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Summary. The presence of confounding by high-dimensional variables complicates es-
timation of the average effect of a point treatment. On the one hand, it necessitates the
use of variable selection strategies or more general data-adaptive high-dimensional sta-
tistical methods. On the other hand, the use of such techniques tends to result in biased
estimators with a non-standard asymptotic behaviour. Double-robust estimators are vi-
tal for offering a resolution because they possess a so-called small bias property (Newey
et al., 2004). This means that their bias vanishes faster than the bias in the nuisance
parameter estimators when the relevant smoothing parameter goes to zero, making their
performance less sensitive to smoothing (Chernozhukov et al., 2016). This property has
been exploited to achieve valid (uniform) inference of the average causal effect when data-
adaptive estimators of the propensity score and conditional outcome mean both converge
to their respective truths at sufficiently fast rate (e.g., van der Laan, 2014; Farrell, 2015;
Belloni et al., 2016). In this article, we extend this work in order to retain valid (uniform) in-
ference when one of these estimators does not converge to the truth, regardless of which.
This is done by generalising prior work for low-dimensional settings by Vermeulen and
Vansteelandt (2015) to incorporate regularisation. The proposed penalised bias-reduced
double-robust estimation strategy exhibits promising performance in extensive simulation
studies and a data analysis, relative to competing proposals.

Keywords: Confounding; Debiasing; Double robustness; High-dimensional infer-
ence; Model misspecification; Penalised estimating equations

1. Introduction

The effects of treatments, policies or interventions are commonly characterised in terms
of contrasts between the mean of counterfactual outcomes corresponding to different
treatment or exposure levels. For instance, for a dichotomous treatment A (coded 0
for no treatment and 1 for treatment), the average treatment effect (ATE) is defined
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as E {Y (1)} − E {Y (0)}, where Y (a) denotes the counterfactual outcome of a random
individual if that individual were exposed to treatment a = 0, 1. Estimation of such
effect from observational data generally requires adjustment for a set of covariates that
are sufficient to adjust for confounding of the effect of treatment on outcome. This is a
difficult task when the number of covariates is large or when one or multiple continuous
covariates can have non-linear effects on exposure or outcome. It is therefore common
to start from flexible models and adopt variable selection or more general regularisa-
tion techniques to handle the high dimensionality of the models. Such data-adaptive
techniques are especially crucial when the number of variables p is large relative to the
number of observations n.

The use of data-adaptive techniques requires consideration in itself, however. Reg-
ularisation techniques tend to return biased estimators (e.g. for the dependence of
treatment or outcome on covariates). Estimators of the ATE based on these, may in-
herit this bias. Nuisance parameter estimators obtained via regularisation techniques
also typically have a non-normal asymptotic distribution (Knight and Fu, 2000; Leeb
and Pötscher, 2005). This may render the distribution of ATE estimators based on
these rather complicated. Both these concerns make asymptotically unbiased estimators
for the ATE with accompanying uniformly valid confidence intervals difficult to attain,
especially in settings where the models’ complexity increases with sample size. This
forms one of the major Achilles heels of routine data analyses, since uniform validity is
essential in order to trust their finite-sample performance.

So-called double-robust (DR) estimators of the ATE (Robins and Rotnitzky, 2001;
see Rotnitzky and Vansteelandt, 2014 for a review) are not susceptible to the above prob-
lems, under certain conditions that we will specify next. DR estimators of the ATE make
use of two working models: one model A for the dependence of exposure on covariates,
and one model B for the dependence of outcome on covariates. They have the attractive
property of being consistent for the ATE when either one of these working models is
correctly specified, but not necessarily both. When both nuisance working models A and
B are correctly specified and estimated at faster than n−1/4 rate (in a sense to be made
precise later), then DR estimators of the ATE are orthogonal (w.r.t. the covariance inner
product) to the scores for the infinite-dimensional nuisance parameters that index the
observed data distribution (i.e., the probability of treatment given covariates, and the
outcome distribution given covariates and fixed treatment levels). This in turns implies
that estimation (and in particular, regularisation) of these nuisance parameters can be
ignored and, hence, that the resulting DR estimator is asymptotically unbiased with
standard, easy-to-calculate confidence interval that is uniformly valid (van der Laan,
2014; Farrell, 2015; Belloni et al., 2016; Athey et al., 2016). This surprising result ap-
plies to any (sufficiently fast converging) data-adaptive method for estimating nuisance
parameters; in particular, it forms the cornerstone of the now popular Targeted Maxi-
mum Likelihood method (Van der Laan and Rose, 2011).

While promising, a limitation of the above result is that it assumes both nuisance
working models A and B to be correctly specified (or more generally, both nuisance
parameter estimators to converge to their respective truths). This is unlikely to be sat-
isfied. Current practice is often based on simple parametric working models. Moreover,
the data analyst is essentially always forced to constrain the model’s flexibility in order
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to ensure nuisance parameter estimators that are sufficiently fast converging. In view
of this, in this article, we will generalise the above results to allow for misspecification
of both nuisance working models A and B. In particular, we will show that the use of
special nuisance parameter estimators will yield a DR estimator which is asymptotically
unbiased when at least one of the working models is correctly specified, and will moreover
yield an accompanying Wald confidence interval that is easy to calculate and uniformly
valid for the estimator’s probability limit, even when both working models are misspec-
ified. We will achieve this goal by extending the bias-reduced DR estimation principle
of Vermeulen and Vansteelandt (2015) to incorporate regularisation in a way that is
inspired by penalised estimation equations (Fu, 1998). In particular, we will consider
`1 or Lasso norm penalisation (Tibshirani, 1996; Fu, 2003) in order to prevent slowly
converging, and therefore potentially severely biased estimators, which may otherwise
result when the working models include many (unimportant) covariates.

The rest of the article is organised as follows. In Section 2, we describe our proposed
penalised bias-reduced DR estimator and evaluate its asymptotic properties. We explore
connections to earlier work on bias-reduced DR estimation in low-dimensional settings
in Section 2.4. In Section 3, we numerically evaluate the performance of the proposed
estimators in comparison with other DR estimators through extensive simulation studies,
as well as with an ad hoc extension based on double-selection (Belloni et al., 2013, 2016).
We illustrate the proposed estimators in an application on the effect of life expectancy on
economic growth in Section 4 and conclude with suggestions for future work in section
5.

2. Penalised Bias-Reduced Double-Robust Estimation

2.1. Background
Consider a study design which intends to collect i.i.d. data on an outcome Yi, a treatment
Ai (coded 0 or 1) and a p-dimensional vector of covariates Xi for subjects i = 1, ..., n.
Our focus will be on the estimation of the counterfactual mean µ0 ≡ E{Y (1)} under
the nonparametric model M for the observed data (Y,A,X), which is defined by the
assumption that X is sufficient to control for confounding of the exposure effect, in the
sense that Y (1) ⊥⊥ A|X, and the so-called consistency assumption that the conditional
laws of Y and Y (1), given A = 1 and X, are identical. Throughout, we will also make
the positivity assumption that P (A = 1|X) ∈ [δ, 1− δ] for some δ > 0 with probability
1. Note that E{Y (1)} is one component of the ATE; estimation of E{Y (0)} proceeds
analogously upon changing the treatment coding.

Unless X is limited to few (e.g. one or two) discrete covariates, some form of di-
mension reduction is typically needed in order to obtain a well-behaved estimator of
the marginal treatment effect in small to moderate sample sizes (Robins and Ritov,
1997). For instance, in routine practice, it is common to adjust for confounding under a
low-dimensional model for the dependence of X on the outcome. In particular, in this ar-
ticle we will proceed under the assumption that the expected outcome in exposed obeys
a parametric (working) model B, which postulates that E(Y |A = 1, X) = m(X;β∗)
where m(X;β) is a known function, smooth in β, and β∗ is unknown, e.g. m(X;β) =

β0 + β1X + β2X
2 with β ≡ (β0, β1, β2)

′. Given a consistent estimator β̂ of β∗, µ0 can
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then be estimated as

µ̃ =
1

n

n∑
i=1

m(X; β̂).

