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1 Introduction

Gabor analysis is typically based on a choice of a window function ϕ ∈ L2(R)
and suitable parameters a, b > 0 such that the system {e2πimbxϕ(x−na)}m,n∈Z

forms a frame for L2(R). A classical problem is that most applications need
information about the dual window, which might be complicated to calculate
explicitly. The purpose of this paper is to obtain explicit constructions of ap-
proximately dual windows for a class of windows V ⊂ L2(R) that cover most of
the classical choices in Gabor analysis. In contrast to the standard Gabor the-
ory, we will allow the modulation parameter b to change: indeed, we will prove
that we can get arbitrarily close to perfect reconstruction for any ϕ ∈ V using
a sufficiently small modulation parameter and the constructed approximately
dual windows. Explicit estimates for the deviation from perfect reconstruction
are provided for some of the standard functions in Gabor analysis, e.g., the
Gaussian and the two-sided exponential function. Note that, in contrast to the
approach in [3], the translation parameter will be kept fixed.

In the rest of this section we will set the stage by introducing the relevant
class of window functions and collecting the necessary background information
about frames and Gabor systems. In particular, a crucial ingredient in our
method is to provide estimates for certain Bessel bounds; this is the topic of
Section 2. We will indeed provide two estimates of the Bessel bounds: one that
is valid for all functions ϕ ∈ V , and a sharper estimate for convex functions.
The construction of approximately dual windows for g ∈ V is given in Section
3.

A sequence {fk}k∈I in a separable Hilbert space H is called a frame if there
exist constants A,B > 0 such that

A ||f ||2 ≤
∑

k∈I

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (1.1)

A sequence {fk}k∈I satisfying at least the upper condition in (1.1) is called
a Bessel sequence with Bessel bound B. It is well-known (see, e.g., [2]) that
{fk}k∈I is a Bessel sequence with bound B if and only if

||
∑

ckfk||2 ≤ B
∑

|ck|2

for all finite scalar sequences {ck}.
Frames lead to unconditionally convergent series expansions of the elements

in the underlying Hilbert space. Indeed, if {fk}k∈I is a frame for H, then there
exists a frame {gk}k∈I such that

f =
∑

k∈I

〈f, gk〉fk =
∑

k∈I

〈f, fk〉gk, ∀f ∈ H. (1.2)

A frame {gk}k∈I that satisfies (1.2) is called a dual frame of {fk}k∈I ; and (1.2)
is expressed by saying that the frames {fk}k∈I and {gk}k∈I lead to perfect
reconstruction.
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A weaker concept was introduced in [4]. We say that two Bessel sequences
{fk}k∈I and {gk}k∈I form approximately dual frames if there exists a constant
µ < 1 such that

‖f −
∑

k∈I

〈f, fk〉gk‖ ≤ µ||f ||, ∀f ∈ H. (1.3)

The rationale behind approximately dual frames is that all kinds of imple-
mentations involve certain imprecisions; thus, as long as we can control the
deviation from perfect reconstruction measured by the parameter µ in (1.3),
approximately dual frames can in practice be as good as exact dual frames.
We refer to the papers [1,5–7] for explicit constructions and applications of
this concept. We will use the following elementary result from [3] to measure
the deviation from perfect reconstruction.

Lemma 1 Let {fk}k∈I be a frame with bounds A,B and let {gk}k∈I be a dual

frame of {fk}k∈I with upper frame bound Bg. If {f̃k}k∈I is a sequence in H
and

∥∥∥∥∥
∑

k∈I

ck(fk − f̃k)

∥∥∥∥∥ ≤ µ

(
∑

k∈I

|ck|2
)1/2

(1.4)

for some µ ≥ 0 and all finite sequences {ck}k∈I , then

‖f −
∑

k∈I

〈f, f̃k〉gk‖ ≤ µ
√
Bg||f ||, ∀f ∈ H. (1.5)

In particular {gk}k∈I and {f̃k}k∈I are approximately dual frames if µ
√
Bg < 1.

For any parameters a, b ∈ R, define the translation operator Ta and modu-
lation operators Eb acting on L2(R) by

Taf(x) = f(x− a), Ebf(x) = e2πibxf(x), x ∈ R.

Given a function ϕ ∈ L2(R) and parameters a, b > 0, the associated Gabor
system is the collection of functions {EmbTnaϕ}m,n∈Z. The function ϕ is called
the window function.

Throughout this paper we will consider the following class of windows,
which contains most of the standard choices in Gabor analysis.

Definition 1 Let V ⊂ L2(R) denote the set consisting of the real-valued con-
tinuous functions ϕ ∈ L2(R) for which

(i) ϕ is even and positive on R;
(ii) ϕ is decreasing on [0,∞);
(iii) |ϕ(x)| ≤ C

1+|x|1+σ for some C > 0 and σ > 0.

