Q.
For the computation of the Fourier coefficients

q plg 1 X .
d"m =1 J J‘ A{f(x, .Q) 62mr:xq1‘p e2mms’2 dx dQ,
P 0

0

(2.8)

we first restrict to smooth functions f, h of bounded
support. Then

q-1 prplg M I/
fiﬂ)rlzg‘EZJ jf(\‘_lgagdf"_c)
P i=0Jo Jo q P

xf’:l*(x—n'B,Q-i--r-)
g p

X eZnin.\'qu e,?.rrim!;! dX dQ

p Pl k\ -
=%j J f(x,9+w)h*(xa9+£)
P Jodo p #
% g2minxalp p21im2 4\ ) (2.9)

We next insert the definition (2.1) and (2.2) of f.
h into the far right-hand side of (2.9) and perform
the integration over 2 to obtain

ge~mmir 2 .r x +1 (x + 11— m)
- h*
dmn pgb IZZ:,C( Of b g b

w @2rilr=k)lip o 2ninxaip |y (2.10)
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Next the }'7< _, [¢ at the right-hand side of (2.10)
is written as ¥7.__ Y/Zl (), the summations
over | and j are interchanged, in the summa-
tion over [ the [+ is replaced by I, and we
get

qe-2nirm/p p—1 <] 1 X + I
!nm =0
¢ pzb Z Z " f b

j=0l=-o

ffX+I—m
x h (—~—~—b

% elni[r—k)l,’p C2ni11xq,t‘p eZni(nq-—r+k)j/p dx. (21 1)

Now we have
r=1 ) .
Z e2nllnq*r+k)1,fp =por O! (212)

i=0

according as ng —r + k = Omod p or not. In the
former case we have

exp(2mi(r — k)I/p + 2ninxq/p)
= exp(2ming(x + I)/p). (2.13)

Hence d,,, =0 when ng —r + k # Omod p, and
when ng — r + k = O0mod p we get

© 1
R X4
dnm - e Znirm{p 2 ( )
pb I=—eow JO f b

% h* (x + I — Jn)eln:inq(x-H)[p dx

b
— i = 2mirm|p ” f * E — E 2mingx)p
e [ (w5
_ g e~ 2mmip (L p ), (2.14)

where we have used that g/p = 1/ab. This com-
pletes the proof of (1.23) for the case that f, h are
smooth and of compact support so that the sum-
mations over [ in (2.10) (2.11) and (2.14) are really
finite.

For general f; he L*(R) we observe that A7 — 47"
in Llloc(le)‘Sense and that ((pa wm/b.knﬂr) =¥ (.ﬁ hm,ib. —n,’a)
for all m,neZ when ¢ — f, = h in L*(R)-sense,
see Proposition 2.1. Hence we get (2.8) by taking
smooth functions ¢, ¢ of bounded support with
@ = f, = hin L?(R)-sense and using what we just
have proved for such functions.

Proof of Theorem 1.1. Let g,y L?(R), and consider
the Fourier expansion

Al (%, Q) ~ ) dyy €7 27nxalp = 2rim (2.15)

for k,r =0, ...,p — 1. When g, y are biorthogonal,
so that

('P! gt,’b. Sj'(t) = a’b 510 ésos t, SE Zw (2]6)
we have by (1.23) that

cl,,,,,=gab=1, n=m=r—k=0, (2.17)

and d,,, = 0 otherwise. This shows (1.26). The con-
verse is equally easy.

Proof of Theorem 1.2. Tt is easily established from
(2.5) and the discussion preceeding (2.5) that g gen-
erates a frame, with frame bounds 4 > 0, B < oo, if
and only if?

Al,., < A%(x,Q) < Bl,., ae x,Q. (2.18)

Here Proposition 2.1(a),(e) have also been used.
Now when g generates frame we have that for a.e.
x, £, see (1.19)—(1.21),

p—1 . k
Z Aif(x’ Q) 0?(x5 g + JE) = g\(xag o+ —))
P

r=0
k=0,..,p— 1L (2.19)

Since A;7(x, Q) is p/g-periodic in x, we can conclude
that for a.e. x, 2 we have

p=

. p AT p k
Agf(x,Q)"y(x —1=Q+ —) = g(x -1+ —),
; ’ ) g p

k=0,..,p—1, [=0,..,q—1. (2.20)

3One can show that det(4%(x, ) is (¢~",p~")-periodic in
(x,£2), whence for checking that g generates a frame, it is suffi-
cient to consider A%(x, Q) for (x,2)e(0,g~")x[0,p~"). More
explicitly there holds A4%(x,Q + p~') = J49(x,Q) J~! and
A%(x + g™, Q) = FA"(x,Q F~' with J the permutation
matrix corresponding to the permutation 0—1— ... —
p—1-0, and F the diagonal matrix with entries
exp( — 2mimgk/p), k =0, ... ,p — 1, where mye Z only depends
on p,q.
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That is, in the notation of (1.24) and (1.25), for a.e.
x, Q

A%(x, QD (x, Q) = P(x, Q), (2.21)

and the first formula in (1.27) follows. The second
formula in (1.27) is an easy consequence of this and
of the definitions (1.24) and (1.25).

Proof of Theorem 1.3. We note that

r—1

2 )

k.r=0nmng=(r—k)modp

q
_ |(g: Gmyb, —nln)l

=q Y 19.9gupsal (2.22)

Ls=—ow

and the result follows from (1.23).

Proof of Theorem 1.4. We assume that g generates
a frame and satisfies condition A. By the second
formula in (1.27) we have

A7 (x, Q) =det 1 (4%(x, Q))adj(A#(x, Q)),
ae. x,Q. (2.23)

Now both det(4%(x,2)) and the elements of \

adj(4?(x,Q)) have an absolutely convergent
Fourier series as finite sums of finite products of
functions having such a Fourier series, see Theorem
2.3, In particular, det(A4%(x,Q)) is a continuous
function, bounded below by A¥, see (2.18), with
A > 0 a lower frame bound for g. It therefore fol-
lows that det™*(A4%(x, 2)) has an absolutely con-
vergent Fourier series by Wiener’s 1/f~theorem, see
[8], Section 150. Hence the elements of A%°"(x, Q),
as products of two functions having an absolutely

convergent Fourier series, have such a Fourier
series as well. Now Theorem 1.4 follows from
Theorem 1.3.
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