Chapter 7

Production, Capacity and Material Planning
Production, Capacity and Material Planning

- **Production plan**
 - quantities of final product, subassemblies, parts needed at distinct points in time

- **To generate the Production plan we need:**
 - end-product demand forecasts
 - Master production schedule

- **Master production schedule (MPS)**
 - delivery plan for the manufacturing organization
 - exact amounts and delivery timings for each end product
 - accounts for manufacturing constraints and final goods inventory
Production, Capacity and Material Planning

Based on the MPS:

- rough-cut capacity planning

- Material requirements planning
 - determines material requirements and timings for each phase of production
 - detailed capacity planning
Production, Capacity and Material Planning

- End-Item Demand Estimate
- Master Production Schedule (MPS)
- Rough-Cut Capacity Planning
- Detailed Capacity Planning
- Material Requirements Planning (MRP)
- Material Plan
- Purchasing Plan
- Shop Orders
- Shop Floor Control

Updates
Master Production Scheduling

- **Aggregate plan**
- **demand estimates for individual end-items**
- **demand estimates vs. MPS**
 - inventory
 - capacity constraints
 - availability of material
 - production lead time
 - ...
- **Market environments**
 - make-to-stock (MTS)
 - make-to-order (MTO)
 - assemble-to-order (ATO)
Master Production Scheduling

MTS
- produces in batches
- minimizes customer delivery times at the expense of holding finished-goods inventory
- MPS is performed at the end-item level
- production starts before demand is known precisely
- small number of end-items, large number of raw-material items

MTO
- no finished-goods inventory
- customer orders are backlogged
- MPS is order driven, consists of firm delivery dates
Master Production Scheduling

- **ATO**
 - large number of end-items are assembled from a relatively small set of standard subassemblies, or modules
 - automobile industry
 - MPS governs production of modules (forecast driven)
 - Final Assembly Schedule (FAS) at the end-item level (order driven)
 - 2 lead times, for consumer orders only FAS lead time relevant
Master Production Scheduling

- MPS - SIBUL manufactures phones
 - three desktop models A, B, C
 - one wall telephone D
 - MPS is equal to the demand forecast for each model

<table>
<thead>
<tr>
<th>WEEKLY MPS (= FORECAST)</th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week</td>
<td>Week</td>
</tr>
<tr>
<td>Product</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Model B</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Model C</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Model D</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>weekly total</td>
<td>3100</td>
<td>3000</td>
</tr>
<tr>
<td>monthly total</td>
<td>12200</td>
<td></td>
</tr>
</tbody>
</table>
Master Production Scheduling

MPS Planning - Example

- MPS plan for model A of the previous example:
- Make-to-stock environment
- No safety-stock for end-items

\[I_t = I_{t-1} + Q_t - \max\{F_t, O_t\} \]
\[I_t = \text{end-item inventory at the end of week } t \]
\[Q_t = \text{manufactured quantity to be completed in week } t \]
\[F_t = \text{forecast for week } t \]
\[O_t = \text{customer orders to be delivered in week } t \]

<table>
<thead>
<tr>
<th>INITIAL DATA Model A</th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Inventory =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>orders Ot</td>
<td>1200</td>
<td>800</td>
</tr>
</tbody>
</table>
Master Production Scheduling

- **Batch production:** batch size = 2500
 - \(I_t = \max\{0, I_{t-1}\} - \max\{F_t, O_t\} \)
 - \(Q_t = \begin{cases}
 0, & \text{if } I_t > 0 \\
 2500, & \text{otherwise}
 \end{cases} \)

- \(I_1 = \max\{0, 1600\} - \max\{1000, 1200\} = 400 > 0 \)
- \(I_2 = \max\{0, 400\} - \max\{1000, 800\} = -600 < 0 \Rightarrow Q_2 = 2500 \)
- \(I_2 = 2500 + 400 - \max\{1000, 800\} = 1900, \text{ etc.} \)

<table>
<thead>
<tr>
<th>MPS</th>
<th>Jan</th>
<th></th>
<th>Feb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Inventory = 1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>forecast Ft</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>orders Ot</td>
<td>1200</td>
<td>800</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Inventory It</td>
<td>1600</td>
<td>400</td>
<td>1900</td>
<td>900</td>
</tr>
<tr>
<td>MPS Qt</td>
<td>2500</td>
<td></td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>400</td>
<td>1400</td>
<td>2200</td>
<td>2500</td>
</tr>
</tbody>
</table>
Master Production Scheduling

