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Abstract
The Lasso, that is l1-penalized loss estimator is a popular tool for fitting sparse models to high-
dimensional data. The concave regularizations SCAD or MCP approximate more closely l0-
penalized loss, that is the Generalized Information Criterion (GIC), and correct intrinsic estimation
bias of the Lasso. In this paper we propose an alternative method of improving the Lasso for pre-
dictive models which encompass linear and logistic models as premier examples. The approach, for
a given penalty, orders the absolute values of the Lasso non-zero coefficients and then selects the
model from a small nested family by GIC. We derive an upper bound on the methods selection error
and show in numerical experiments on synthetic and real-world data sets that an implementation of
our algorithm is more accurate than implementations of studied concave regularizations.
Keywords: List of keywords

1. Introduction

Sparse high-dimensional predictive models, where the number of true predictors t is significantly
smaller than the sample size n and the number of all predictors p greatly exceeds n have been
a focus of research in statistical machine learning in recent years. The Lasso algorithm, that is
the minimum loss method regularized by sparsity inducing `1 penalty, is the main tool of fitting
such models (Tibshirani, 2011; Bühlmann and van de Geer, 2011). However, a few years ago it
has been shown that the model selected by the Lasso is usually too large and that for asymptoti-
cally consistent model selection it requires the irrepresentable condition on an experimental matrix
(Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Shen et al., 2012) which is too restrictive
in general. Model’s dimension can be reduced without loss of quality using the Thresholded Lasso
(TL) algorithm, which selects variables with largest absolute values of the Lasso coefficients (Ye
and Zhang, 2010; Zhou, 2009) or by solving a more computationally demanding minimization of
a loss with a folded concave penalty (FCP) as SCAD (Fan and Li, 2001), MCP (Zhang, 2010a) or
capped l1-penalty (Zhang, 2010b; Shen et al., 2012). TL, FCP and similar methods lead to consis-
tent selection under weaker assumptions such as the restricted isometry property (Zhang, 2010a,b;
Zhang and Zhang, 2012; Shen et al., 2012; Wang et al., 2013; Fan et al., 2014; Wang et al., 2014).
Recently in Pokarowski and Mielniczuk (2015) an algorithm called Screening–Ordering–Selection
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(SOS) was introduced for linear model selection, which reduces the model selected by the Lasso.
SOS is based on the variant of TL proposed by Zhou (2009).

The first main contribution of the paper is that we simplify and generalize SOS in the two step
Screening–Selection (SS) algorithm for general predictive models e.g. linear normal, logistic or
Cox proportional hazard models. In the first screening step, one computes the Lasso estimator β̂
with penalty λ and orders its nonzero coefficients according to their decreasing absolute values. In
the second, selection step, one chooses the model which minimizes GIC with penalty λ2/2 in a
nested family induced by the ordering. Post-model selection estimator of β is the minimum loss
estimator for the chosen model. Thus the SS algorithm (Algorithm 1 below) is the Lasso with
adaptive thresholding based on GIC. We derive an exponential upper bound on selection error of
SS in terms of λ (Theorem 2), which parallels the known bounds for TL, see Theorem 8 for linear
models in Ye and Zhang (2010) or FCP, see Corollary 3 and 5 in Fan et al. (2014). However,
in contrast to these methods, SS is constructive for linear models in that it relies neither on the
unknown parameters as the true vector β̊ or the cone invertibility factors. Instead, λ only depends
on the sample size, the number of predictors and an upper bound on the noise parameter.

Although TL, FCP, SOS or SS algorithms use the Lasso estimators only for one value of the
penalty, which is convenient for theoretical analysis, the practical Lasso implementations return
coefficient estimators for all possible penalty values (algorithm and R package LARS described in
(Efron et al., 2004) or for a given net of them (R package glmnet described in Friedman et al.
(2010). Similarly, using a net of penalty values, the FCP algorithm has been implemented for
linear (in R package SparseNet Mazumder et al. (2011)) and logistic models (in R package
cvplogistic Jiang and Huang (2014)).

Our second main contribution is that we propose the SOSnet algorithm (Algorithm 2 below),
which is a generalization of the SOS algorithm for general predictive models. SOSnet uses glmnet
for a net of penalty values, then for each of them it orders the chosen predictors according to Wald
statistics and finally, it selects the model from a small family by minimizing GIC. We show in
numerical experiments for linear and logistic models on synthetic and real-world data sets that
SOSnet is more accurate than implementations of FCP.

2. Models and Fitting Algorithms

In this section we start with definitions of considered models and estimation criteria, next we present
model selection algorithms.