For a fixed function ϕ ∈ V and any N > 0, define the function ϕN ∈ Cc(R) by

ϕN (x) := (ϕ(x) − ϕ(N))χ[−N,N ](x). (1.6)
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The function ϕN in (1.6) can be considered to be a truncated version of ϕ, and
will play a central role throughout this paper. Note that N can be an arbitrary
positive number in Definition 1; in Section 3 we will consider a sequence of
approximately dual windows indexed by N, so in that case we only consider
positive integer-values of N.

In the analysis of a given function ϕ ∈ V and its truncations ϕN , we will
need the functions QN : (0,∞) → R defined by

QN (x) := (⌊2xN⌋+ 1)ϕ(N) + 2

∞∑

k=0

ϕ

(
N +

k

x

)
. (1.7)

2 Frame properties of functions ϕ ∈ V and ϕN

In this section we will discuss the relationship between the frame properties of
functions ϕ ∈ V and the associated truncations ϕN in (1.6). The results will be
based on Proposition 2, where we estimate the Bessel bound for the functions
ϕ − ϕN . We will need the following estimate of the function QN defined in
(1.7).

Lemma 2 Let N > 0 be fixed. For ϕ ∈ V and C, σ > 0 as in Definition 1, we
have

QN (x) ≤ C

N1+σ

(
⌊2xN⌋+ 1 + 2

(
1 +

xN

σ

))
. (2.1)

Proof. The decay condition (iii) in Definition 1 implies that

∞∑

k=0

ϕ(N +
k

x
) ≤

∞∑

k=0

C
(
N + k

x

)1+σ

≤ C

N1+σ
+

∫ ∞

0

C
(
N + t

x

)1+σ dt =
C

N1+σ

(
1 +

xN

σ

)
.

Thus

QN (x) ≤ (⌊2xN⌋+ 1)
C

N1+σ
+

2C

N1+σ

(
1 +

xN

σ

)

=
C

N1+σ

(
⌊2xN⌋+ 1 + 2

(
1 +

xN

σ

))
.

�

Using Lemma 2 we can now provide a Bessel bound for the functions

ϕ(x)−ϕN (x) = min{ϕ(N), ϕ(x)} = ϕ(x)χ[−N,N ]c(x)+ϕ(N)χ[−N,N ](x), x ∈ R,
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whenever ϕ ∈ V . We will use the fact that for any g ∈ L2(R), if

B(g, a, b) :=
1

b
sup

x∈[0,a]

∑

k∈Z

∣∣∣∣
∑

n∈Z

g(x− na)g(x− na− k/b)

∣∣∣∣ < ∞,

then {EmbTnag}m,n∈Z is a Bessel sequence with Bessel bound B(g, a, b); see,
e.g., [2], Theorem 11.4.2.

Proposition 2 Let ϕ ∈ V , and let a, b > 0 be given. Given N > 0, define the
function QN by (1.7). Then the following hold:

(i) The Bessel bound B(ϕ− ϕN , a, b) can be estimated by

B(ϕ− ϕN , a, b) ≤ 1

b
QN (b)QN(

1

a
). (2.2)

(ii) If b ≤ 1
2N , then

B(ϕ− ϕN , a, b) ≤ 1

b
QN(b)QN (

1

a
) ≤ C2

bN1+2σ

(
4 +

1

σ

)(
2

a

(
1 +

1

σ

)
+

3

N

)
.

Proof. For notational convenience, let qN (x) := ϕ(x)−ϕN (x). We note that

B(qN , a, b) ≤ 1

b

(
sup

x∈[0,a],n∈Z

∑

k∈Z

∣∣∣∣qN (x − na− k/b)

∣∣∣∣

)(
sup

x∈[0,a]

∑

n∈Z

∣∣∣∣qN (x− na)

∣∣∣∣

)

(2.3)
and

qN (x) =

{
ϕ(N), x ∈ [−N,N ];
ϕ(x), x ∈ [−N,N ]c.