- Available to Promise (ATP)

 \[\text{ATP}_1 = 1600 + 0 - 1200 = 400 \]
 \[\text{ATP}_2 = 2500 - (800 + 300) = 1400, \text{ etc.} \]

- Whenever a new order comes in, ATP must be updated

- Lot-for-Lot production

<table>
<thead>
<tr>
<th>MPS</th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week</td>
<td>Week</td>
</tr>
<tr>
<td>Current Inventory = 1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>orders Ot</td>
<td>1200</td>
<td>800</td>
</tr>
<tr>
<td>Inventory It</td>
<td>1600</td>
<td>400</td>
</tr>
<tr>
<td>MPS Qt</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>ATP</td>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>
Master Production Scheduling

- MPS Modeling
 - differs between MTS-ATO and MTO
 - find final assembly lot sizes
 - additional complexity because of joint capacity constraints
 - cannot be solved for each product independently
Master Production Scheduling

Make-To-Stock-Modeling

\[Q_{it} = \text{production quantity of product } i \text{ in period } t \]
\[I_{it} = \text{Inventory of product } i \text{ at end of period } t \]
\[D_{it} = \text{demand (requirements) for product } i \text{ in time period } t \]
\[a_i = \text{production hours per unit of product } i \]
\[h_i = \text{inventory holding cost per unit of product } i \text{ per time period} \]
\[A_i = \text{set-up cost for product } i \]
\[G_t = \text{production hours available in period } t \]

\[y_{it} = 1, \text{if set-up for product } i \text{ occurs in period } t (Q_{it} > 0) \]
Master Production Scheduling

Make-To-Stock-Modeling

\[
\begin{align*}
\min & \sum_{i=1}^{n} \sum_{t=1}^{T} (A_i y_{it} + h_i I_{it}) \\
I_{i,t-1} + Q_{it} - I_{it} & = D_{it} \quad \text{for all (i,t)} \\
\sum_{i=1}^{n} a_i Q_{it} & \leq G_t \quad \text{for all t} \\
Q_{it} - y_{it} \sum_{k=1}^{T} D_{ik} & \leq 0 \quad \text{for all (i,t)} \\
Q_{it} & \geq 0; I_{it} \geq 0; y_{it} \in \{0, 1\}
\end{align*}
\]
Master Production Scheduling

- **Assemble-To-Order Modeling**
 - **two master schedules**
 - MPS: forecast-driven
 - FAS: order driven
 - **overage costs**
 - Holding costs for modules and assembled products
 - **shortage costs**
 - Final product assembly based on available modules
 - No explicit but implicit shortage costs for modules
 - Final products: lost sales, backorders
Master Production Scheduling

- \(m \) module types and \(n \) product types
- \(Q_{kt} \) = quantity of module \(k \) produced in period \(t \)
- \(g_{kj} \) = number of modules of type \(k \) required to assemble order \(j \)

Decision Variables:
- \(I_{kt} \) = inventory of module \(k \) at the end of period \(t \)
- \(y_{jt} \) = 1, if order \(j \) is assembled and delivered in period \(t \); 0, otherwise
- \(h_k \) = holding cost
- \(\pi_{jt} \) = penalty costs, if order \(j \) is satisfied in period \(t \) and order \(j \) is due in period \(t' \) (\(t'<t \)); holding costs if \(t' > t \)
Assemble-To-Order Modeling

\[
\min \sum_{k=1}^{m} \sum_{t=1}^{L} h_k I_{kt} + \sum_{j=1}^{n} \sum_{t=1}^{L} \pi_{jt} y_{jt}
\]

subject to

\[
I_{kt} = I_{k,t-1} + Q_{kt} - \sum_{j=1}^{n} g_{kj} y_{jt} \quad \text{for all } (k, t)
\]

\[
\sum_{j=1}^{n} a_j y_{jt} \leq G_t \quad \text{for all } t
\]

\[
\sum_{t=1}^{L} y_{jt} = 1 \quad \text{for all } j
\]

\[
I_{kt} \geq 0; \quad y_{jt} \in \{0,1\} \quad \text{for all } (j, k, t)
\]
Master Production Scheduling

- **Capacity Planning**
 - Bottleneck in production facilities
 - Rough-Cut Capacity Planning (RCCP) at MPS level
 - feasibility
 - detailed capacity planning (CRP) at MRP level
 - both RCCP and CRP are only providing information
Master Production Scheduling

MPS:

<table>
<thead>
<tr>
<th>Product</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>500</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>D</td>
<td>600</td>
<td>-</td>
<td>600</td>
<td>-</td>
</tr>
</tbody>
</table>

Bill of capacity (min)