In high-dimensional settings where the number of covariates p is large relative to the
sample size n (i.e., p is allowed to grow with n), data-adaptive procedures (e.g. stepwise
variable selection, Lasso or more general penalisation procedures, among others) cannot
usually be avoided for estimating the conditional outcome mean. These procedures typ-
ically return biased estimators, as a result of sparsity in the data and the resulting need
to regularise. The estimator µ̃ may inherit this bias (Bickel, 1982) and, moreover, follow
a non-standard asymptotic distribution as a result, making uniformly valid confidence
intervals for µ0 difficult to attain (see Section 2.3 for detail).

DR estimators of µ0 form an exception (Belloni et al., 2012; van der Laan, 2014;
Farrell, 2015). In particular, let A be a parametric working model P (A = 1|X) =
π(X; γ∗) for the probability of being exposed, where π(X; γ) is a known function, smooth
in γ, and γ∗ is unknown, e.g. π(X; γ) = 1/ {1 + exp(−γ0 − γ1X)} with γ ≡ (γ0, γ1)

′.
Consider now the estimator

µ̂ =
1

n

n∑
i=1

Ui(m̂, π̂),

with

U(m,π) ≡ m(X) +
A

π(X)
{Y −m(X)} , (1)

where m(X) ≡ E(Y |A = 1, X) and π(X) ≡ P (A = 1|X), and m̂(X) and π̂(X) are data-
adaptive fits of m(X) under model B and π(X) under model A, respectively. This esti-
mator is double-robust in the sense that it converges to µ0 when either m̂(X) converges
to E(Y |A = 1, X) or π̂(X) converges to P (A = 1|X), but not necessarily both. It follows
from Farrell (2015) that µ̂ has the same asymptotic distribution as n−1

∑n
i=1 Ui(m,π),

regardless of the choice of estimators m̂(X) and π̂(X), provided that both are consistent
and that the product of their sample mean squared errors converges at faster than n
to the quarter rate. Uniformly valid, normal confidence intervals for µ0 are therefore
straightforwardly obtained based on a standard error which can be consistently esti-
mated as 1 over n times the sample variance of U(m,π), evaluated at m(X) = m̂(X)
and π(X) = π̂(X) (Farrell, 2015).

Unfortunately, consistent estimation of both m(X) and π(X) is unlikely in high-
dimensional settings (where p may even grow with n). Indeed, the sparsity in the data
necessitates one to make simplifying assumptions, such as the parametric model restric-
tions A or B, in order to obtain fast enough converging estimators. Such restrictions are
unlikely to be entirely correct. In this paper, we therefore aim to obtain uniformly valid
standard errors, even under misspecification. We will first explain the procedure, and
then demonstrate its asymptotic properties in the next section.

2.2. Proposal
As in Belloni et al. (2012) and Farrell (2015), we will develop inference for µ0 under
parametric working models with high-dimensional covariates (where p may potentially
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exceed n). Our proposal is then to estimate µ0 as µ̂ = 1
n

n∑
i=1

Ui(η̂) for a nuisance

parameter estimator η̂ = (γ̂′, β̂′)′ obtained by solving the following penalised estimating
equations using the bridge penalty (Fu, 2003):

0 =

[
1

n

n∑
i=1

∂

∂β
Ui(η̂),

1

n

n∑
i=1

∂

∂γ
Ui(η̂)

]
+
[
λγδ|γ̂|δ−1 ◦ sign(γ̂), λβδ|β̂|δ−1 ◦ sign(β̂)

]
,

where λγ > 0 and λβ > 0 are the associated penalty parameters and δ ≥ 1. Here,
for vectors a ∈ Rp and b ∈ Rp, c = a ◦ b ∈ Rp refers to the so-called elementwise
(or Hadamard) product, where c = (c1, ..., cp) with ci = aibi for i = 1, ..., p. Further,
sign(a) for a vector a ∈ Rp is defined as a vector of elements sign(aj), for j = 1, ..., p
Finally, the terms δ|γ̂|δ−1 ◦ sign(γ̂) and δ|β|δ−1 ◦ sign(β) are the partial derivatives of
||γ||δδ and ||β||δδ with respect to γ and β, respectively, where the `δ norm is defined as

||a||δ ≡

(
p∑
i=1

|ai|δ
)1/δ

.

Throughout, for pedagogic purposes, we will specialise our proposal to working mod-
els of the form

π(X; γ) = expit(γ′(1, X)),

and
m(X;β) = β′(1, X).

In that case, we first solve the set of penalised estimating equations:

0 =
1

n

n∑
i=1

∂

∂β
Ui(η̂) + λγδ|γ̂|δ−1 ◦ sign(γ̂)

=
1

n

n∑
i=1

{
1− Ai

π(Xi, γ̂)

}
(1, X ′i)

′ + λγδ|γ̂|δ−1 ◦ sign(γ̂). (2)

to estimate γ. For δ → 1+, the penalty term δ|γ̂|δ−1◦sign(γ̂) has jth component sign(γ̂j)
if γ̂j 6= 0 and belongs to [−1, 1] otherwise (see Section 3 of supplementary materials for
more details). In that case, we recommend solving this equation by minimising the
function (Vermeulen and Vansteelandt, 2015):

min
γ
F1(γ) =

1

n

n∑
i=1

[
Ai exp(−γ′(1, X ′i)′) + (1−Ai)γ′(1, X ′i)′

]
+ λγ ||γ||1. (3)

This results in an estimator γ̂ of γ.
We next solve the set of penalised estimating equations:

0 =
1

n

n∑
i=1

∂

∂γ
Ui(η̂) + λβδ|β̂|δ−1 ◦ sign(β̂)

= − 1

n

n∑
i=1

ŵiAi

{
Yi −m(Xi, β̂)

}
(1, Xi) + λβδ|β̂|δ−1 ◦ sign(β̂), (4)
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where

ŵi ≡
1− π(Xi, γ̂)

π(Xi, γ̂)
> 0.

For δ = 1, this is best done by minimising the function:

min
β
F2(β) =

1

2n

n∑
i=1

[
ŵiAi(Yi −m(Xi, β))2

]
+ λβ||β||1, (5)

which is possible by standard software for (weighted) `1-penalisation. This results in an

estimator β̂ of β.
The above proposal generalises the bias-reduced DR estimation procedure of Ver-

meulen and Vansteelandt (2015) to incorporate penalisation. In low-dimensional settings
with λγ = λβ = 0, it delivers consistent nuisance parameter estimators under correct
model specification. However, it requires nuisance parameters β and γ of equal dimen-
sion, since the gradient ∂U(η)/∂β (for η = (γ′, β′)′) carries information about γ, and vice
versa, the gradient ∂U(η)/∂γ carries information about β (Vermeulen and Vansteelandt,
2015). This limitation is essentially resolved by letting δ → 1+ (Fu, 2003). This makes
the penalty terms correspond to the sub-gradient of the `1 or Lasso norm penalty ||η||1
with respect to η (Tibshirani, 1996), thereby guaranteeing both convexity and sparsity,
and thus possibly resulting in nuisance parameter estimates with different numbers of
non-zero components. In the next section, we will demonstrate that the above proposal
enables uniformly valid inference in high-dimensional settings where either model A or
B - but not both - is misspecified.

2.3. Asymptotic properties
As in Belloni et al. (2012) and Farrell (2015), we will study convergence under an arbi-
trary sequence {Pn} of observed data laws that obey, at each n, the positivity assump-
tion. This implies that the parameters η and µ0, as well as the models M,A and B
should ideally be indexed by n, although we will suppress this notation where it does
not raise confusion. Allowing for such dependence on n is quite natural because we are
considering settings where the number of covariates, and thus the dimension of η, may
increase with sample size (Farrell, 2015). It is also required in order to demonstrate
uniform convergence, as we will argue below.