(2.4)

Estimate of
∑

k∈Z

∣∣∣∣qN (x− na− k/b)

∣∣∣∣ : Fix x ∈ [0, a] and n ∈ Z; then

x−na− k/b hits [−N,N ] for at most ⌊2bN⌋+1 values of k, and thus yields a
maximal contribution (⌊2bN⌋+ 1)ϕ(N) to the infinite sum by (2.4). By (2.4)
again, the contribution to the infinite sum from x−na−k/b hitting the interval
[N,∞) is at most

∞∑

k=0

∣∣∣∣qN
(
N +

k

b

)∣∣∣∣ =
∞∑

k=0

ϕ

(
N +

k

b

)
,

which converges by (iii) in Definition 1. Including also the contribution from
(−∞,−N ] leads to

∑

k∈Z

∣∣∣∣qN (x−na−k/b)

∣∣∣∣ ≤ (⌊2bN⌋+1)ϕ(N)+2

∞∑

k=0

ϕ

(
N +

k

b

)
= QN (b). (2.5)
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Estimate of
∑

n∈Z

∣∣∣∣qN (x − na)

∣∣∣∣ : Applying the above result with b = 1/a

yields that

∑

n∈Z

∣∣∣∣qN (x−na)

∣∣∣∣ ≤ QN

(
1

a

)
=

(⌊
2N

a

⌋
+ 1

)
ϕ(N)+2

∞∑

k=0

ϕ (N + ak) . (2.6)

Hence (2.3) together with (2.5) and (2.6) implies that the Bessel bound of
{EmbTnaqN}m,n∈Z can be estimated as stated in (2.2).

For the proof of (ii), applying (2.1) with b ≤ 1
2N yields that

QN(b) ≤ C

N1+σ

(
⌊2bN⌋+ 1 + 2

(
1 +

bN

σ

))

≤ C

N1+σ

(
2 + 2

(
1 +

1

2σ

))
=

C

N1+σ

(
4 +

1

σ

)
.

Also,

QN

(
1

a

)
≤ C

N1+σ

(⌊
2N

a

⌋
+ 1 + 2

(
1 +

N

aσ

))

≤ C

N1+σ

(
2N

a
+ 1 + 2

(
1 +

N

aσ

))
=

C

Nσ

(
2

a

(
1 +

1

σ

)
+

3

N

)
.

The result in (i) now immediately leads to (ii). �

Proposition 2 implies that if {EmbTnaϕ}m,n∈Z is a frame and ϕ ∈ V , then
also the truncated function ϕN in (1.6) generates a frame whenever N > 0 is
sufficiently large. This generalizes a result from [3], dealing with the Gaussian.

Corollary 3 Let a, b > 0 and ϕ ∈ V be given, and assume that {EmbTnaϕ}m,n∈Z

is a frame for L2(R). Then for N > 0 sufficiently large the Gabor system
{EmbTnaϕN}m,n∈Z is a frame for L2(R).

Proof. Fixing ϕ ∈ V and a, b > 0, Proposition 2 combined with Lemma 2
shows that the Bessel bound B(ϕ − ϕN , a, b) tends to zero as N → ∞. Thus,
denoting a lower frame bound for {EmbTnaϕ}m,n∈Z by A, we have

B(ϕ− ϕN , a, b) < A (2.7)

for N sufficiently large. The result now follows from standard results in frame
perturbation theory (see Corollary 22.1.5 in [2]). �

It is well-known that a continuous function with compact support cannot
generate a Gabor Riesz basis (see, e.g., Proposition 13.2.4 in [2]). Since the
perturbation condition used in the proof of Corollary 3 preserves the Riesz
basis property, the result implies that no function ϕ ∈ V can generate a Riesz
basis.
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Note that the proof of Corollary 3 shows how large N should be chosen
in order to guarantee that {EmbTnaϕN}m,n∈Z is a frame; we just need to
choose N such that (2.7) holds. In order to apply this result it is crucial to
have good estimates for the Bessel bound B(ϕ − ϕN , a, b). In the following
concrete example we will see that based on the estimates in Proposition 2,
the frame property of {EmbTnaϕN}m,n∈Z is guaranteed for N = 3/4, but not
for N = 1/

√
2. This motivates the subsequent Proposition 5 where we obtain

a sharper estimate for the Bessel bound B(ϕ − ϕN , a, b) under the aditional
condition that the function ϕ is convex. Then, in Example 6 we return to the
same concrete example and show that {EmbTnaϕN}m,n∈Z actually is a frame
for N = 1/

√
2.

Example 4 We consider

ϕ(x) = 21/4e−πx2

, x ∈ R,

and a = b = 1/
√
2. According to (6.7-8) in [8], the optimal frame bounds of

{EmbTnaϕ}m,n∈Z are given by

A = 2
∑

k,ℓ∈Z

(−1)k+ℓe−π(k2+ℓ2) = 2

( ∞∑

k=−∞
(−1)ke−πk2

)2

and

B = 2
∑

k,ℓ∈Z

e−π(k2+ℓ2) = 2

( ∞∑

k=−∞
e−πk2

)2

,

respectively. By a numerical computation,A = 1.669253683, B = 2.360681198.
Furthermore, using (2.2) and (1.7),

B

(
ϕ− ϕN ,

1√
2
,
1√
2

)
≤

√
2QN

(
1√
2

)
QN(

√
2)

≤ 2

(
(⌊N

√
2⌋+ 1)e−πN2

+ 2
∞∑

k=0

e−π(N+k
√
2)2

)

×
(
(⌊2N

√
2⌋+ 1)e−πN2

+ 2

∞∑

k=0

e−π(N+k
√

2

2
)2

)
.