<table>
<thead>
<tr>
<th></th>
<th>Assembly</th>
<th>Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Capacity requires (hr)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Available capacity per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>1133</td>
<td>1083</td>
<td>1333!!</td>
<td>883</td>
<td>1200</td>
</tr>
<tr>
<td>Inspection</td>
<td>107</td>
<td>104</td>
<td>128!!</td>
<td>83</td>
<td>110</td>
</tr>
</tbody>
</table>

- **weekly capacity requirements?**
- **Assembly**: $1000 \times 20 + 1500 \times 22 + 600 \times 25 = 68000$ min = 1133,33 hr
- **Inspection**: $1000 \times 2 + 1500 \times 2 + 600 \times 2.4 = 6440$ min = 107,33 hr etc.
- **available capacity per week** is 1200 hr for the assembly work center and 110 hours for the inspection station;
Master Production Scheduling

- Infinite capacity planning (information providing)
- Finding a feasible cost optimal solution is a NP-hard problem

- If no detailed bill of capacity is available: capacity planning using overall factors (globale Belastungsfaktoren)
 - Required input:
 - MPS
 - Standard hours of machines or direct labor required
 - Historical data on individual shop workloads (%)

- Example from Günther/Tempelmeier
 - C133.3: overall factors
Master Production Scheduling

Capacity planning using overall factors

<table>
<thead>
<tr>
<th>product</th>
<th>week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>product</th>
<th>work on critical machine</th>
<th>work on non-critical machine</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Historic capacity requirements on critical machines:
- 40% on machine a
- 60% on machine b
Master Production Scheduling

in total 500 working units are available per week, 80 on machine a and 120 on machine b;

Solution:
overall factor = time per unit x historic capacity needs

product A:
machine a: 1 x 0,4 = 0,4
machine b: 1 x 0,6 = 0,6

product B:
machine a: 4 x 0,4 = 1,6
machine b: 4 x 0,6 = 2,4
Master Production Scheduling

Capacity Requirements: Product A

<table>
<thead>
<tr>
<th>Machine</th>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>40</td>
<td>32</td>
<td>48</td>
<td>40</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>60</td>
<td>48</td>
<td>72</td>
<td>60</td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td>200</td>
<td>160</td>
<td>240</td>
<td>200</td>
<td>240</td>
<td>120</td>
</tr>
</tbody>
</table>

Capacity Requirements: Product B

<table>
<thead>
<tr>
<th>Machine</th>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>64</td>
<td>-</td>
<td>96</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>96</td>
<td>-</td>
<td>144</td>
<td>-</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td>80</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>80</td>
<td>-</td>
</tr>
</tbody>
</table>
Master Production Scheduling

Total capacity requirements

<table>
<thead>
<tr>
<th>Machine</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>104</td>
<td>32</td>
<td>144</td>
<td>40</td>
<td>112</td>
<td>24</td>
</tr>
<tr>
<td>b</td>
<td>156</td>
<td>48</td>
<td>216</td>
<td>60</td>
<td>168</td>
<td>36</td>
</tr>
<tr>
<td>Other</td>
<td>280</td>
<td>160</td>
<td>360</td>
<td>200</td>
<td>320</td>
<td>120</td>
</tr>
</tbody>
</table>
Master Production Scheduling

The diagram illustrates the capacity requirements for different categories over the weeks. Here are the details:

- **Category a**: Maximum 80 units per week.
- **Category b**: Maximum 120 units per week.
- **Other**: Maximum 300 units per week.

The bars show the actual capacity requirements for each week, which are as follows:

- **Week 1**: Category a = 100 units, Category b = 200 units, Other = 50 units.
- **Week 2**: Category a = 50 units, Category b = 100 units, Other = 150 units.
- **Week 3**: Category a = 30 units, Category b = 150 units, Other = 200 units.
- **Week 4**: Category a = 80 units, Category b = 120 units, Other = 250 units.
- **Week 5**: Category a = 100 units, Category b = 180 units, Other = 230 units.
- **Week 6**: Category a = 70 units, Category b = 100 units, Other = 220 units.
Master Production Scheduling

- **Capacity Modeling**
 - heuristic approach for finite-capacity-planning
 - based on input/output analysis
 - relationship between capacity and lead time

- $G_t =$ work center capacity
- $R_t =$ work released to the center in period t
- $Q_t =$ production (output) from the work center in period t
- $W_t =$ work in process in period t
- $U_t =$ queue at the work center measured at the beginning of period t, prior to the release of work
- $L_t =$ lead time at the work center in period t
Master Production Scheduling

\[Q_t = \min\{G, U_{t-1} + R_t\} \]
\[U_t = U_{t-1} + R_t - Q_t \]
\[W_t = U_{t-1} + R_t = U_t + Q_t \]
\[L_t = \frac{W_t}{G} \]