We will furthermore consider settings where the working models A and B may be
misspecified. The population value of the nuisance parameter η may thus be ill-defined
and we will therefore study (the rate of) convergence of η̂ to the solution η∗n ≡ (γ∗

′

n , β
∗′
n )′

to the population equation

EPn

{
∂U

∂η
(η)

}
= 0,

where we make explicit that the expectation is taken w.r.t. the law Pn. It follows from
Vermeulen and Vansteelandt (2015) that the component γ∗n equals the population value
of γ indexing model A (under the law Pn) when that model is correctly specified, and
likewise that the component β∗n equals the population value of β indexing model B (under
the law Pn) when that model is correctly specified. Our main result in Proposition
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1 below now states that n−1/2
∑n

i=1 Ui(η̂) and n−1/2
∑n

i=1 Ui(η
∗
n) are asymptotically

equivalent under model M, even under the ‘worst’ sequence of laws Pn and even when
the working models A and B are misspecified, provided that certain sparsity assumptions
hold. Under these assumptions, we thus have that

√
n(µ̂− µ0) =

1√
n

{
n∑
i=1

Ui(η̂)− Ui(η∗) + Ui(η
∗)− µ0

}

=
1√
n

n∑
i=1

{Ui(η∗)− µ0}+
1√
n

n∑
i=1

{Ui(η̂)− Ui(η∗)}

=
1√
n

n∑
i=1

{Ui(η∗)− µ0}+ oPn(1),

where the term oPn(1) converges to zero in probability under the measure Pn. It follows
from this that the uncertainty in the estimator η̂ can be ignored when doing inference
about µ0, and in particular that a uniformly consistent estimator of the standard error
of µ̂ can be obtained as σ̂/

√
n, with

σ̂ =

(
1

n− 1

n∑
i=1

{Ui(η̂)− µ̂}2
)1/2

.

It further follows from the above proposition that, when either model A or model B is
correctly specified so that µ̂ converges to µ0, a uniformly valid confidence interval for µ0
can be obtained as

µ̂± 1.96σ̂/
√
n.

Proposition 1. Let η̂ be the estimator of η = (γ′, β′)′ as obtained via the pro-
posed penalised bias-reduced DR method. Define the active set of the variables as Sγ =
supp(γ∗n), Sβ = supp(β∗n), where, for any vector a ∈ Rp, we denote its support as
supp(a) = {i ∈ {1, ..., p}|ai 6= 0}. Let the sparsity index sγ equal the cardinality |Sγ |,

and likewise sβ = |Sβ|; note that sγ and sβ may depend on n. If λγ = O

(√
log p
n

)
and

λβ = O

(√
log p
n

)
and the assumptions in Section 1 of supplementary materials hold,

then ∣∣∣ 1√
n

n∑
i=1

(Ui(η
∗)− Ui(η̂))

∣∣∣ = OPn

{
(sγ + sβ)

log p√
n

}
.

Provided sufficient sparsity in the sense that (sγ + sβ) log p/
√
n converges to zero with

increasing sample size, it follows that

lim
n→∞

sup
Pn

Pn

{∣∣∣n−1/2 n∑
i=1

Ui(η̂)− n−1/2
n∑
i=1

Ui(η
∗)
∣∣∣ > ε

}
= 0,

under model M, even when the working models A and B are misspecified.



8 Avagyan and Vansteelandt

Below we give the key part of the proof of Proposition 1, which is instructive to
understand the logic behind the proposed method. Further details are given in Section
1 of supplementary materials.

Proof: The proof of Proposition 1 follows similar lines as in Ning et al. (2017). Taylor
expansion shows that

1√
n

n∑
i=1

Ui(η
∗
n) =

1√
n

n∑
i=1

Ui(η̂)− 1

n

n∑
i=1

∂Ui
∂γ

(η̂)
√
n(γ̂ − γ∗n)

− 1

n

n∑
i=1

∂Ui
∂β

(η̂)
√
n(β̂ − β∗n) +OPn(

√
n‖η̂ − η∗n‖22).

Let for any vector a = (a1, ..., ap) ∈ Rp, ||a||∞ = maxi |ai| denote the `∞ or sup norm.
Then from Hölder’s inequality we have

∣∣∣ 1
n

n∑
i=1

∂Ui
∂γ

(η̂)
√
n(γ̂ − γ∗n)

∣∣∣ ≤ ∣∣∣∣∣∣ 1
n

n∑
i=1

∂Ui
∂γ

(η̂)
∣∣∣∣∣∣
∞
‖
√
n(γ̂ − γ∗n)‖1

= ‖λβδ|β̂|δ−1sign(β̂)‖∞‖
√
n(γ̂ − γ∗n)‖1

≤ λβδ‖
√
n(γ̂ − γ∗n)‖1,

since ||δ|β̂|δ−1sign(β̂)||∞ ≤ 1 (for δ → 1+), and likewise that

∣∣∣ 1
n

n∑
i=1

∂Ui
∂β

(η̂)
√
n(β̂ − β∗n)

∣∣∣ ≤ λγδ‖
√
n(β̂ − β∗n)‖1.

Suppose now that

lim
n→∞

Pn {‖η̂ − η∗n‖2 . c2(n)} = 1

lim
n→∞

Pn {‖γ̂ − γ∗n‖1 . c1γ(n)} = 1

lim
n→∞

Pn

{
‖β̂ − β∗n‖1 . c1β(n)

}
= 1,

where c1γ(n), c1β(n) and c2(n) converge to zero as n → ∞; here, for positive sequences
an and bn, we use the notation an . bn to denote an ≤ Cbn for some constant C > 0.
Then for δ → 1+,

∣∣∣ 1√
n

n∑
i=1

(Ui(η
∗)− Ui(η̂))

∣∣∣ . λβ
√
nc1γ(n) + λγ

√
nc1β(n) +

√
nc2(n)2.

with probability tending to 1 under the sequence Pn. In Section 1 of supplementary
materials, we further demonstrate that (under regularity conditions stated in the same
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section),

c2(n) =

√
(sγ + sβ) log p
√
n

c1γ(n) = sγ

√
log p√
n

c1β(n) = sβ

√
log p√
n

.

It follows that for δ → 1+,

∣∣∣ 1√
n

n∑
i=1

{Ui(η∗)− Ui(η̂)}
∣∣∣ = OPn

(
λβsγ

√
log p

)
+OPn

(
λγsβ

√
log p

)
+OPn

(
(sγ + sβ) log p√

n

)
.

For default penalties satisfying λγ = O

(√
log p
n

)
and λβ = O

(√
log p
n

)
, we thus have

that

∣∣∣ 1√
n

n∑
i=1

{Ui(η∗)− Ui(η̂)}
∣∣∣ = OPn

(
(sγ + sβ) log p√

n

)
,

which converges to zero when n → ∞, provided sufficient sparsity to ensure that (sγ +
sβ) log p/

√
n→ 0. 2

The proof of the above proposition is instructive about the logic behind the above
proposal. Repeating the same reasoning for the non-DR estimator µ̃ with Ui(η) =

m(Xi;β) (and η redefined as β), one finds that the term
∣∣∣∣∣∣ 1n∑n

i=1
∂Ui
∂β (β̂)

∣∣∣∣∣∣
∞

is OPn(1).