2.1. Models

The way we model data will encompass normal linear and logistic models as premier examples.
Our assumptions are stated in their most general form which allows proving exponential bounds
for probability of selection error without obscuring their essentiality. We consider independent data
(y1, x1), (y2, x2), . . . , (yn, xn), where yi ∈ R, xi ∈ Rp for i = 1, 2, . . . , n, a known differentiable
cumulant function γ : R→ R and we assume that for some true β̊ ∈ Rp

Eyi = γ̇(xTi β̊) for i = 1, 2, . . . , n. (1)

Note that (1) is satisfied in particular by the Generalized Linear Models (GLM) and a nonlinear
regression with an additive error. We will use also vectorized version of the cumulant and its
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derivative. For η = (η1, . . . , ηn)T we define γ(η) = (γ(η1), . . . , γ(ηn))T and similarly γ̇(η) =
(γ̇(η1), . . . , γ̇(ηn))T .

LetX = [x.1, . . . , x.p] = [x1, . . . , xn]T be a n×pmatrix of experiment and J ⊆ {1, 2, . . . , p} =
F be an arbitrary subset of the full model F , J̄ = F \ J . As J may be viewed as sequence of zeros
and ones on F , |J | = |J |1 denotes cardinality of J . Let βJ be a subvector of β with elements having
indices in J , XJ be a submatrix of X with columns having indices in J and r(XJ) denotes a rank
of XJ . Linear model pertaining to predictors being columns of XJ will be frequently identified as
J . In particular, let T denotes a true model that is T = supp(β̊) = {j ∈ F : β̊j 6= 0} and t = |T |.

We assume also that a total cumulant function g(β) =
∑n

i=1 γ(xTi β) is convex and, additionally,
strongly convex at β̊ in a sense that exists c ∈ (0, 1] such that for all sparse β ∈ B ≡ B(X, β̊, t̄) we
have

g(β) ≥ g(β̊) + (β − β̊)T ġ(β̊) +
c

2
(β̊ − β)TXTX(β̊ − β), (2)

where t ≤ t̄ < n ∧ p,

B =
⋃

J⊃T,r(XJ )=|J |≤t̄

{βJ : ||XT (β̊J − βJ)||2 ≤ δt−1}, (3)

δt−1 = min
j∈T
||XT β̊T − x.j β̊j ||2. (4)

We note that this crucial property of the total cumulant is slightly weaker than an usual definition
of strong convexity which would have a second derivative of g at β̊ in place ofXTX . Let us remark
that ġ(β) = XT γ̇(Xβ).

Moreover, we assume that centred responses εi = yi − Eyi have a subgaussian distributions
with the same constant σ, that is for i = 1, 2, . . . , n and u ∈ R we have

E exp(uεi) ≤ exp(σ2u2/2). (5)

Examples. For a normal linear model yi ∼ N(xTi β̊, σ̊
2), γ(ηi) = η2

i /2 and (5) is fulfilled with
any σ ≥ σ̊. For a logistic model yi ∼ binom(1, [1 + exp(−xTi β̊)]−1), γ(ηi) = log(1 + exp(ηi))
and as (εi) are bounded random variables, then (5) is satisfied with any σ ≥ 1/2. It is easy to note
that for a linear model the strong convexity assumption (2) is fulfilled with c = 1 and for a logistic
model with

c = min
i

min
β∈B

exp(xTi β)/(1 + exp(xTi β))2.

2.2. Fitting Algorithms

For estimation of β̊ we consider a loss function

`(β) =

n∑
i=1

(γ(xTi β)− yixTi β) = g(β)− βTXT y, (6)

where y = (y1, . . . , yn)T . It is easy to see that ˙̀(β) = XT (γ̇(Xβ)− y), and consequently ˙̀(β̊) =
−XT ε for ε = (ε1, . . . , εn)T . Moreover, observe that β̊ = argminβE`(β) and (2) is equivalent to
strong convexity of ` in β̊ for all β ∈ B

`(β) ≥ `(β̊) + (β̊ − β)TXT ε+
c

2
(β̊ − β)TXTX(β̊ − β). (7)
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Algorithm 1 TL and SS
Input: y, X and λ, τ
Screening (Lasso) β̂ = argminβ {`(β) + λ|β|1};

Thresholded Lasso T̂TL = {j : |β̂j | > τ};

Selection (GIC)
order nonzero |β̂j1 | ≥ . . . ≥ |β̂js |, where s = |suppβ̂|;
set J =

{
{j1}, {j1, j2}, . . . , suppβ̂

}
;

T̂SS = argminJ∈J
{
`J + λ2/2|J |

}
.