- **Lead time is not constant**
- **assumptions:**
 - constant production rate
 - any order released in this period is completed in this period
Master Production Scheduling

Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{t} (hr/week)</td>
<td></td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>R_{t} (hours)</td>
<td></td>
<td>20</td>
<td>30</td>
<td>60</td>
<td>20</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Q_{t} (hours)</td>
<td></td>
<td>30</td>
<td>30</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>U_{t} (hours)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>W_{t} (hours)</td>
<td></td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>44</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>L_{t} (weeks)</td>
<td></td>
<td>0.83</td>
<td>0.83</td>
<td>1.67</td>
<td>1.22</td>
<td>1.33</td>
<td>1.44</td>
</tr>
</tbody>
</table>
Material Requirements Planning

- **Inputs**
 - master production schedule
 - inventory status record
 - bill of material (BOM)

- **Outputs**
 - planned order releases
 - purchase orders(supply lead time)
 - workorders(manufacturing lead time)
Material Requirements Planning

Legend:
- **S/A** = subassembly
- **PP** = purchased part
- **MP** = manufactured part
- **RM** = raw material

<table>
<thead>
<tr>
<th>Level 4</th>
<th>Level 3</th>
<th>Level 2</th>
<th>Level 1</th>
<th>Level 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>MP</td>
<td>PP</td>
<td>S/A</td>
<td>End-Item</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **part #**
- **quantity**
Material Requirements Planning

MRP Process

- goal is to find net requirements (trigger purchase and work orders)
- explosion
 - Example:
 - MPS, 100 end items
 - yields gross requirements
- netting
 - Net requirements = Gross requirements - on hand inventory - quantity on order
 - done at each level prior to further explosion
- offsetting
 - the timing of order release is determined
- lotsizing
 - batch size is determined
Material Requirements Planning

Example 7-6

- Telephone (1)
 - Hand Set Assembly (11)
 - Microphone S/A (111)
 - Receiver S/A (112)
 - Housing S/A (121)
 - Tapping Screw (115)
 - Upper Cover (113)
 - Lower Cover (114)
 - Base Assembly (12)
 - Board Pack S/A (122)
 - Key Pad (1211)
 - Key Pad Cord (1212)
 - Hand Set Cord (13)
 - Rubber Pad (123)
 - Tapping Screw (124)
Material Requirements Planning

PART 11 (gross requirements given)
net requirements?
Planned order release?

Net requ.(week 2) = 600 – (1600 + 700) = -1700 => Net requ.(week2) = 0
Net requ.(week 3) = 1000 – (1700 + 200) = -900 => Net requ.(week3) = 0
Net requ.(week 4) = 1000 – 900 = 100 etc.

<table>
<thead>
<tr>
<th>week</th>
<th>current</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>gross requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scheduled receipts</td>
<td>1200</td>
<td>1600</td>
<td>1700</td>
<td>900</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planned order release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assumptions:
lot size: 3000
lead time: 2 weeks

<table>
<thead>
<tr>
<th></th>
<th>current</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>gross requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scheduled receipts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projected inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planned receipts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planned order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Assumptions:
 - Lot size: 3000
 - Lead time: 2 weeks

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>700</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1600</td>
<td>1700</td>
<td>900</td>
<td>2900</td>
<td>900</td>
<td>1900</td>
<td>2900</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projected inventory balance:
- Week 1: 1200
- Week 2: 1600
- Week 3: 1700
- Week 4: 900
- Week 5: 2900
- Week 6: 900
- Week 7: 1900
- Week 8: 2900

Net requirements:
- Week 1: 100
- Week 2: 2000
- Week 3: 2000
- Week 4: 2000
- Week 5: 2000
- Week 6: 2000

Planned receipts:
- Week 1: 3000
- Week 2: 3000
- Week 3: 3000
- Week 4: 3000
- Week 5: 3000
- Week 6: 3000

Planned order release:
- Week 1: 3000
- Week 2: 3000
- Week 3: 3000
- Week 4: 3000
- Week 5: 3000
- Week 6: 3000

Note: The table data represents the requirements planning for a product with a lot size of 3000 and a lead time of 2 weeks.
Material Requirements Planning