A numerical inspection shows that forN = 3/4 this estimate ofB
(
ϕ− ϕN , 1√

2
, 1√

2

)

is indeed smaller than the lower frame bound A of {EmbTnaϕ}m,n∈Z; thus
{EmbTnaϕN}m,n∈Z is a frame for N = 3/4. However, for N = 1/

√
2 the esti-

mate ofB
(
ϕ− ϕN , 1√

2
, 1√

2

)
exceeds the lower frame bound A of {EmbTnaϕ}m,n∈Z;

thus, the proof of Corollary 3 does not guarantee that {EmbTnaϕN}m,n∈Z is a
frame for N = 1/

√
2. �
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For windows ϕ ∈ V that are convex on [N,∞) we will now derive the
following improvement of Proposition 2.

Proposition 5 Assume that ϕ ∈ V is convex on [N,∞) for some N > 0.
Then

B(qN , a, b) ≤ 1

b

( ∞∑

k=−∞
qN

(
N − k

b

))( ∞∑

n=−∞
qN (N − na)

)
.

Proof. By (2.3) and non-negativity of the function qN (x) = min{ϕ(x), ϕ(N)},
we have that

B(qN , a, b) ≤ 1

b
sup

x∈[0,1/b]

( ∞∑

k=−∞

∣∣∣∣qN (x− k/b)

∣∣∣∣

)
sup

x∈[0,a]

( ∞∑

n=∞

∣∣∣∣qN (x− na)

∣∣∣∣

)
.

We will first show that, under the assumption that ϕ is convex on [N,∞),

sup
x∈[0,a]

(
∑

n∈Z

qN (x − na)

)
=

∞∑

n=−∞
qN (N − na)

=

(⌊
2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

ϕ(N + na) +

∞∑

n=1

ϕ

(⌊
2N

a

⌋
a−N + na

)
. (2.8)

To show this, let x ∈]N − a,N ]; furthermore, let n(x) be the largest integer n
such that x−na ≥ −N , i.e., n(x) = ⌊(N + x)/a⌋. We distinguish between the
cases that n(x) = ⌊2N/a⌋ and n(x) = ⌊2N/a⌋ − 1.

First assume that n(x) = ⌊2N/a⌋. Then

N − a ≤
⌊
2N

a

⌋
a−N ≤ x ≤ N, (2.9)

and

∞∑

n=−∞
qN (x− na) =

−1∑

n=−∞
ϕ(x − na) +

n(x)∑

n=0

ϕ(N) +

∞∑

n=n(x)+1

ϕ(x − na)

=

(⌊
2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

ϕ(x + na) +

∞∑

n=1

ϕ

(
x−

⌊
2N

a

⌋
a− na

)

=

(⌊
2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

[
ϕ(x+ na) + ϕ

(⌊
2N

a

⌋
a− x+ na

)]
, (2.10)

where it has been used that ϕ is even. In particular this proves the second
equality sign in (2.8) in the considered case; so we only need to prove that the
supremum is attained for x = N. If 2N

a is integer we have that ⌊ 2N
a ⌋ = 2N

a , in
which case (2.9) shows that the only x-value that can be considered under the
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given conditions is x = N. We will therefore now focus on the case where 2N
a

is not an integer. In this case 2N −⌊ 2N
a ⌋a > 0. Now let n = 1, 2, · · · . We have

⌊
2N

a

⌋
a−N + na ≤ x+ na ≤ N + na,

and ⌊
2N

a

⌋
a−N + na ≤

⌊
2N

a

⌋
a− x+ na ≤ N + na.