It then follows that∣∣∣∣ 1√
n

n∑
i=1

Ui(η
∗)− Ui(η̂)

∣∣∣∣ .
√
nc1β(n) +

√
nc2(n)2,

with probability tending to 1 under the sequence Pn, in which the first term gener-
ally diverges to infinity. Likewise, repeating the above reasoning for the DR estimator
µ̂ with nuisance parameter estimators obtained via standard lasso, one finds that the

terms
∣∣∣∣∣∣ 1n∑n

i=1
∂Ui
∂β (η̂)

∣∣∣∣∣∣
∞

and
∣∣∣∣∣∣ 1n∑n

i=1
∂Ui
∂γ (η̂)

∣∣∣∣∣∣
∞

are OPn(1), and not oPn(1), unless

both working models A and B are correctly specified in which case both gradients have
expectation zero under the law Pn. Except under correct specification of both working
models, the distribution of

√
n(µ̂− µ0) is then generally complex and not well approxi-

mated by that of n−1/2
∑n

i=1 {Ui(η∗)− µ0}.
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2.4. Further properties
The procedure that we have proposed in Section 2.2 was designed to make the empirical
expectations

1

n

n∑
i=1

∂

∂γ
Ui

(
β̂, γ̂

)
and

1

n

n∑
i=1

∂

∂β
Ui

(
β̂, γ̂

)
, (6)

converge to zero. This has as a by-product that it makes the resulting estimator µ̂
insensitive to local changes in both nuisance parameters, provided that the sample size
is sufficiently large. It is hence not entirely surprising that asymptotic inference based
on µ̂ can ignore estimation of the nuisance parameters β∗ and γ∗, and that regularisation
bias affecting these nuisance parameter estimators does not propagate into the estimator
µ̂. Farrell (2015) also relies on this small bias property and finds it to hold regardless
of the choice of nuisance parameter estimators, provided they both converge to their
respective truths. This is because he implicitly relies on both models A and B being
correctly specified, in which case the expectations (6) converge to zero regardless of the
choice of (consistent) estimator of the nuisance parameters. We have shown that this
small bias property does not generally extend to contexts with model misspecification,
unless when the nuisance parameters are estimated in accordance with the proposed
procedure of Section 2.2.

In low-dimensional settings where the penalty parameters λγ and λβ can be set to
zero, the proposal reduces to the bias-reduced (BR) DR estimation procedure of Ver-
meulen and Vansteelandt (2015). To gain insight into the behaviour of such procedures,
we consider gross misspecification of the one-dimensional working models π(X; γ) =
expit(γ′(1, Xi)) and m(X;β) = β′(1, Xi) for two data-generating mechanisms (see the
caption of Figures 1 and 2 for details); we deliberately focus on one-dimensional models
so that the behaviour of the procedure can be clearly visualised. Figure 1 and 2 display
the rescaled bias (i.e., sign(bias)

√
|bias|) of the DR estimator for a range of nuisance

parameter values. Upon contrasting both figures, one may see that the bias surface
changes drastically as one of the data-generating models changes. The default DR esti-
mator, which uses MLE for the nuisance parameters, therefore runs a great risk of ending
up in a high bias zone. In contrast, the BR-DR estimator ends up in a saddle point of
the bias surface. The proposed BR-DR estimation principle thus locally minimises bias
in certain directions of the nuisance parameters where the bias goes to plus infinity, and
locally maximises it in other directions where the bias goes to minus infinity. Overall,
much smaller biases of 2.34 and -9.4 are obtained for the BR-DR estimator in Figures
1 and 2, respectively, relative to the default DR estimator which has bias of 94.6 and
-592; these calculations are based on a large sample of 100000 observations so as to ap-
proximate the asymptotic bias. Moreover, even under misspecification of both working
models, we would generally expect a more favourable bias of the BR-DR estimator than
the Horvitz-Thompson (IPW) estimator

1

n

n∑
i=1

AiYi
π(Xi; γ̂)

,

which is obtained upon setting β to zero and γ to the MLE. We would likewise generally
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expect more favourable bias than the imputation (IMP) estimator

1

n

n∑
i=1

AiYi + (1−Ai)m(X; β̂),

which is obtained upon setting γ to zero and β to the solution to 0 =
∑n

i=1Ai(Yi−βXi).
In Figures 1 and 2, we found the asymptotic bias to equal 71.5 and -633 for the IPW
estimator, but to be merely 0.07 and 0.27 for the IMP estimator. This is partly due
to happenstance: indeed, the BR-DR estimator would for instance have zero bias at a
correctly specified propensity score model, unlike the imputation estimator.

Figures 1 and 2 about here.

3. Simulation study

In this section, we perform a simulation analysis to compare the performance of the
proposed penalised bias-reduced estimator µ̂P−BR with that of different estimators of a
mean counterfactual outcome µ0. In particular, in subsection 3.1, we detail the consid-
ered estimators of µ0. In subsection 3.2, we describe the simulation scenarios for the
models. In subsection 3.3, we provide the discussion of the results. Finally, in subsec-
tion 3.4, we numerically evaluate the behaviour of the proposed penalised bias-reduced
estimator as the sample size increases, compared to competing approaches.

3.1. Considered Estimators and Settings
We denote nuisance parameters estimated through standard Maximum Likelihood Esti-
mation and Ordinary Least Squares as η̂MLE = (γ̂′MLE, β̂

′
OLS)′. We denote the nuisance

parameters estimated through Lasso penalised Maximum Likelihood Estimation and
Lasso penalised Least Squares as η̂LASSO = (γ̂′LASSO, β̂

′
LASSO)′. Further, we denote nui-

sance parameters estimated through our proposed approach as η̂P−BR = (γ̂′P−BR, β̂
′
P−BR)′.

We additionally study the performance of the nuisance parameter estimators obtained
through post-selection (Farrell, 2015) and double-selection techniques (Belloni et al.,

2013, 2016). We denote these estimators as η̂Post−LASSO = (γ̂′Post−LASSO, β̂
′
Post−LASSO)′

and η̂DS−LASSO = (γ̂′DS−LASSO, β̂
′
DS−LASSO)′, respectively. In accordance with the double-

selection procedure, we also evaluated a heuristic adaptation of the proposed procedure.
In particular, applying the proposed bias-reduced DR estimation procedure resulted in
the selection of covariate sets XŜβ

in the outcome regression and XŜγ
in the propen-

sity score regression. With X set to XŜ ≡ XŜβ
∪ XŜγ

, we next solved the following

bias-reduced estimating equations with λ set to zero:

0 =

n∑
i=1

∂Ui(η)

∂β
=

n∑
i=1

{
1− Ai

π(Xi,Ŝ , γ)

}
(1, X ′

i,Ŝ
)′ (7)

0 =

n∑
i=1

∂Ui(η)

∂γ
= −

n∑
i=1

w̌iAi

{
Yi −m(Xi,Ŝ , β)

}
(1, X ′

i,Ŝ
)′, (8)
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where

w̌i ≡
1− π(Xi,Ŝ , γ)

π(Xi,Ŝ , γ)
.

The problem (7) is computationally demanding under high-dimensional settings, how-
ever. Therefore, in order to solve it efficiently and guarantee numerical stability, we
regularise the right hand side of (7) through the penalty term λγδγ̂

δ−1 with δ = 2. This
procedure may have the advantage that it makes the empirical analog of (6) better sat-
isfied in the sample and that it may reduce standard errors, but the disadvantage that
the ridge penalisation induces another bias. We denote the resulting nuisance parameter
estimator as η̂DS−P−BR = (γ̂DS−P−BR, β̂DS−P−BR).

We next consider the following estimators using the estimated nuisance parameters:

(a) Regression Estimator: µ̂OR(β̂) = 1
n

n∑
i=1

m(Xi, β̂).

(b) Inverse-Propensity Weighting Estimators: µ̂IPTW(γ̂) = 1
n

n∑
i=1

AiYiπ
−1(Xi, γ̂) and

µ̂Pop−IPTW(γ̂) =

n∑
i=1

AiYiπ
−1(Xi, γ̂MLE)/

n∑
i=1

Aiπ
−1(Xi, γ̂MLE).

(c) DR estimators: µ̂MLE = µ̂DR(η̂MLE) (only when n > p), µ̂LASSO = µ̂DR(η̂LASSO),
µ̂DS−LASSO = µ̂DR(η̂DS−LASSO), our proposed µ̂P−BR = µ̂DR(η̂P−BR) and µ̂DS−P−BR =
µ̂DR(η̂DS−P−BR).