- Multilevel explosion

<table>
<thead>
<tr>
<th>part number</th>
<th>description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>base assembly</td>
<td>1</td>
</tr>
<tr>
<td>121</td>
<td>housing S/A</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>rubber pad</td>
<td>4</td>
</tr>
<tr>
<td>1211</td>
<td>key pad</td>
<td>1</td>
</tr>
</tbody>
</table>

- lead time is one week
- lot for lot for parts 121, 123, 1211
- part 12: fixed lot size of 3000
<table>
<thead>
<tr>
<th>Part 12</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>gross requirements</td>
<td></td>
<td>600</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>scheduled receipts</td>
<td></td>
<td></td>
<td>400</td>
<td>400</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projected inventory balance</td>
<td></td>
<td>800</td>
<td>1200</td>
<td>1000</td>
<td>400</td>
<td>2400</td>
<td>400</td>
<td>1400</td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>planned receipts</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>planned order release</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Part 121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>gross requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>scheduled receipts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projected inventory balance</td>
<td></td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>planned receipts</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>planned order release</td>
<td></td>
<td>0</td>
<td>2500</td>
<td>0</td>
<td>3000</td>
<td>3000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Part 123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>gross requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12000</td>
<td>0</td>
<td>12000</td>
<td>12000</td>
</tr>
<tr>
<td>scheduled receipts</td>
<td></td>
<td></td>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projected inventory balance</td>
<td></td>
<td>15000</td>
<td>15000</td>
<td>25000</td>
<td>13000</td>
<td>13000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>planned receipts</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11000</td>
</tr>
<tr>
<td>planned order release</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11000</td>
<td>0</td>
</tr>
<tr>
<td>Part 1211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>gross requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>scheduled receipts</td>
<td></td>
<td></td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projected inventory balance</td>
<td></td>
<td>1200</td>
<td>2700</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>net requirements</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>planned receipts</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2800</td>
<td>3000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>planned order release</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2800</td>
<td>3000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Material Requirements Planning

- **MRP Updating Methods**
 - MRP systems operate in a dynamic environment
 - regeneration method: the entire plan is recalculated
 - net change method: recalculates requirements only for those items affected by change

<table>
<thead>
<tr>
<th>Product</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>350</td>
<td>500</td>
<td>-</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>C</td>
<td>1000</td>
<td>-</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>-</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>300</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>200</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>200</td>
<td>-200</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Net Change for February

<table>
<thead>
<tr>
<th>Product</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>200</td>
<td>-200</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Material Requirements Planning

- **Additional Netting procedures**
 - **implode:**
 - opposite of explosion
 - finds common item
 - **combining requirements:**
 - process of obtaining the gross requirements of a common item
 - **pegging:**
 - identify the item’s end product
 - useful when item shortages occur
Material Requirements Planning

Lot Sizing in MRP
- minimize set-up and holding costs

- can be formulated as MIP

- a variety of heuristic approaches are available

- simplest approach: use independent demand procedures (e.g. EOQ) at every level
Material Requirements Planning

MIP Formulation

Indices:

- $i = 1...P$: label of each item in BOM (assumed that all labels are sorted with respect to the production level starting from the end-items)
- $t = 1...T$: period t
- $m = 1...M$: resource m

Parameters:

- $\Gamma(i)$: set of immediate successors of item i
- $\Gamma^{-1}(i)$: set of immediate predecessors of item i
- s_i: setup cost for item i
- c_{ij}: quantity of item i required to produce item j
- h_i: holding cost for one unit of item i
- a_{mi}: capacity needed on resource m for one unit of item i
- b_{mi}: capacity needed on resource m for the setup process of item i
- L_{mt}: available capacity of resource m in period t
- oc_m: overtime cost of resource m
- G: large number, but as small as possible (e.g. sum of demands)
- D_{it}: external demand of item i in period t
Decision variables:

- x_{it}: delivered quantity of item i in period t
- l_{it}: inventory level of item i at the end of period t
- O_{mt}: overtime hours required for machine m in period t
- y_{it}: binary variable indicating if item i is produced in period t ($=1$) or not ($=0$)

Equations:

- $\min \sum_{i=1}^{P} \sum_{t=1}^{T} (s_i y_{it} + h_i I_{it}) + \sum_{t=1}^{T} \sum_{m=1}^{M} o_c m O_{mt}$

- $I_{i,t} = I_{i,t-1} + x_{i,t} - \sum_{j \in \Gamma(i)} c_{ij} x_{jt} - D_{it} \quad \forall i, t$

- $x_{it} - G y_{it} \leq 0 \quad \forall i, t$

- $\sum_{i=1}^{P} (a_{mi} x_{it} + b_{mi} y_{it}) \leq L_{mt} + O_{mt} \quad \forall m, t$