Output: T̂TL, T̂SS

Let β̂ML
J = argminβJ `(βJ) denotes a minimum loss estimator based on y and {x.j , j ∈ J} and

`J = `(β̂ML
J ). Note that for GLM β̂ML

J coincides with a maximum likelihood estimator for a model
pertaining to J . Finally, for β ∈ Rp and q ≥ 1 let |β|q = (

∑p
j=1 |βj |q)1/q be `q norm.

In Algorithm 1 we present two selection procedures: the first one is the Thresholded Lasso
(TL) method which consists of retaining only these variables for which absolute values of their
Lasso estimators exceed a certain threshold τ . The second one, named Screening–Selection (SS)
procedure finds minimal value of Generalized Information Criterion (GIC) for the nested family
which is constructed using ordering of the nonzero Lasso estimates.

3. Selection Error Bounds for TL and SS

In this section we present upper exponential bounds on the selection error of the TL and SS algo-
rithms. In order to make the exposition simpler we assume that columns of X are normalized in
such a way that ||xj || = 1 for j = 1, . . . , p. Moreover, let β̊min = minj∈T |β̊j |.

3.1. A Bound for TL

First we generalize a characteristic of linear models which quantifies the degree of separation be-
tween the true model T and other models introduced in Ye and Zhang (2010). For a ∈ (0, 1)
consider a signed pseudo-cone

Ca =

{
ν ∈ Rp : |νT̄ |1 ≤

1 + a

1− a
|νT |1, νjxT.j

[
γ̇(X(β̊ + ν)) − γ̇(Xβ̊)

]
≤ 0, j ∈ T̄

}
. (8)

For q ≥ 1 and a ∈ (0, 1) let a Sign-Restricted Pseudo-Cone Invertibility Factor (SCIF) be defined
as

ζa,q = inf
ν∈Ca

∣∣XT
[
γ̇(X(β̊ + ν))− γ̇(Xβ̊)

]∣∣
∞

|ν|q
(9)

We let ζa = ζa,∞. In comparison to more popular restricted eigenvalues or compatibility con-
stants, variants of SCIF enable sharper `q estimation error bounds of the Lasso for q > 2 (cf Corol-
lary 4 in Ye and Zhang (2010) and Huang and Zhang (2012); Zhang and Zhang (2012).

The following lemma is a generalization of Theorem 3 in Ye and Zhang (2010).
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Lemma 1 If ` is convex and a ∈ (0, 1), then on {|XT ε|∞ ≤ aλ} we have |β̂− β̊|q ≤ (1+a)λζ−1
a,q .

Theorem 2 If ` is convex, (εi)i are subgaussian with σ and for a1, a2 ∈ (0, 1) we have

2a−2
1 a−1

2 σ2 log p ≤ λ2 ≤ (1 + a1)−2ζ2
a1τ

2 < (1 + a1)−2ζ2
a1 β̊

2
min/4,

then

P(T̂TL 6= T ) ≤ 2 exp

(
− (1− a2)a2

1λ
2

2σ2

)
. (10)

Constant a2 is used to remove multiplicative factor p from the exponential bound at the expense
of slightly diminishing the exponent in (10). Note that assumptions of Theorem2 stipulate that
truncation level τ is contained in interval [(1 + a1)λζ−1

a1 , β̊min/2). Analogous theorem for FCP, see
Corollary 3 for linear models and Corollary 5 for logistic models in Fan et al. (2014), requires an
additional assumption on on the minimal eigenvalue of XT

TXT and the proof is more difficult, but
for both methods a condition on τ requires unknown ζa or β̊min.

3.2. A Bound for SS

Let HJ be an orthogonal projection matrix onto the subspace spanned by columns of XJ . A scaled
K-L distance between T and its submodels, see Shen et al. (2012, 2013) is

δ = min
J⊂T

||(I −HJ)XT β̊T ||2

|T \ J |
. (11)

Different variants of the K–L distance have been often used in the consistency analysis of selection
algorithms, cf Section 3.1 in Pokarowski and Mielniczuk (2015), but δ defined above seems to lead
to optimal results, cf Theorem 1 in Shen et al. (2013). Technical constants a1, . . . , a4 allow to avoid
ad-hoc coefficients in the bounds and simplify asymptotic considerations. For given 1/2 < a1 < 1
define a2 = 1− (1− log(1− a1))(1− a1), a3 = 2− 1/a1 and a4 =

√
a1a2. Note that a2, a3 and

a4 are functions of a1 and obviously if a1 → 1, then a2, a3, a4 → 1.