In order to evaluate the performance of a given estimator µ̂, we consider the following
measures: Monte Carlo Bias, Root Mean Square Error (RMSE), Median of Absolute Er-
rors (MAE), Monte Carlo Standard Deviation (MCSD), Average of Sandwich Standard
Errors (ASSE) and Monte Carlo Coverage (COV) of 95% confidence intervals.

Note that several of the considered methods, including the proposed method, require
the selection of the penalty parameter. Following the recommendation by Belloni et al.
(2016) (see Meinshausen and Bühlmann (2006) for a similar recommendation), we used
the following choices:

λγ =
1.1

2
√
n

Φ−1
(

1− 0.05

max(n, p log n)

)
λβ =

1.1√
n

Φ−1
(

1− 0.05

max(n, p log n)

)
,

in our simulation study, in favour of low computational costs and in order to prevent
biased standard errors as a result of ignoring the uncertainty in data-driven choices of
λβ and λβ.

3.2. Simulation Scenarios
In all simulation studies below, we generated n mutually independent vectors (Xi, Ai, Yi),
i = 1, ..., n. Here, Xi = (Xi,1, ..., Xi,p) is a mean zero multivariate normal covariate with
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covariance matrix Σ. We study the performance of the estimators for both, uncorrelated
covariates (when Σ = Ip×p) and correlated covariates with covariance Σ = [σij ]1≤i,j≤p
and σij = 0.5|i−j|, for i, j = 1, ..., p. Note that in all cases the covariates have unit
variance. Further, we let for each i = 1, ..., n, Ai take on values 0 or 1 with P (Ai =
1|Xi) ≡ π0(Xi) and Yi be normally distributed with mean m0(Xi) and unit variance,
conditional on Xi and Ai = 1. In all studies, the simulated data were analysed using the

following working models: π(X,β) = expit(γ0 +

p∑
i=1

γiXi) and m(X,β) = β0 +

p∑
i=1

βiXi.

For each data generating scenario, provided below, we conduct 1000 Monte Carlo runs
with n = 200, p = 40 and n = 300, p = 80.

In this section, we describe the results of two scenarios, and defer two additional
simulation scenarios to the supplementary materials.

3.2.1. Scenario 1

In the first scenario, we generated the data with m0(X) = β0 + cb′X and π0(X) =
expit(γ0 + g′X), where b ∈ Rp and g ∈ Rp are defined as

b = (1, 1/2, 1/3, 1/4, 1/5, 0, 0, 0, 0, 0, 1, 1/2, 1/3, 1/4, 1/5, 0, 0, ..., 0)

g = (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 0, 0, ..., 0).

We set β0 = 1, γ0 = 0 and c = 0.75. These settings have been previously considered
by Belloni et al. (2013) and Belloni et al. (2016). Finally, we also generated data with
m(X) = X2

.,1 + b′[2:p]X.,[2:p] and π(X) = expit(X2
.,1 + g′[2:p]X.,[2:p]) to evaluate the impact

of model misspecification. Note that the target parameter µ0 = E(Y ) is 1.

3.2.2. Scenario 2

In the second scenario, we use settings considered in Kang and Schafer (2007) with
π0(X) = expit(−X1 + 0.5X2 − 0.25X3 − 0.1X4) and m0(X) = 210 + 27.4X1 + 13.7X2 +
13.7X3 + 13.7X4. The target parameter is E(Y ) = 210. The impact of model misspec-
ification is evaluated via a linear outcome model and logistic propensity score model
which are additive in the covariates [M1,M2,M3, X4, ...Xp], where M1 = exp(X1/2),
M2 = X2/(1 + exp(X1)) + 10 and M3 = (X1X3/25 + 0.6)3.

3.3. Discussion of Results
Tables 1 and 2 summarise the simulation results for p = 40. We first consider the
case where both models are correctly specified. As predicted by the theory (see the

end of Section 2.3), the results for the data-adaptive estimators µ̂OR(β̂LASSO) and
µ̂Pop−IPTW(γ̂LASSO), which are not double-robust, show large bias and estimated stan-
dard errors that do not agree well with the empirical standard deviation. When both
models are correctly specified, then using `1-penalisation in combination with a DR es-
timator, as in µ̂LASSO, yields better performance because the first order terms in the
Taylor expansion of Proposition 1 then have population mean converging to zero. The
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proposed estimator µ̂P−BR sets these first order terms to zero, regardless of correct model
specification, and this is observed to further reduce bias and improve mean squared error.

In small sample sizes, the proposed estimators (just like other estimators based on
penalisation) are subject to some residual bias. Farrell (2015) and Belloni et al. (2016)
have proposed to eliminate some of this bias via the use of post-selection or double-
selection, which is indeed seen to improve performance. This is generally also the case
for the proposed procedure µ̂DS−P−BR, though not systematically because this procedure
still uses `2-penalisation for numerical stability in the fitting of the exposure model.
As predicted by the theory, the proposed procedure µ̂P−BR ensures that reasonable
agreement between the estimated standard errors and the empirical standard deviation
is obtained, even in settings with model misspecification. This is not guaranteed for
the other DR estimators (with the exception of µ̂DS−P−BR), as is most clearly seen in
Scenario 2 (see Table 2), where misspecification of both models causes poor behaviour
in the post-selection and double-selection procedures.

Tables 1 and 2 about here.

3.4. Behaviour with increasing sample size
To evaluate the behaviour of the proposed estimator with increasing sample size, we
reconsider the settings of Scenario 1 with p = 40 and uncorrelated covariates, for sample
sizes n = {200, 400, ..., 1000, 1500, 2000}. Table 3 provides the average measures over
1000 replications when both models are correctly specified and when the outcome model
is misspecified. The results show that when both models are correctly specified, the
Bias and RMSE of the proposed estimator µ̂P−BR decrease and the coverage of the 95%
confidence interval improves with n. Moreover, µ̂P−BR outperforms µ̂LASSO throughout
n in terms of all measures. On the other hand, when the outcome model is misspecified,
the Bias of µ̂P−BR remains low over all considered sample sizes n. In contrast, we observe
that when the outcome model is misspecified, the Bias of µ̂LASSO surprisingly increases
(in absolute value), resulting in a decreasing coverage with n. These results confirm the
theory on the proposed estimator µ̂P−BR when n→∞, and moreover suggest that also
the extended estimator µ̂DS−P−BR has decreasing Bias and RMSE when n increases.

Table 3 about here.

4. Illustration

In this section, we provide an empirical illustration of the proposed methodology on
a real-data application. We study the effect of life expectancy (pseudo-exposure vari-
able) on GDP growth (outcome variable). As in Doppelhofer and Weeks (2009), we
make use of World Bank data (http://data.worldbank.org/) for 218 countries and
dependencies and 9 covariates: population density (people per km2 of land area), total
fertility rate (births per woman), exports of goods and services (% of GDP), imports
of goods and services (% of GDP), Secure Internet servers (per 1 million people), land
area (km2), mobile subscriptions (per 1000 people), mortality rate (per 1000 people un-
der 5), unemployment (% of total labour force). After removing the observations with
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missing values, the final dataset consists of 152 observations. We consider data on life
expectancy and covariates for the year 2013, and GDP growth for the year 2014. The
constructed dataset includes 71 observations with low life expectancy below 73 years
(i.e., roughly the median of life expectancy), coded A = 1, and 81 observations with
high life expectancy of at least 73 years, coded A = 0. Our analysis here is intended
only as an illustration, as it is a simplification of what is a more complex reality and
therefore limited in the substantive conclusions that can be drawn. The causal effect of
life expectancy on the GDP growth moreover forms a disputable topic in the literature
(Acemoglu and Johnson, 2007).

In our analysis, we compare the methods considered in subsection 3.1 in both low
and high-dimensional settings. In particular, for the first scenario, we consider only nine
basic covariates. For the second scenario, in addition to the nine covariates, we also
consider the squared and log transformations (in absolute values) of those covariates
and all interactions between the basic ones. Thus, for the high-dimensional scenario, we
consider 63 covariates.