- $x_{it}, I_{it}, O_{mt} \geq 0, \quad y_{it} \in \{0, 1\} \quad \forall i, m, t$
Material Requirements Planning

- **Multi-Echelon Systems**
 - Multi-echelon inventory
 - each level is referred as an **echelon**
 - “total inventory in the system varies with the number of stocking points”
 - Modell (Freeland 1985):
 - demand is insensitive to the number of stocking points
 - demand is normally distributed and divided evenly among the stocking points,
 - demands at the stocking points are independent of one another
 - a (Q,R) inventory policy is used
 - β-Service level (fill rate) is applied
 - Q is determined from the EOQ formula
Material Requirements Planning

- Reorder point in (Q,R) policies:
 - i: total annual inventory costs (%)
 - c: unit costs
 - A: ordering costs
 - T: lead time
 - σ_T: variance of demand in lead time

- Given a fill rate β, choose $z(\beta)$ such that:

$$L(z) = \int_{z}^{\infty} (y - z) \phi(y) dy = \frac{(1 - \beta)Q}{\sigma_T}$$

ϕ: density of $N(0,1)$ distribution; $L(z)$: standard loss function
<table>
<thead>
<tr>
<th>Z</th>
<th>.00</th>
<th>.02</th>
<th>.04</th>
<th>.06</th>
<th>.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>.3989</td>
<td>.3890</td>
<td>.3793</td>
<td>.3697</td>
<td>.3602</td>
</tr>
<tr>
<td>0.10</td>
<td>.3509</td>
<td>.3418</td>
<td>.3329</td>
<td>.3240</td>
<td>.3154</td>
</tr>
<tr>
<td>0.20</td>
<td>.3069</td>
<td>.2986</td>
<td>.2904</td>
<td>.2824</td>
<td>.2745</td>
</tr>
<tr>
<td>0.30</td>
<td>.2668</td>
<td>.2592</td>
<td>.2518</td>
<td>.2445</td>
<td>.2374</td>
</tr>
<tr>
<td>0.40</td>
<td>.2304</td>
<td>.2236</td>
<td>.2170</td>
<td>.2104</td>
<td>.2040</td>
</tr>
<tr>
<td>0.50</td>
<td>.1978</td>
<td>.1917</td>
<td>.1857</td>
<td>.1799</td>
<td>.1742</td>
</tr>
<tr>
<td>0.60</td>
<td>.1687</td>
<td>.1633</td>
<td>.1580</td>
<td>.1528</td>
<td>.1478</td>
</tr>
<tr>
<td>0.70</td>
<td>.1429</td>
<td>.1381</td>
<td>.1335</td>
<td>.1289</td>
<td>.1245</td>
</tr>
<tr>
<td>0.80</td>
<td>.1202</td>
<td>.1160</td>
<td>.1120</td>
<td>.1080</td>
<td>.1042</td>
</tr>
<tr>
<td>0.90</td>
<td>.1004</td>
<td>.0968</td>
<td>.0933</td>
<td>.0899</td>
<td>.0866</td>
</tr>
<tr>
<td>1.00</td>
<td>.0833</td>
<td>.0802</td>
<td>.0772</td>
<td>.0742</td>
<td>.0714</td>
</tr>
<tr>
<td>1.10</td>
<td>.0686</td>
<td>.0660</td>
<td>.0634</td>
<td>.0609</td>
<td>.0585</td>
</tr>
<tr>
<td>1.20</td>
<td>.0561</td>
<td>.0539</td>
<td>.0517</td>
<td>.0496</td>
<td>.0475</td>
</tr>
<tr>
<td>1.30</td>
<td>.0456</td>
<td>.0437</td>
<td>.0418</td>
<td>.0401</td>
<td>.0383</td>
</tr>
<tr>
<td>1.40</td>
<td>.0367</td>
<td>.0351</td>
<td>.0336</td>
<td>.0321</td>
<td>.0307</td>
</tr>
<tr>
<td>1.50</td>
<td>.0293</td>
<td>.0280</td>
<td>.0268</td>
<td>.0256</td>
<td>.0244</td>
</tr>
<tr>
<td>1.60</td>
<td>.0233</td>
<td>.0222</td>
<td>.0212</td>
<td>.0202</td>
<td>.0192</td>
</tr>
<tr>
<td>1.70</td>
<td>.0183</td>
<td>.0174</td>
<td>.0166</td>
<td>.0158</td>
<td>.0150</td>
</tr>
<tr>
<td>1.80</td>
<td>.0143</td>
<td>.0136</td>
<td>.0129</td>
<td>.0122</td>
<td>.0116</td>
</tr>
<tr>
<td>1.90</td>
<td>.0110</td>
<td>.0104</td>
<td>.0099</td>
<td>.0094</td>
<td>.0089</td>
</tr>
<tr>
<td>2.00</td>
<td>.0084</td>
<td>.0080</td>
<td>.0075</td>
<td>.0071</td>
<td>.0067</td>
</tr>
<tr>
<td>2.10</td>
<td>.0063</td>
<td>.0060</td>
<td>.0056</td>
<td>.0053</td>
<td>.0050</td>
</tr>
<tr>
<td>2.20</td>
<td>.0047</td>
<td>.0044</td>
<td>.0042</td>
<td>.0039</td>
<td>.0037</td>
</tr>
<tr>
<td>2.30</td>
<td>.0036</td>
<td>.0034</td>
<td>.0032</td>
<td>.0030</td>
<td>.0028</td>
</tr>
<tr>
<td>2.40</td>
<td>.0027</td>
<td>.0026</td>
<td>.0024</td>
<td>.0023</td>
<td>.0022</td>
</tr>
<tr>
<td>2.50</td>
<td>.0021</td>
<td>.0018</td>
<td>.0017</td>
<td>.0016</td>
<td>.0016</td>
</tr>
</tbody>
</table>
Material Requirements Planning