Theorem 3 Assume (1)–(5) and that for a1 ∈ (1/2, 1)

2σ2 log p

a3a2a1c
∨ σ2t

(1− a1)2c
≤ λ2 <

δc

(1 +
√

2(1− a1))2
∧

ζ2
a4 β̊

2
min

4(1 + a4)2
. (12)

Then

P(T̂SS 6= T ) ≤ 4.5 exp

(
− a2(1− a1)cλ2

2σ2

)
. (13)

Selection consistency that is asymptotic correctness of T̂SS now easily follows.

Corollary 4 Assume that t = o(log p) for n→∞ and set a1 = 1−
√

t
2 log p , λ2 = 2σ2 log p

a3a2a1c
. Then

λ2 = c−1(2σ2 log p)(1 + o(1)). If additionally β̊ is asymptotically identifiable:

lim
n

2σ2 log p

(c2δ) ∧ (ζ2
a4 β̊

2
min/16)

< 1, then P(T̂SS 6= T ) = o(1).
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Remarks. 1. Theorem 3 for linear models may be obtained directly, analogously as in Pokarowski
and Mielniczuk (2015). The resulting lower bound on λ2 is λ2 ≥ 2σ2 log p/(a1a2a3) without the
additional condition λ2 ≥ σ2t/(1− a1)2 assumed in Theorem 3 (recall that c = 1).

2. Theorem 2 determines the interval of admissible λ, a parameter of SS, for which a bound
in (13) holds. Corollary 1 states more easily interpretable result: for λ equal to lower endpoint
of the above interval SS is asymptotically correct provided that the true model is asymptotically
identifiable. Although identifiability condition is not effectively verifiable, λ can be explicitly given
for linear models as

λ =
√

2σ2 log p(1 + o(1)) (14)

and for logistic models as
λ =

√
(log p)/(2c)(1 + o(1)), (15)

since σ ≥ 1/2. Thus for linear models a parameter of SS is given constructively in contrast to TL
or FCP which require an additional parameter τ , depending on identifiability constants as SCIF. In
literature concerning Lasso and its modifications the smallest possible λ is taken as the default value
as then the algorithm is asymptotically consistent for the largest class of models (the same approach
is adopted for prediction and estimation). Such λ will be called the safest choice in the Conclusions.

4. Extension to general convex contrasts

In this part of the paper we investigate properties of the SS algorithm beyond GLM. In fact, the
main assumption, that will be required, is convexity of the ”contrast function”. We show that the
SS algorithm is very flexible procedure that can be (succesfully) applied to the various spectrum of
practical problems.

First, for β ∈ Rp and a contrast function φ : R× R→ R we define a loss function

`(β) =

n∑
i=1

φ(βTxi, yi).

Considering the standard linear model one usually uses the quadratic contrast φ(βTxi, yi) = (yi −
βTxi)

2 as we have done before. However, it is well known that the quadratic contrast is very sen-
sitive to the distribution of errors εi and does not work well, if this distribution is, for instance,
heavy-tailed and outliers appear. To overcome this difficulty we can use the absolute contrast
φ(βTxi, yi) = |yi−βTxi|. Next, working with dichotomous yi we can apply the logistic regression
that belongs to GLM and has been considered ealier. In this case we have φ(βTxi, yi) = −yiβTxi+
log[1 + exp(βTxi)]. But there are also very popular and efficient algorithms called support vector
machines that use, for instance, the following contrast φ(βTxi, yi) = [max(0, 1− yiβTxi)]2.

Our main assumption is that the contrast function φ is convex with respect to β. All examples in
the above paragraph satisfy this property. Notice that they need not be differentiable nor decompose,
as in (6) for GLM, into the sum of the nonrandom cumulant γ and the random linear term yiβ

Txi.
In this section we prove the exponential upper bound of the error of the SS algorithm based on these
contrast functions that is almost the same as in Theorem 3. To do it we strongly exploit the empirical
process theory. Obviously, the SS algorithm is the same as in Algorithm 1.

We add few definitions and notations to those in the previous parts of the paper. We start with
defining two balls: the first one is the l1-ball B1(r) = {β : |β − β̊|1 ≤ r} with radius r > 0. The
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second one is the l2-ball B2,J(r) = {βJ : ||XJ(β̊ − βJ)||2 ≤ r2} with radius r > 0, where J
is a (sparse) subset of {1, . . . , p} and T ⊂ J. Recall that β̊ is, as previously, a minimizer E`(β).