Table 4 summarises the estimated average treatment effects, sandwich estimators of
the standard errors and 95% confidence intervals. It suggests that low life expectancy
have negative effect on the GDP growth. It further shows that our proposed estimator
µ̂P−BR remains stable in terms of the standard errors when the dimension increases. In
contrast, the performance of the estimator µ̂MLE changes drastically as the number of
covariates increases.

We observe that, in the second scenario, the nuisance parameters estimated through
our proposed approach contain several non-zero entries. In particular, 45 variables are se-
lected using treated sub-sample and 42 variables are selected using untreated sub-sample.
Therefore, large number of selected covariates are considered for the double-selection
equations (7) and (8). This produces estimation biases in the nuisance parameter esti-
mator η̂DS−P−BR. As a result, the standard error of the estimator µ̂DS−P−BR increases
significantly in the high-dimensional scenario.

Table 4 about here.

5. Discussion

Plug-in estimators based on data-adaptive high-dimensional model fits are well known
to exhibit poor behaviour with non-standard asymptotic distribution (Pfanzagl, 1982;
Van der Laan and Rose, 2011). Double-robust plug-in estimators have been shown to be
much less sensitive to this when all working models on which they are based are correctly
specified (or estimators for them converge to the truth) (Farrell, 2015). In this paper,
we have shown that this continues to be true under model misspecification when so-
called penalised bias-reduced double-robust estimators are used. These estimators can
be viewed as a penalised extension of recently introduced bias-reduced DR estimators,
which use special nuisance parameter estimators that are designed to minimise - or at
least stabilise - the squared first-order bias of the DR estimator, while shrinking the
non-significant coefficients of the nuisance parameters towards zero. Our results thus
generalise those in Belloni et al. (2013), Farrell (2015) and Belloni et al. (2016) to allow
for model misspecification. Through extensive simulation studies, we have demonstrated
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that the proposed approach performs favourably compared to other DR estimators even
when one of the models are misspecified. The empirical data analysis further confirmed
the stability of our estimator of the average treatment effect in terms of the standard
errors as the dimension of the covariates increases. We did not yet consider settings
with p > n in view of the computational difficulty of minimising the objective function
in that case, and plan to address this in future work.

We have focussed our numerical results on lasso or `1-norm penalisation, even though
it readily generalises to other (possibly non-convex) penalisation techniques. It remains
to be seen how it performs in combination with other choices of penalty. Our theory, like
that in Farrell (2015) and Belloni et al. (2016), was also developed for prespecified penalty
parameters, although the calibration of penalty parameters is likely to improve results.
In further work, we will evaluate whether our theory can be adapted to incorporate data-
adaptive choices of penalty parameters, e.g. based on cross-validation. We conjecture
(and have confirmed in limited numerical studies - not reported) that our proposal may,
by construction, deliver DR estimators which have limited sensitivity to the chosen
regularisation procedure (e.g. to the choice of penalty used for estimating the nuisance
parameters), as well as to mild misspecification of both models A and B.

We have explored the use of ad-hoc debiasing steps based on post-lasso, and found
mixed success with the proposed approach. This is likely related to the fact that the
considered double-selection procedure sometimes leads to the selection of many covari-
ates, and moreover to the use of a ridge penalty in order to guarantee numerical stability
of the optimisation procedure. In future work, we will consider the potential to de-bias
the solutions to the proposed estimating equations (2)-(4) along the lines of Zhang and
Zhang (2014), Van de Geer et al. (2014).

Belloni et al. (2016) show that the use of sample splitting may lead to less strin-
gent sparsity conditions. In particular, they find that

√
sγsβ log(p)/

√
n converging to

zero is sufficient to guarantee uniformly valid confidence intervals when both models are
correctly specified. This is attractive as it enables one model to be dense, so long as
the other is known to be sparse, as is typically the case in the context of randomised
experiments. In contrast, we require that λβ

√
nc1γ(n) + λγ

√
nc1β(n) +

√
nc2(n)2 con-

verges to zero. In simple randomised experiments, sγ = 0 so that fast convergence rates
of γ̂ (i.e., c1γ(n) converging to zero at a fast rate) are attainable even when λγ is very
small. This creates potential for making λβ

√
nc1γ(n) + λγ

√
nc1β(n) converge to zero in

the context of randomised experiments, even when dense outcome models are used. To
what extent and under what conditions this is achievable, will be investigated in future
work. We furthermore plan to evaluate whether stronger results are achievable with
sample splitting.

Finally, at a more general level, our results indicate that the choice of nuisance pa-
rameter estimators can matter a lot in settings with model misspecification, and that
important benefits may be achievable via the choice of special nuisance parameter es-
timators. We hope that this work will not only help to achieve inferences with greater
validity in the presence of variable selection, but moreover stimulate research on more
general statistical learning procedures for the working models indexing a DR estimator,
targeted towards achieving reliable inferences even when the usual modelling or sparsity
assumptions are not met.



Penalised bias-reduced double-robust estimation 17

References

Acemoglu, D. and S. Johnson (2007). Disease and development: the effect of life ex-
pectancy on economic growth. Journal of Political Economy 115 (6), 925–985.

Athey, S., G. W. Imbens, S. Wager, et al. (2016). Efficient inference of average treatment
effects in high dimensions via approximate residual balancing. Technical report.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen (2012). Sparse models and
methods for optimal instruments with an application to eminent domain. Economet-
rica 80 (6), 2369–2429.

Belloni, A., V. Chernozhukov, and Y. Wei (2013). Honest confidence regions for a
regression parameter in logistic regression with a large number of controls. Technical
report, Centre for Microdata Methods and Practice.

Belloni, A., V. Chernozhukov, and Y. Wei (2016). Post-selection inference for generalized
linear models with many controls. Journal of Business & Economic Statistics 34 (4),
606–619.

Bickel, P. J. (1982). On adaptive estimation. The Annals of Statistics, 647–671.

Chernozhukov, V., J. C. Escanciano, H. Ichimura, and W. K. Newey (2016). Locally
robust semiparametric estimation. arXiv preprint arXiv:1608.00033 .

Doppelhofer, G. and M. Weeks (2009). Jointness of growth determinants. Journal of
Applied Econometrics 24 (2), 209–244.

Farrell, M. H. (2015). Robust inference on average treatment effects with possibly more
covariates than observations. Journal of Econometrics 189 (1), 1–23.

Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Compu-
tational and Graphical Statistics 7 (3), 397–416.

Fu, W. J. (2003). Penalized estimating equations. Biometrics 59 (1), 126–132.

Kang, J. D. and J. L. Schafer (2007). Demystifying double robustness: A compari-
son of alternative strategies for estimating a population mean from incomplete data.
Statistical science, 523–539.

Knight, K. and W. Fu (2000). Asymptotics for lasso-type estimators. The Annals of
Statistics, 1356–1378.

Leeb, H. and B. M. Pötscher (2005). Model selection and inference: Facts and fiction.
Econometric Theory 21 (01), 21–59.
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Fig. 1: Rescaled bias (sign(bias)
√
|bias|) of the DR estimator of E{Y (1)} in function

of the nuisance parameter values γ and β under the following data-generating model:
X = (3− V )/SD(3− V ) with V a Gamma variate with scale and shape 1,

P (A = 1|X) = expit(−1 +X2) and Y ∼ N(X2, 1). BR: bias-reduced estimator; MLE:
maximum likelihood estimator; MLE-BR: bias-reduced estimator of β, conditional on

maximum likelihood estimator of γ. Dotted line shows the bias-reduced estimator of β,
conditional on γ.
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Fig. 2: Rescaled bias (sign(bias)
√
|bias|) of the DR estimator of E{Y (1)} in function

of the nuisance parameter values γ and β under the following data-generating model:
X = (3− V )/SD(3− V ) with V a Gamma variate with scale and shape 1,

P (A = 1|X) = expit(−1 +X2) and Y ∼ N(X3 −X2, 1). BR: bias-reduced estimator;
MLE: maximum likelihood estimator; MLE-BR: bias-reduced estimator of β,

conditional on maximum likelihood estimator of γ. Dotted line shows the bias-reduced
estimator of β, conditional on γ.
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Table 1: Simulation results based on 1000 replications, Scenario 1, p = 40, n = 200.