- **Safety stock:**
 \[s = z \cdot \sigma_r \]

- **Reorder point:**
 \[R = \overline{D}_r + z \cdot \sigma_r \]

- **Order quantity:**
 \[Q = EOQ = \sqrt{\frac{2AD}{ic}} \]

- **Average inventory:**
 \[\overline{I}(1) = \frac{Q}{2} + s \]
 \[\overline{I}(n) = \text{average inventory for } n \text{ stocking points} \]
 \[\overline{I}(1) = \frac{1}{2} \sqrt{\frac{2AD}{ic}} + z \sigma_r \]
Material Requirements Planning

for two stocking points:
demand at each point: $D/2$
variance of lead-time demand: $\sigma_r^2 / 2$
standard deviation is: $\sigma_r / \sqrt{2}$

average inventory at each stocking point is:

$$\frac{1}{2} \sqrt{\frac{2AD/2}{\text{ic}}} + \frac{z\sigma_r}{\sqrt{2}} = \frac{1}{\sqrt{2}} (Q/2 + s)$$
Material Requirements Planning

the average inventory for two stocking point is:

\[\bar{I}(2) = 2 \left[\frac{1}{\sqrt{2}} (Q/2 + s) \right] = \sqrt{2} (Q/2 + s) = \sqrt{2} \cdot \bar{I}(1) \]

\[\bar{I}(n) = \sqrt{n} \cdot \bar{I}(1) \]

for each level the safety stock is: \(s/\sqrt{n} \)

the total safety stock is \(\sqrt{n} \cdot s \)
Material Requirements Planning

Example: At the packaging department of a sugar refinery:

A very-high-grade powdered sugar:

Sugar-refining lead time is five days;
Production lead time (filling time) is negligible;
Annual demand: \(D = 800 \) tons and \(\sigma = 2.5 \)
Lead-time demand is normally distributed with \(D_T = 16 \) tons and \(\sigma_T = 3.54 \) tons
Fill rate = 95%
\(A = $50, \ c = $4000, \ i = 20\% \)
Material Requirements Planning

Inventory at level 0 and 1? Safety stock?

\[Q = \sqrt{\frac{2 \times AD}{ic}} = \sqrt{\frac{2 \times 50 \times 800}{800}} = 10 \text{ tons} \]

\[\beta = 0.95 \Rightarrow z = 0.71 \]

\[s = z\sigma = 0.71 \times 3.54 = 2.51 \text{ tons} \]

Suppose we keep inventory in level 0 only, i.e., \(n = 1 \):

\[I(1) = \frac{Q}{2} + s = \frac{10}{2} + 2.51 = 7.51 \text{ tons} \]

Suppose inventory is maintained at both level 0 and level 1, i.e., \(n = 2 \):

\[I(2) = \sqrt{2I(1)} = 10.62 \text{ tons} \]

The safety stock in each level is going to be:

\[\frac{s}{\sqrt{2}} = \frac{2.51}{\sqrt{2}} = 1.77 \text{tons} \]
Material Requirements Planning