Besides, let BJ = BJ

(√
δt−1

)
, where δt−1 is defined in (4). In further argumentation key roles

are played by:
Z(r) = sup

β∈B1(r)

∣∣∣`(β)− E`(β)− [`(β̊)− E`(β̊)]
∣∣∣

and
UJ(r) = sup

β∈B2,J (r)

∣∣∣`(β)− E`(β)− [`(β̊)− E`(β̊)]
∣∣∣ ,

which are empirical processes over l1 and l2-balls, correspondingly. We need also the compatibility
factor that is an analog of SCIF defined in (9). Namely, for arbitrary a ∈ (0, 1) a compatibility
factor is

κa = inf
06=β∈Ca

βTXTXβ

|βT |21
, (16)

where Ca is a simplified version of (8), namely

Ca =

{
ν ∈ Rp : |νT̄ |1 ≤

1 + a

1− a
|νT |1

}
.

Convexity of the contrast function is the main assumption in this section. However, similarly
to the previous section we need also the following strong convexity of E`(β) at β̊: there exists
c1 ∈ (0, 1] (c2 ∈ (0, 1], respectively) such that for each β1 ∈ B1(β̊min) (β2 ∈ B, respectively) we
have for i = 1, 2

E`(βi)− E`(β̊) ≥ ci
2

(βi − β̊)T XTX (βi − β̊). (17)

Notice that we require the expected loss E`(β), not the loss `(β), to be strongly convex. Besides,
while considering GLM the condition (7) is equivalent to (17) for i = 2. Finally, to prove expo-
nential bounds for GLM we use subgaussianity that allows as to obtain probabilistic inequalities in
Lemma 10. In this section we need the analog of (23) of the form: there exists L > 0 and constants
K1,K2 > 0 such that for each 0 < r ≤ β̊min and z ≥ 1 we have

P

(
Z(r)

r
> K1Lz

√
log(2p)

)
≤ exp

(
−K2 log(2p) z2

)
. (18)

Besides, the inequality (24) is replaced by the following: there existsL > 0 and constantsK1,K2 >
0 such that for each 0 < r ≤

√
δt−1, z ≥ 1 and J : T ⊂ J, r(XJ) = |J | ≤ t̄ we have

P

(
UJ(r)

r
> K1Lz

√
|J |
)
≤ exp(−K2|J |z2). (19)

The detailed comparison between assumptions and results for models in this section and those for
GLM is given after the main result of this section, which is now stated.

Theorem 5 Fix a ∈ (0, 1). Assume that (17), (18), (19) and

K1 max(log p, t/a)
L2

c2
≤ λ2 ≤ K2 min

[
c2δ

(1 +
√

2a)2
,
c2δt−1

t̄− t
,
(
c1κaβ̊min

)2
]
. (20)
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Then

P
(
T̂SS 6= T

)
≤ K1 exp

(
−K2

ac2λ
2

L2

)
. (21)

Theorem 5 bounds exponentially the error of the SS algorithm in the case that the contrast
function is quite general convex function. It is similar (in fact, slightly worse) than Theorem 3 that
considers GLM. Below we discuss its assumptions and compare it in detail with Theorem 3.

Remark 6 . The main assumptions of Theorem 5 are convexity of the contrast function and con-
ditions (18) and (19). They can be proved using tools from the empirical process theory such that
concentration inequalities (Massart, 2000), the Symmetrization (van der Vaart and Wellner, 1996,
Lemma 2.3.1) and Contraction Lemma (Ledoux and Talagrand, 1991, Theorem 4.12). It is quite re-
markable that to get (18) or (19) we need only one new condition. Namely, we need that the contrast
function is Lipschitz in the following sense: there exists L > 0 such that for all x, y, 0 < r ≤ β̊min
and β, β̃ ∈ B1(r)

|φ(βTx, y)− φ(β̃Tx, y)| ≤ L|βTx− β̃Tx|. (22)

This fact follows from Massart (2000, Theorem 9) and Bühlmann and van de Geer (2011, Lemma
14.20). We show in the appendix that to get (19) we need similar argumentation and (22) to be
satisfied for all x, y, r ∈

(
0,
√
δt−1

)
, J : T ⊂ J, r(XJ) = |J | ≤ t̄ and β, β̃ ∈ B2,J(r). Notice

that logistic and absolute contrast functions satisfy (22) with L = 2 and L = 1, respectively.
Moreover, every convex function is locally Lipschitz, so (22) is also satisfied for remaining contrasts
(but in these cases L depends on n).

Remark 7 The condition (17) is often called the ”margin condition” in the literature. For quadratic
and logistic contrasts it has been considered ealier. To prove it for SVM contrasts one can use
methods based on the modulus of convexity (Bartlett et al., 2006, Lemma 7).