Hence, letting

λ :=
N + na− (x+ na)

N + na−
(⌊

2N
a

⌋
a−N + na

) =
N − x

2N −
⌊
2N
a

⌋
a
∈ [0, 1],

the convexity of ϕ implies that

ϕ(x + na) = ϕ

(
λ

(⌊
2N

a

⌋
a−N + na

)
+ (1− λ)(N + na)

)

≤ λϕ

(⌊
2N

a

⌋
a−N + na

)
+ (1− λ)ϕ(N + na). (2.11)

Similarly, letting

µ :=
N + na−

(⌊
2N
a

⌋
a− x+ na

)

N + na−
(⌊

2N
a

⌋
a−N + na

) =
N −

⌊
2N
a

⌋
a+ x

2N −
⌊
2N
a

⌋
a

∈ [0, 1],

we see that

ϕ(

⌊
2N

a

⌋
a− x+ na) = ϕ(µ

(⌊
2N

a

⌋
a−N + na) + (1− µ)(N + na)

)

≤ µϕ

(⌊
2N

a

⌋
a−N + na

)
+ (1 − µ)ϕ(N + na).(2.12)

Observe that λ+ µ = 1. Thus we get from (2.11) and (2.12) that

ϕ(x + na) + ϕ

(⌊
2N

a

⌋
a− x+ na

)

≤ λϕ

(⌊
2N

a

⌋
a−N + na

)
+ (1− λ)ϕ(N + na)

+(1− λ)ϕ

(⌊
2N

a

⌋
a−N + na

)
+ λϕ(N + na)

= ϕ

(⌊
2N

a

⌋
a−N + na

)
+ ϕ(N + na).
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Therefore, from (2.10),

∞∑

n=−∞
qN (x− na) ≤

(⌊
2N

a

⌋
+ 1

)
ϕ(N)

+

∞∑

n=1

(
ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a−N + na

))

=
∞∑

n=−∞
qN (N − na).

This proves (2.8) in the case n(x) = ⌊2N/a⌋, as desired. We now consider the
case n(x) = ⌊2N/a⌋ − 1. Then

N − a < x ≤
⌊
2N

a

⌋
a−N ≤ N,

and, in particular, ⌊ 2N
a ⌋a−2N+a > 0.With the interpretation that

∑n(x)
n=0 ϕ(N) =

0 if n(x) = −1, we now have that

∞∑

n=−∞
qN (x− na) =

−1∑

n=−∞
ϕ(x − na) +

n(x)∑

n=0

ϕ(N) +

∞∑

n=n(x)+1

ϕ(x − na)

=

⌊
2N

a

⌋
ϕ(N) +

∞∑

n=1

ϕ(x+ na) +

∞∑

n=0

ϕ

(
x−

⌊
2N

a

⌋
a− na

)

=

⌊
2N

a

⌋
ϕ(N) +

∞∑

n=0

[
ϕ(x+ (n+ 1)a) + ϕ

(⌊
2N

a

⌋
a− x+ na

)]
.

We compare this to the right-hand side of (2.8), which we write as

⌊
2N

a

⌋
ϕ(N) +

∞∑

n=0

[
ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a−N + (n+ 1)a

)]
.

Now for n = 0, 1, . . . ,

N + na < x+ (n+ 1)a ≤
⌊
2N

a

⌋
a−N + (n+ 1)a,

and

N + na ≤
⌊
2N

a

⌋
a− x+ na <

⌊
2N

a

⌋
a−N + (n+ 1)a.

Now, let

λ :=

⌊
2N
a

⌋
a−N − x⌊

2N
a

⌋
a− 2N + a

, µ :=
x−N + a⌊

2N
a

⌋
a− 2N + a

;

then 0 ≤ λ, µ ≤ 1 and λ+ µ = 1. Hence, writing

x+ (n+ 1)a = λ(N + na) + (1− λ)

(⌊
2N

a

⌋
a−N + (n+ 1)a

)
,



Approximately dual Gabor frames and almost perfect reconstruction 11

and
⌊
2N

a

⌋
a− x+ na = µ(N + na) + (1− µ)

(⌊
2N

a

⌋
a−N + (n+ 1)a

)
,

the convexity of ϕ implies that

ϕ(x+ (n+ 1)a) + ϕ

(⌊
2N

a

⌋
a− x+ na

)

≤ ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a−N + (n+ 1)a

)
.

Hence
∞∑

n=−∞
qN (x− na) ≤

∞∑

n=−∞
qN (N − na),

and the proof of (2.8) is complete.
Now, to finalize the proof we observe that the convexity condition on ϕ

ensuring the validity of (2.8) does not involve a. Hence, using (2.8) once more
with 1/b replacing a, we get

B(qN , a, b) ≤ 1

b

( ∞∑

k=−∞
qN

(
N − k

b

))( ∞∑

n=−∞
qN (N − na)

)
, (2.13)

as claimed. �

We will now return to the function in Example 4 and show that the sharper
estimates in Proposition 5 indeed improves the result.

Example 6 We consider again the function ϕ in Example 4 and a = b =√
2/2. We have that ϕ′′(x) ≥ 0 ⇔ |x| ≥ 1/

√
2π = 0.398942280. We take

N = 1/
√
2π, so that

⌊
2N

a

⌋
=

⌊
2√
π

⌋
= 1, ⌊2Nb⌋ =

⌊
1√
π

⌋
= 0.