MRP as Multi-Echelon Inventory Control

- continuous-review type policy (Q,R)
- hierarchy of stocking points (installation)
- installation stock policy
- echelon stock (policy): installation inventory position plus all downstream stock

MRP:
- rolling horizon
- level by level approach
- bases ordering decisions on projected future installation inventory level
Material Requirements Planning

- All demands and orders occur at the beginning of the time period
- Orders are initiated immediately after the demands, first for the final items and then successively for the components
- All demands and orders are for an integer number of units
- $T =$ planning horizon
- $\tau_i =$ lead time for item i
- $s_i =$ safety stock for item i
- $R_i =$ reorder point for item i
- $Q_i =$ fixed order quantity of item i
- $D_{it} =$ external requirements of item i in period t
Installation stock policies \((Q,R_i)\) for MRP:

- a production order is triggered if the installation stock minus safety stock is insufficient to cover the requirements over the next \(\tau_i\) periods
- an order may consist of more than one order quantity \(Q\)

- if lead time \(\tau_i = 0\), the MRP is equal to an installation stock policy.
- safety stock = reorder point
Material Requirements Planning

- **Echelon stock policies \((Q,R^e)\) for MRP:**
 - Consider a serial assembly system
 - Installation 1 is the downstream installation (final product)
 - the output of installation \(i\) is the input when producing one unit of item \(i-1\) at the immediate downstream installation
 - \(w_i\) = installation inventory position at installation \(i\)
 - \(l_i\) = echelon inventory position at installation \(i\) (at the same moment)

\[
l_i = w_i + w_{i-1} + \ldots + w_1
\]

- a multi-echelon \((Q,R)\) policy is denoted by \((Q_i,R_i^e)\)
- \(R_i^e\) gives the reorder point for echelon inventory at \(i\)
Material Requirements Planning

\[R_1^e = s_1 + D \tau_1 \]
\[R_i^e = s_i + D \tau_i + R_{i-1}^e + Q_{i-1} \]

Example:

- **Two-level system, 6 periods**
 - \(I_1^0 = 18, \ I_2^0 = 38, \ R_1^e = 20, \ R_2^e = 34, \ Q_1 = 10, \ Q_2 = 30 \)
 - \(D = 2 \) (Item 1), \(\tau_1 = 1, \ \tau_2 = 2 \)
Material Requirements Planning

Demand and Production Levels

<table>
<thead>
<tr>
<th>Period</th>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demand</td>
<td>Level w1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Suppose now that five units were demanded in period 2:

<table>
<thead>
<tr>
<th>Period</th>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demand</td>
<td>Level w1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>23</td>
</tr>
</tbody>
</table>
Material Requirements Planning

- **Lot Size and Lead Time**
 - lead time is affected by capacity constraints
 - lot size affects lead time

- **batching effect**
 - an increase in lot size should increase lead time

- **saturation effect**
 - when lot size decreases, and set-up is not reduced, lead time will increase

- expected lead time can be calculated using models from queueing theory (M/G/1)
Material Requirements Planning

\[L = \text{lead time} \]
\[L = \frac{(\lambda / \mu)^2 + \lambda^2 \sigma^2}{2\lambda(1 - \lambda / \mu)} + \frac{1}{\mu} \]

\[\lambda = \text{mean arrival rate} \]
\[\mu = \text{mean service rate} \]
\[\sigma^2 = \text{service time variance} \]
Material Requirements Planning

\[D_j = \text{demand per period for product } j \]
\[t_j = \text{unit - production time for product } j \]
\[S_j = \text{set - up time for product } j \]
\[Q_j = \text{lotsize for product } j \]

mean arrival rate of batches :

\[\lambda = \sum_{j=1}^{n} \lambda_j = \sum_{j=1}^{n} \frac{D_j}{Q_j} \]

mean service time :

\[\frac{1}{\mu} = \frac{\sum_{j=1}^{n} \lambda_j (S_j + t_j Q_j)}{\sum_{j=1}^{n} \lambda_j} \]

service - time variance :

\[\sigma^2 = \frac{\sum_{j=1}^{n} \lambda_j (S_j + t_j Q_j)^2}{\sum_{j=1}^{n} \lambda_j} - \left(\frac{1}{\mu} \right)^2 \]
Material Requirements Planning

![Graph showing the relationship between lead time, optimum, lot size, combined effect, batching effect, and saturation effect.](image-url)
Material Planning

- Work to do: 7.7ab, 7.8, 7.10, 7.11, 7.14 (additional information: available hours: 225 (Paint), 130 (Mast), 100 (Rope)), 7.15, 7.16, 7.17, 7.31-7.34