Remark 8 (Comparison to Theorem 3 - Similarities) As we have already mentioned Theorem 5
can be also applied to GLM. We can calculate that for quadratic and logistic contrasts we have

`(β)− `(β̊) = −(β − β̊)TXT y + g(β)− g(β̊)

and
E`(β)− E`(β̊) = −(β − β̊)TXTEy + g(β)− g(β̊),

where g is a total cumulant function. Therefore, the condition (17) for l2-balls is the same as (7).
Besides, we have for ε = y − Ey that

`(β)− E`(β)− [`(β̊)− E`(β̊)] = (β − β̊)TXT ε.

Therefore, we can calculate that for GLM we have Z(r)/r ≤
∣∣XT ε

∣∣
∞ and UJ(r)/r ≤

√
εTHJε,

that simplifies bounds in (18) and (19). It makes them analogous to those in Lemma 10 (i) and
(iii). Previously they have been obtained using properties of errors ε1, . . . , εn. Now they are proved
using the empirical process theory in more general framework. Lemma 10 (i) and (iii) are intended
to GLM, so they should give better results than the general methods. And they do, but only in
relation to constants Ki. Finally, notice that the left-hand side in condition (20) and the result in
(21) are the same (again with respect to the constants) to those in Theorem 3.
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Remark 9 (Comparison to Theorem 3 - Differences) The SS algorithm consists of two steps. In
the last paragraph we have mentioned that the theoretical analysis of the second step (selection)
is similar in GLM and models with convex contrasts. However, we can find differences while in-
vestigating the first step (screening based on the lasso). In general, it is related to the fact that the
properties of the lasso in GLM (so we work with differentiable contrasts that can be nicely decom-
posed) are better and/or better studied. In Theorem 5 we assume (17) with also respect to l1-balls,
which makes the right-hand side of (20) usually worse than in (12), because c2

1 appears in (20).

Summarizing, using the empirical process theory we are able to prove that the SS algorithm
works in a satisfactory way even in quite general models with convex contrasts.

5. Proofs

In the following subsections we present auxiliary exponential inequalities for subgaussian random
variables, upper-bound selection error of TL, and two parts of selection error of SS.

5.1. Exponential Bounds for Subgaussian Vectors

In the following lemma we develop auxiliary probabilistic tools. Specifically, in lemma 10 (iii) we
generalize Wallace inequality for χ2 distribution Wallace (1959) to the subgaussian case using the
inequality for the moment generating function in lemma 10 (ii). The last inequality is proved by the
decoupling technique as in the proof of Theorem 2.1 in Hsu et al. (2012).

Lemma 10 Let ε ∈ Rn be a vector of zero-mean independent errors having subgaussian distribu-
tion with a constant σ, ν ∈ Rn, 0 < a < 1 andH be a orthogonal projection such that tr(H) = m.
Then

(i) for τ > 0

P(εT ν/||ν|| ≥ τ) ≤ exp

(
− τ2

2σ2

)
(23)

(ii)
E exp

( a

2σ2
εTHε

)
≤ exp

(
−m

2
log(1− a)

)
(iii) for τ > 1

P(εTHε ≥ mσ2τ) ≤ exp
(
−m

2

(
τ − 1− log τ

))
(24)

Proof [Proof of Lemma 10] Let Z = εT ν/||ν|| and a > 0. From Markov inequality we obtain

P(Z ≥ τ) ≤ e−aEeaZ ≤ e−aτ+a2σ2/2.

Minimizing the last expression w.r.t. a gives part (i).
Let ξ ∼ N(0, In) be a vector of iid standard normal errors independent of ε. We have

E exp
( a

2σ2
εTHε

)
= E E

(
exp(

√
a

σ
ξTHε

∣∣∣∣Hε) = E exp
(√a
σ
ξTHε

)
= E E

(
exp(

√
a

σ
ξTHε

∣∣∣∣ξTH) ≤ E exp
(a

2
ξTHξ

)
.
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Thus part (ii) folllows from a known formula for the moment generating function of the χ2 distri-
bution.

From Markov inequality and part (ii) of the Lemma we have

P(εTHε ≥ mσ2τ) ≤ exp

(
− amτ

2

)
E exp

(
a

2σ2
εTHε

)
≤ exp

(
−m

2

(
aτ+log(1−a)

))
.

Thus after minimization the last expression w.r.t a we obtain part (iii).