Using (2.8), the right-hand side of (2.13) can be written as

2

(
2e−πN2

+

∞∑

n=1

e−π(N+ 1
2
n
√
2)2 +

∞∑

n=1

e−π(−N+ 1
2
(n+1)

√
2)2
)

×
(
e−πN2

+

∞∑

k=1

e−π(N+k
√
2)2 +

∞∑

k=1

e−π(−N+k
√
2)2
)

= 1.645277057,

and this is just less than the lower frame bound A, which we found in Example
4. Thus {EmbTnaϕN}m,n∈Z is indeed a frame for N = 1/

√
2, a conclusion that

we could not reach based on Proposition 2.
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Fig. 1 The function ϕ(x) = 21/4e−πx2

(solid) and the function ϕN for N = 3/4 (dotted;
see Proposition 2) and for N = 1/

√

2π (dashed; see Proposition 5).

Plots of the functions ϕ(x), ϕ3/4(x) and ϕ1/
√
2π(x) are shown in Figure 1.

Note that the length of the support of the function ϕ1/
√
2π is 2/

√
2π, which

just exceeds a =
√
2/2. Thus Proposition 5 gives a sharp result for this case;

indeed, {EmbTnaϕN}m,n∈Z ceases to be a Gabor frame when 2N ≤ a. �

We will now show that with particular knowledge of certain relations be-
tween the parameters a, b > 0 and N > 0 we can be more specific about the
frame properties of the functions ϕN for ϕ ∈ V , even without assuming that
{EmbTnaϕ}m,n∈Z is a frame.

Proposition 7 Let ϕ ∈ V . For N > 0, consider the function ϕN in (1.6) and
let a ∈ (0, 2N), b ∈ (0, 1

2N ]. Then {EmbTnaϕN}m,n∈N is a frame for L2(R)

with lower frame bound A(ϕN ) = 1
b

∣∣ϕN

(
a
2

)∣∣2 , and the canonical dual window
is given by

ϕ̃N (x) =
bϕN (x)∑

n∈Z
|ϕN (x − na)|2 , x ∈ R. (2.14)

Proof. We first show that

bA(ϕN ) ≤
∑

n∈Z

|ϕN (x− na)|2 ≤ bB(ϕN ), x ∈ R, (2.15)

for some A(ϕN ), B(ϕN ) > 0. Since ϕN is bounded and compactly supported,
the upper bound is clear. Now, since the function

∑
n∈Z

|ϕN (x − na)|2 is a-
periodic, we have

inf
x∈R

∑

n∈Z

|ϕN (x− na)|2 = inf
x∈[− a

2
,a
2 ]

∑

n∈Z

|ϕN (x− na)|2 ≥ inf
x∈[− a

2
,a
2 ]
|ϕN (x)|2 .
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Since ϕ ∈ V is even, it follows that

inf
x∈R

∑

n∈Z

|ϕN (x− na)|2 ≥
∣∣∣ϕN

(a
2

)∣∣∣
2

= b

(
1

b

∣∣∣ϕN

(a
2

)∣∣∣
2
)

=: bA(ϕN ) > 0.

Hence ϕN satisfies (2.15). The result now follows by [2, Corollary 11.4.5]. �

Using Proposition 7 we can now show that for a fixed a > 0, any function
ϕ ∈ V generates a Gabor frame for sufficiently small modulation parameters.

Corollary 8 Let ϕ ∈ V and a > 0. Then {EmbTnaϕ}m,n∈Z is a frame for
L2(R) whenever b > 0 is sufficiently small.

Proof. Proposition 2 (ii) shows that the Bessel bound B(ϕ−ϕN , a, b) tends
to zero as N → ∞. On the other hand, by Proposition 7 the function ϕN

generates a Gabor frame {EmbTnaϕN}m,n∈Z for N > a/2, with lower frame

bound A(ϕN ) = 1
b

∣∣ϕN

(
a
2

)∣∣2. Since ϕN

(
a
2

)
→ g

(
a
2

)
> 0, as N → ∞, the

result now follows from standard results in frame perturbation theory (see
Corollary 22.1.5 in [2]). �

3 Approximately dual frames for ϕ ∈ V

Even when a function ϕ ∈ V generates a frame {EmbTnaϕ}m,n∈Z, information
about its dual frames might not be easily available. Thus, we do not have
immediate access to apply the perfect reconstruction formula associated with
a pair of dual frames. The purpose of this section is to provide a method for
obtaining almost perfect reconstruction by using the fact that explicit dual
frames associated to the truncated windows ϕN in (1.6) can be calculated for
certain parameter values a, b > 0, see Proposition 7. Note that Theorem 9
below is formulated via a frame condition on the truncated function ϕN , not
on the function ϕ ∈ V . This formulation matches the actual application to
various concrete functions that will be given in Corollary 11.