Estimator Bias RMSE MAE MCSD ASSE COV Bias RMSE MAE MCSD ASSE COV

Uncorrelated Correlated

OR correct

PS correct

µ̂OR(β̂OLS) 0.001 0.158 0.110 0.158 0.104 0.797 0.0003 0.185 0.121 0.185 0.132 0.832

µ̂Pop−IPTW(γ̂MLE) 0.006 0.342 0.160 0.342 0.255 0.908 0.053 0.541 0.287 0.539 0.330 0.821

µ̂OR(β̂LASSO) 0.249 0.291 0.246 0.151 0.047 0.141 0.302 0.348 0.308 0.173 0.080 0.214

µ̂Pop−IPTW(γ̂LASSO) 0.354 0.386 0.353 0.153 0.158 0.397 0.562 0.590 0.567 0.181 0.190 0.163

µ̂MLE -0.006 0.318 0.122 0.318 0.182 0.916 -0.026 0.480 0.146 0.479 0.232 0.905

µ̂LASSO 0.222 0.268 0.222 0.150 0.136 0.610 0.252 0.306 0.259 0.173 0.149 0.577

µ̂DS−LASSO 0.080 0.181 0.124 0.162 0.148 0.872 0.025 0.199 0.131 0.197 0.184 0.934

µ̂Post−LASSO 0.081 0.180 0.123 0.160 0.143 0.864 0.028 0.187 0.129 0.185 0.177 0.933

µ̂P−BR 0.144 0.211 0.151 0.153 0.135 0.765 0.148 0.239 0.167 0.188 0.151 0.757

µ̂DS−P−BR 0.032 0.162 0.113 0.158 0.130 0.875 0.019 0.199 0.134 0.198 0.150 0.870

OR incorrect

PS correct

µ̂OR(β̂OLS) -0.308 0.391 0.315 0.240 0.124 0.366 -0.451 0.524 0.454 0.267 0.154 0.283

µ̂Pop−IPTW(γ̂MLE) -0.033 0.424 0.197 0.423 0.295 0.921 -0.007 0.578 0.236 0.578 0.340 0.920

µ̂OR(β̂LASSO) -0.067 0.215 0.149 0.204 0.055 0.365 -0.152 0.273 0.191 0.226 0.093 0.473

µ̂Pop−IPTW(γ̂LASSO) 0.082 0.214 0.147 0.198 0.192 0.937 0.230 0.316 0.240 0.217 0.215 0.819

µ̂MLE -0.129 0.489 0.268 0.471 0.305 0.780 -0.178 2.149 0.377 2.142 0.502 0.670

µ̂LASSO -0.074 0.219 0.149 0.205 0.174 0.877 -0.170 0.284 0.204 0.227 0.183 0.777

µ̂DS−LASSO -0.007 0.323 0.181 0.323 0.261 0.890 -0.103 0.495 0.271 0.484 0.343 0.813

µ̂Post−LASSO 0.001 0.306 0.185 0.306 0.256 0.909 -0.085 0.500 0.255 0.493 0.345 0.831

µ̂P−BR -0.010 0.201 0.141 0.201 0.167 0.898 -0.046 0.233 0.162 0.228 0.173 0.842

µ̂DS−P−BR -0.132 0.262 0.182 0.226 0.160 0.749 -0.194 0.331 0.222 0.268 0.171 0.693

OR correct

PS incorrect

µ̂OR(β̂OLS) -0.0008 0.133 0.092 0.133 0.099 0.857 -0.002 0.156 0.108 0.156 0.129 0.899

µ̂Pop−IPTW(γ̂MLE) -0.005 0.183 0.103 0.183 0.173 0.977 -0.022 0.258 0.128 0.257 0.238 0.971

µ̂OR(β̂LASSO) 0.077 0.152 0.106 0.130 0.052 0.469 0.095 0.180 0.131 0.153 0.087 0.641

µ̂Pop−IPTW(γ̂LASSO) 0.093 0.169 0.119 0.141 0.145 0.914 0.229 0.286 0.239 0.171 0.179 0.777

µ̂MLE 0.004 0.230 0.096 0.231 0.138 0.937 10−5 0.171 0.114 0.171 0.160 0.938

µ̂LASSO 0.077 0.151 0.106 0.130 0.131 0.912 0.090 0.177 0.126 0.153 0.152 0.908

µ̂DS−LASSO 0.036 0.136 0.095 0.131 0.127 0.938 0.006 0.152 0.103 0.152 0.153 0.954

µ̂Post−LASSO 0.036 0.136 0.095 0.131 0.126 0.935 0.005 0.151 0.103 0.151 0.151 0.953

µ̂P−BR 0.068 0.147 0.104 0.130 0.144 0.950 0.062 0.165 0.114 0.152 0.165 0.954

µ̂DS−P−BR 0.018 0.131 0.093 0.130 0.132 0.959 -0.0009 0.153 0.107 0.153 0.154 0.948

OR incorrect

PS incorrect

µ̂OR(β̂OLS) 0.321 0.382 0.311 0.208 0.104 0.302 0.347 0.409 0.338 0.218 0.123 0.310

µ̂Pop−IPTW(γ̂MLE) 0.329 0.418 0.313 0.258 0.218 0.674 0.380 0.485 0.371 0.301 0.250 0.640

µ̂OR(β̂LASSO) 0.376 0.421 0.367 0.188 0.041 0.053 0.421 0.466 0.416 0.198 0.067 0.077

µ̂Pop−IPTW(γ̂LASSO) 0.389 0.433 0.380 0.190 0.184 0.446 0.490 0.530 0.487 0.202 0.201 0.317

µ̂MLE 0.359 1.124 0.319 1.066 0.230 0.598 0.382 0.581 0.362 0.437 0.230 0.575

µ̂LASSO 0.376 0.420 0.367 0.188 0.177 0.446 0.417 0.462 0.413 0.199 0.188 0.397

µ̂DS−LASSO 0.352 0.404 0.338 0.198 0.176 0.501 0.383 0.442 0.371 0.221 0.204 0.529

µ̂Post−LASSO 0.348 0.401 0.335 0.197 0.173 0.496 0.370 0.430 0.361 0.219 0.197 0.529

µ̂P−BR 0.370 0.416 0.363 0.189 0.199 0.558 0.411 0.457 0.406 0.201 0.211 0.509

µ̂DS−P−BR 0.338 0.394 0.326 0.202 0.187 0.583 0.373 0.431 0.375 0.215 0.199 0.534

NOTE: Bias: Monte Carlo Bias, RMSE: Root Mean Square Error, MAE: Median of Absolute Errors, MCSD: Monte
Carlo Standard Deviation, COV: coverage of 95% confidence intervals, OR: Outcome Regression, PS: Propensity Score.
For the settings OR correct, PS correct, correlated covariates and OR incorrect, PS correct, correlated covariates, no
convergence was attained for µ̂P−BR in one run, for µ̂DS−P−BR in four runs out of 1000.
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Table 2: Simulation results based on 1000 replications, Scenario 2, p = 40, n = 200.