5.2. Proof of Lemma 1

Let Aa = {|XT ε|∞ ≤ aλ} and ε̂ = y − γ̇(Xβ̂). We have ˙̀(β̂) = −XT ε̂ and from the Karush-
Kuhn-Tucker (KKT) theorem we obtain equations

XT ε̂ = λ
[
I(β̂ > 0)− I(β̂ < 0) + uI(β̂ = 0)

]
for u ∈ [−1, 1].

Let ∆ = β̂ − β̊ and ν ∈ Rp be such that sgn(νT̄ ) = sgn(∆T̄ ). We have νTJX
T
J ε̂ = λ|νJ |1 for

J ⊆ T̄ and consequently

D(ν) = νTXT
[
γ̇(Xβ̂)− γ̇(Xβ̊)

]
= νTTX

T
T (ε− ε̂) + νTT̄X

T
T̄ (ε− ε̂)

≤ |νT |1(|XT
T ε|∞ + |XT

T ε̂|∞) + |νT̄ |1(|XT
T̄ ε|∞ − λ) ≤ |νT |1(1 + a)λ+ |νT̄ |1(a− 1)λ. (25)

Then letting ν = ∆J for J ⊆ T̄ we have D(ν) ≤ 0. Moreover, for ν = ∆ we have from convexity
of g that

D(ν) = (β̂ − β̊)T [ġ(β̂)− ġ(β̊)] ≥ 0.

Indeed, D0(β1, β2) = (β1 − β2)T [ġ(β1)− ġ(β2)] is the symmetrized Bregman divergence (Huang
and Zhang, 2012). Hence (1−a)|νT̄ |1 ≤ (1+a)|νT |1. Thus, onAa, ∆ ∈ Ca and from the definition
of ζa we obtain using KKT again

ζa,q|∆|q ≤
∣∣XT

[
γ̇(Xβ̂))− γ̇(Xβ̊)

]∣∣
∞ ≤ |X

T ε̂|∞ + |XT ε|∞ ≤ (1 + a)λ.

5.3. Proof of Theorem 2

First we will prove that Aa ⊆ {T̂TL = T}. From Lemma 1 and assumptions we have on Aa

|∆|∞ ≤ (1 + a)λζ−1
a ≤ τ < β̊min/2. (26)

Thus using (26) twice we have for j ∈ T and k 6∈ T

|β̂j | ≥ |β̊j | − |β̂j − β̊j | > β̊min − β̊min/2 > τ ≥ |β̂k − β̊k| = |β̂k| (27)

and it follows that Aa ⊆ {T̂TL = T}. Morover, the assumptions of the Theorem imply

−a2
1λ

2 + 2σ2 log p ≤ −(1− a2)a2
1λ

2.

Hence, using Lemma 10 (i) we easily obtain

P(T̂TL 6= T ) ≤ P(Aca1) ≤ 2p exp
(
− a2

1λ
2

2σ2

)
≤ 2 exp

(
− (1− a2)a2

1λ
2

2σ2

)
.

10
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5.4. Proof of Theorem 3

Let us observe that the consecutive steps of SS constitute decomposition of the selection error into
2 parts: {T̂ 6= T} = {T 6∈ J } ∪ {T ∈ J , T̂ 6= T}. Therefore Theorem 3 follows easily from (28)
and (30) below.

Having in mind that for given a1 ∈ (1/2, 1) we let a2 = 1− (1− log(1− a1))(1− a1), a3 =
2−1/a1 and a4 =

√
a1a2, by arguments similar to those in Theorem 2 we obtainAa4 ⊆ {T ∈ J }.

Moreover assumptions 0 < c ≤ 1 and 2σ2 log p
a3a2a1c

≤ λ2 imply

−a2
4λ

2 + 2σ2 log p ≤ −a2a1cλ
2 + 2σ2 log p ≤ −(1− a3)a2a1cλ

2 = −a2(1− a1)cλ2.

As a result

P
(
T 6∈ J

)
≤ P(Aca4) ≤ 2p exp

(
− a2

4λ
2

2σ2

)
≤ 2 exp

(
− a2(1− a1)cλ2

2σ2

)
. (28)

Now we bound probability P
(
T ∈ J , T̂ 6= T

)
. Components of the selection error set are

included in the critical sets of the following form CJ(τ) = {εTHJε ≥ τ}.
Proofs of the lemmas stated below are relegated to the Supplemental Materials.

Lemma 11 If for a ∈ (0, 1) we have λ2 < cδ
/(

1 +
√

2a
)2, then {T ∈ J , T̂ ⊂ T} ⊆ CT (acλ2).