Theorem 9 Let a, b be given such that ab ∈ (0, 1). Given a function ϕ ∈ V
and N ∈ N, assume that {EmbTnaϕN}m,n∈Z is a frame for L2(R) and let

{EmbTnaϕ
♯
N}m,n∈Z denote a dual frame with upper bound B(ϕ♯

N ). Then

∥∥∥∥∥∥
f −

∑

m,n∈Z

〈f, EmbTnaϕ〉EmbTnaϕ
♯
N

∥∥∥∥∥∥
≤
√

1

b
QN (b)QN

(
1

a

)
B(ϕ♯

N ) ‖f‖ , ∀f ∈ L2(R).

Proof. We apply Lemma 1 to the dual frames

{fk}k∈I := {EmbTna ϕN}m,n∈Z, {gk}k∈I := {EmbTna ϕ
♯
N}m,n∈Z.
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Letting {f̃k}k∈I := {EmbTna ϕ}m,n∈Z, the condition (1.4) is satisfied with
µ2 = B(ϕ−ϕN , a, b). Thus, the factor µ

√
Bg in (1.5) corresponds precisely to

(
B(ϕ− ϕN , a, b)B(ϕ♯

N )
)1/2

. The result now follows by Lemma 1 and Propo-

sition 2. �

Remark 10 Note that if ϕ ∈ V generates a Gabor frame {EmbTna ϕ}m,n∈Z,
then Corollary 3 shows that {EmbTnaϕN}m,n∈Z is a frame for N ∈ N suffi-
ciently large; thus the condition in Theorem 9 is satisfied. In our applications
of Theorem 9 we will take ϕ♯

N to be the canonical dual window associated

with the window ϕN . In this case {EmbTnaϕ
♯
N}m,n∈Z has the upper bound

B(ϕ♯
N ) = A(ϕN )−1, where A(ϕN ) denotes a lower frame bound for the frame

{EmbTnaϕN}m,n∈Z.

For a fixed function ϕ ∈ V and fixed parameters a, b > 0 and N ∈ N, The-
orem 9 yields an explicit estimate of the deviation from perfect reconstruction
that is obtained by doing analysis with the Gabor system {EmbTna ϕ}m,n∈Z

and synthesis using a dual frame {EmbTna ϕ
♯
N}m,n∈Z. We will now consider

the particular case where the synthesis is done using the canonical dual frame
{EmbTna ϕ̃N}m,n∈Z and show that by allowing the modulation parameter b to
vary we can get as close to perfect reconstruction as desired.

Corollary 11 Let a ∈ (0,∞) and let {b(N)}∞N=1 ⊂ R be a sequence such that
0 < b(N) ≤ 1

2N . Given a function ϕ ∈ V , consider the functions ϕN in (1.6)
and ϕ̃N in (2.14) for any integer N > a/2 and with b = b(N). Then, with the
constants C, σ > 0 chosen as in Definition 1,

∥∥∥∥∥∥
f −

∑

m,n∈Z

〈f, Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C1(N)

N
1
2
+σ

‖f‖ , ∀f ∈ L2(R),

(3.1)
where

C1(N) :=
2C

ϕN

(
a
2

)
√(

4 +
1

σ

)(
2

a

(
1 +

1

σ

)
+

3

N

)
. (3.2)

Proof. Proposition 2 (ii) implies that

1

b(N)
QN (b(N))QN (

1

a
) ≤ C2

b(N)N1+2σ

(
4 +

1

σ

)(
2

a

(
1 +

1

σ

)
+

3

N

)
. (3.3)

Considering now N ∈ N such that N > a/2 and using that 0 < b(N) ≤
1
2N , Proposition 7 shows that {Emb(N)TnaϕN}m,n∈Z is a Gabor frame with
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the canonical dual frame {Emb(N)Tnaϕ̃N}m,n∈Z. Furthermore, a lower frame

bound is A(ϕN ) =
|ϕN( a

2 )|2
b(N) . This together with (3.3) implies that

√
1

b(N)
Q(b(N))Q

(
1

a

)
1

A(ϕN )
≤ C1(N)

N
1
2
+σ

,

where C1(N) is defined by (3.2). Now (3.1) is a consequence of Theorem 9 and
Remark 10. �

Note that Corollary 11 immediately applies to the “canonical functions”
in V , i.e.,

ϕ(x) =
1

1 + |x|1+σ
,

for σ > 0. In the case σ = 1 this function corresponds (up to a scalar multiple
of the variable) to the Fourier transform of the two-sided exponential function
g(x) = e−|x|, which is known to generate a Gabor frame for all parameter
values a, b > 0 with ab < 1, see [9]. It follows that also the function ϕ(x) =
(1 + x2)−1 generates a Gabor frame for all ab < 1.