Estimator Bias RMSE MAE MCSD ASSE COV Bias RMSE MAE MCSD ASSE COV

Uncorrelated Correlated

OR correct

PS correct

µ̂OR(β̂OLS) 0.089 2.520 1.668 2.520 2.566 0.952 0.122 3.478 2.404 3.478 3.498 0.954

µ̂Pop−IPTW(γ̂MLE) 0.082 6.900 3.470 6.903 5.545 0.939 -0.235 7.282 4.140 7.282 7.181 0.959

µ̂OR(β̂LASSO) -0.022 2.512 1.679 2.513 2.528 0.947 0.004 3.471 2.350 3.472 3.468 0.951

µ̂Pop−IPTW(γ̂LASSO) -7.259 7.852 7.214 2.994 3.552 0.461 -10.76 11.50 10.69 4.079 4.805 0.374

µ̂MLE 0.100 2.531 1.691 2.530 2.573 0.950 0.117 3.483 2.387 3.482 3.500 0.953

µ̂LASSO 0.005 2.513 1.680 2.514 2.563 0.955 0.023 3.471 2.368 3.473 3.495 0.955

µ̂DS−LASSO 0.087 2.518 1.667 2.518 2.568 0.952 0.112 3.475 2.379 3.475 3.498 0.952

µ̂Post−LASSO 0.085 2.517 1.682 2.517 2.568 0.952 0.111 3.474 2.377 3.474 3.498 0.953

µ̂P−BR 0.038 2.517 1.690 2.518 2.562 0.956 0.069 3.475 2.372 3.476 3.495 0.951

µ̂DS−P−BR 0.082 2.514 1.698 2.514 2.566 0.957 0.111 3.475 2.402 3.475 3.497 0.953

OR incorrect

PS incorrect

µ̂OR(β̂OLS) 0.723 3.645 2.539 3.574 2.801 0.878 0.344 4.016 2.799 4.003 3.591 0.929

µ̂Pop−IPTW(γ̂MLE) 2.104 12.65 4.026 12.48 6.940 0.925 3.095 14.21 4.882 13.88 8.827 0.953

µ̂OR(β̂LASSO) 0.580 3.513 2.474 3.466 2.714 0.882 0.187 3.933 2.737 3.931 3.529 0.925

µ̂Pop−IPTW(γ̂LASSO) -8.249 8.810 8.251 3.095 3.584 0.351 -11.84 12.58 11.77 4.241 4.837 0.280

µ̂MLE -6.832 68.59 3.012 68.28 9.740 0.936 -2.279 16.84 3.301 16.70 5.498 0.940

µ̂LASSO 0.550 3.513 2.470 3.472 2.980 0.916 0.185 3.934 2.740 3.931 3.699 0.939

µ̂DS−LASSO -5.369 48.38 2.991 48.11 8.148 0.940 -2.521 18.78 3.132 18.62 5.551 0.936

µ̂Post−LASSO -2.709 18.04 2.853 17.84 5.362 0.925 -0.741 5.555 2.849 5.508 4.228 0.946

µ̂P−BR -0.086 3.398 2.391 3.399 2.952 0.909 -0.085 3.884 2.654 3.885 3.695 0.936

µ̂DS−P−BR 0.117 3.491 2.507 3.491 2.974 0.907 0.034 3.980 2.768 3.982 3.707 0.932

NOTE: Bias: Monte Carlo Bias, RMSE: Root Mean Square Error, MAE: Median of Absolute Errors, MCSD: Monte
Carlo Standard Deviation, COV: coverage of 95% confidence intervals, OR: Outcome Regression, PS: Propensity Score.
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Table 3: Bias, Root Mean Squared Error (RMSE) and coverage (COV) of 95%
confidence intervals based on 1000 replications in Scenario 1 for p = 40 and different

values of n.

OR correct PS correct

Estimator Measure n = 200 n = 400 n = 600 n = 800 n = 1000 n = 1500 n = 2000

µ̂P−BR Bias 0.144 0.098 0.079 0.063 0.052 0.039 0.029

RMSE 0.211 0.145 0.118 0.099 0.088 0.066 0.056

COV 0.765 0.794 0.815 0.826 0.835 0.870 0.869

µ̂LASSO Bias 0.222 0.168 0.142 0.122 0.107 0.086 0.070

RMSE 0.268 0.197 0.166 0.142 0.127 0.100 0.084

COV 0.610 0.575 0.529 0.541 0.549 0.574 0.608

µ̂MLE Bias -0.006 -0.002 0.001 0.0007 0.001 0.002 0.0001

RMSE 0.318 0.125 0.096 0.079 0.075 0.056 0.050

COV 0.916 0.937 0.940 0.946 0.940 0.954 0.947

µ̂DS−P−BR Bias 0.032 0.012 0.010 0.004 0.004 0.004 0.001

RMSE 0.162 0.111 0.090 0.076 0.071 0.053 0.048

COV 0.875 0.906 0.919 0.917 0.911 0.943 0.927

µ̂DS−LASSO Bias 0.080 0.041 0.026 0.015 0.011 0.005 0.001

RMSE 0.181 0.119 0.094 0.077 0.074 0.055 0.048

COV 0.872 0.921 0.930 0.935 0.931 0.953 0.953

OR incorrect PS correct

Estimator Measure n = 200 n = 400 n = 600 n = 800 n = 1000 n = 1500 n = 2000

µ̂P−BR Bias -0.010 -0.007 -0.005 -0.006 -0.007 -0.003 -0.008

RMSE 0.201 0.146 0.125 0.111 0.100 0.080 0.073

COV 0.898 0.899 0.903 0.894 0.889 0.909 0.894

µ̂LASSO Bias -0.074 -0.093 -0.101 -0.111 -0.117 -0.115 -0.123

RMSE 0.219 0.171 0.157 0.155 0.152 0.139 0.142

COV 0.877 0.851 0.799 0.749 0.694 0.621 0.517

µ̂MLE Bias -0.129 -0.064 -0.030 -0.026 -0.024 -0.012 -0.021

RMSE 0.489 0.291 0.288 0.222 0.178 0.152 0.128

COV 0.780 0.830 0.856 0.884 0.884 0.904 0.901

µ̂DS−P−BR Bias -0.132 -0.091 -0.074 -0.065 -0.057 -0.041 -0.040

RMSE 0.262 0.182 0.151 0.131 0.116 0.092 0.084

COV 0.749 0.779 0.788 0.803 0.814 0.841 0.825

µ̂DS−LASSO Bias -0.007 -0.008 -0.004 -0.008 -0.015 -0.007 -0.015

RMSE 0.323 0.226 0.217 0.182 0.155 0.135 0.120

COV 0.890 0.919 0.911 0.920 0.907 0.926 0.909

NOTE: OR: Outcome Regression, PS: Propensity Score.
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Table 4: The effect of life expectancy on GDP growth: estimates of the ATE, their
asymptotic standard error estimates (ASSE) and 95% confidence intervals (CI).

Estimator ATE ASSE CI

p = 9

µ̂OR(β̂OLS) -5.386 0.837 [−7.02;−3.74]

µ̂Pop−IPTW(γ̂MLE) 1.678 0.423 [0.84; 2.50]

µ̂OR(β̂LASSO) -2.228 0.512 [−3.23;−1.22]

µ̂Pop−IPTW(γ̂LASSO) 1.373 0.475 [0.44; 2.30]

µ̂MLE -5.391 0.879 [−7.11;−3.66]

µ̂LASSO -2.406 0.622 [−3.62;−1.18]

µ̂DS−LASSO -5.149 0.852 [−6.82;−3.47]

µ̂Post−LASSO -5.174 0.858 [−6.85;−3.49]

µ̂P−BR -2.003 0.492 [−2.96;−1.03]

µ̂DS−P−BR -3.578 0.578 [−4.71;−2.44]

p = 63

µ̂OR(β̂OLS) 812.6 230.2 [361.3; 1263.8]

µ̂Pop−IPTW(γ̂MLE) 1.721 0.421 [0.89; 2.54]

µ̂OR(β̂LASSO) -6.013 1.275 [−8.51;−3.51]

µ̂Pop−IPTW(γ̂LASSO) 1.274 0.490 [0.31; 2.23]

µ̂MLE 812.6 230.2 [361.3; 1263.8]

µ̂LASSO -6.188 1.314 [−8.76;−3.61]

µ̂DS−LASSO -13.27 2.089 [−17.36;−9.17]

µ̂Post−LASSO -12.89 2.053 [−16.92;−8.87]

µ̂P−BR -1.813 0.562 [−2.91;−0.71]

µ̂DS−P−BR -28.80 5.214 [−39.02;−18.58]