In the next result we improve the estimate in Corollary 11 for two standard
functions, namely, the Gaussian and the two-sided exponential function. In
order to get as close as desired to perfect reconstruction, the parameter N has
to be chosen sufficiently large; the result shows how N depends on the chosen
function ϕ ∈ V .

Corollary 12 Let a ∈ (0,∞) and let {b(N)}∞N=1 ⊂ R be a sequence such that
0 < b(N) ≤ 1

2N . Given a function ϕ ∈ V , consider again the functions ϕN in
(1.6) and ϕ̃N in (2.14) for any integer N > a/2 and with b = b(N).

(1) Consider ϕ(x) = e−|x|, x ∈ R. Then

∥∥∥∥∥∥
f −

∑

m,n∈Z

〈f, Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C2(N)

√
Ne−N ‖f‖ , ∀f ∈ L2(R),

where

C2(N) :=
e

a

2

(
1− e−N+a

2

)
√(

2 +
2

1− e−2N

)(
2

a
+

1

N

(
3− e−a

1− e−a

))
;

(2) Consider ϕ(x) = e−x2

, x ∈ R. Then

∥∥∥∥∥∥
f −

∑

m,n∈Z

〈f, Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C3(N)

√
Ne−N2 ‖f‖ , ∀f ∈ L2(R),
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where

C3(N) :=
e

a
2

4

(
1− e−N2+ a2

4

)
√(

2 +
2

1− e−4N2

)(
2

a
+

1

N

(
3− e−2Na

1− e−2Na

))
.

Proof. For (1), applying (1.7) and b(N) ≤ 1
2N yields that

QN (b(N)) = (⌊2b(N)N⌋+ 1)ϕ(N) + 2

∞∑

k=0

ϕ

(
N +

k

b(N)

)

≤ 2ϕ(N) + 2

∞∑

k=0

ϕ (N + 2Nk) = e−N

(
2 +

2

1− e−2N

)
.

Similarly,

QN (
1

a
) =

(⌊
2N

a

⌋
+ 1

)
ϕ(N) + 2

∞∑

k=0

ϕ (N + ak)

≤
(
2N

a
+ 1

)
e−N +

2e−N

1− e−a
= Ne−N

(
2

a
+

1

N

(
3− e−a

1− e−a

))
.

Proposition 7 shows that {Emb(N)TnaϕN}m,n∈Z is a frame with canonical dual
frame {Emb(N)Tnaϕ̃N}m,n∈Z and lower frame bound

A(ϕN ) =

∣∣ϕN

(
a
2

)∣∣2

b(N)
=

(
g
(
a
2

)
− g(N)

)2

b(N)
=

e−a
(
1− e−N+ a

2

)2

b(N)
;

as in Corollary 11 the result now follows from Theorem 9 and Remark 10.
For (2), we use the estimates

QN (b(N)) = (⌊2b(N)N⌋+ 1)ϕ(N) + 2
∞∑

k=0

ϕ

(
N +

k

b(N)

)

≤ 2ϕ(N) + 2

∞∑

k=0

ϕ (N + 2Nk)

≤ 2e−N2

+ 2
∞∑

k=0

e−N2−4N2k = e−N2

(
2 +

2

1− e−4N2

)
,

and

QN (
1

a
) =

(⌊
2N

a

⌋
+ 1

)
ϕ(N) + 2

∞∑

k=0

ϕ (N + ak)

≤
(
2N

a
+ 1

)
e−N2

+ 2
∞∑

k=0

e−N2−2aNk = Ne−N2

(
2

a
+

1

N

(
3− e−2Na

1− e−2Na

))
.
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Again {Emb(N)TnaϕN}m,n∈Z is a frame with canonical dual frame {Emb(N)Tnaϕ̃N}m,n∈Z

and lower frame bound

A(ϕN ) =

∣∣ϕN

(
a
2

)∣∣2

b(N)
=

(
g
(
a
2

)
− g(N)

)2

b(N)
=

e−
a
2

2

(
1− e−N2+ a

2

4

)2

b(N)
,

and the conclusion follows as before. �

Remark 13 The 2 standard functions in Corollary 12 are both convex on
[N,∞) when N ≥ 1, and so the bound 1

bQN(b)QN ( 1a) for B(qN , a, b) that is
used in the proof of Theorem 9 can be replaced by a sharper bound according
to Proposition 5. This yields sharper bounds in Corollary 12 (1) and (2). �
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