Lemma 12 For a ∈ (0, 1) we have

{T ∈ J , T̂ ⊃ T} ⊆ CT ((1− a)cλ2) ∪
⋃
J⊃T
CJ\T (|J \ T |acλ2).

Let us define τ0 = 1
1−a1 , τ1 = (1−a1)cλ2

tσ2 and τ2 = a1cλ2

σ2 . Under our assumptions we have
2 < τ0 < τ1 < τ2. Let f2(τ) = 1− (1 + log τ)/τ for τ > 1. Of course f2 is increasing, f2(1) = 0
and f2(τ)→ 1 for τ →∞. Consequently a2 = f2(τ0) < f2(τ1) < f2(τ2), which means that

a2τr < τr − 1− log τr for r = 1, 2. (29)

From Lemma 11, Lemma 12, Lemma 10 (iii) and (29) we get

P
(
T ∈ J , T̂ 6= T

)
≤ P

(
CT (tσ2τ1)

)
+
∑
J⊃T

P
(
CJ\T (|J \ T |σ2τ2)

)
≤ exp

(
− ta2τ1/2

)
+

p−t∑
m=1

(
p− t
m

)
exp

(
−ma2τ2/2

)
≤ exp

(
− ta2τ1/2

)
+

p−t∑
m=1

1

m!
exp

(−m
2

(a2τ2 − 2 log p)
)
.

Using exp(d)− 1 ≤ log(2)−1d for 0 ≤ d ≤ log(2) and the fact that probability is not greater than
1 we obtain

P
(
T ∈ J , T̂ 6= T

)
≤ exp

(
− ta2τ1/2

)
+ (log 2)−1 exp

(
− (a2τ2 − 2 log p)/2

)
.

For a3 ∈ (0, 1), assumption 2σ2 log p
a3a2a1c

≤ λ2 implies −a2τ2 + 2 log p ≤ −(1− a3)a2τ2, therefore

P
(
T ∈ J , T̂ 6= T

)
≤ exp

(
− ta2τ1/2

)
+ (log 2)−1 exp

(
− (1− a3)a2τ2/2

)
. (30)

11
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6. Experiments

While convenient for theoretical analysis TL, FCP, SOS or SS algorithms use the Lasso estimators
only for one value of the penalty, the practical Lasso implementations return coefficient estimators
for a given net of it (R package glmnet described in Friedman et al. (2010). Similarly, using a net
of penalty values, the Minimax Concave Penalty (MCP) algorithm, a popular realization of FCP,
has been implemented for linear (in R package SparseNet Mazumder et al. (2011)) and logistic
models (in R package cvplogistic Jiang and Huang (2014)).

In order to improve SOS and SS performance, we propose a net modification of SOS called
SOSnet (Algorithm 2 below), which employs estimates for m values: λ1, . . . , λm. This alteration
results in higher accuracy of model selection and sparse prediction as shown in our experiments. The
most intensive step of the algorithm, namely computations of Lasso estimators, can be performed
for all λ values during one run of the glmnet algorithm. As in SOS the ordering step allows to
choose T when the screening step is correct i.e. suppβ̂λ ⊇ T but ordering given by absolute values
of coordinates of β̂λ is wrong. An additional loop (for l = 1 series to o) is introduced in order to
find a correct screening set having possibly small cardinality.

Algorithm 2 SOSnet
Input: y, X and (o, λ ≤ λ1 < . . . < λm)
Screening (Lasso)
for k = 1 to m do
β̂(k) = argminβ {`(β) + λk|β|1}; order nonzero |β̂(k)

j1
| ≥ . . . ≥ |β̂(k)

jsk
|, where sk =

|suppβ̂(k)|;
Ordering (squared Wald tests)
for l = 1 to o do

set J = {j1, j2, . . . , jskl}, where skl = b sk·lo c;
compute β̂ML

J ;
set predictors in J according to squared Wald tests: w2

i1
≥ w2

i2
≥ . . . ≥ w2

iskl
;

set Jkl = {{i1}, {i1, i2}, . . . , {i1, i2, . . . , iskl}}
end for;

end for;
Selection (GIC)
J =

⋃m
k=1

⋃o
l=1 Jkl; T̂ = argminJ∈J

{
`J + λ2/2|J |

}
Output: T̂ , β̂GSSG = β̂ML

T̂

We performed numerical experiments fitting sparse linear and logistic models to high-dimensional
benchmark simulations and real data sets.

6.1. Simulated Data

For linear models we studied the performance of two algorithms: SOSnet and MCP computed using
the R package SparseNet Mazumder et al. (2011) for the default 9 values of γ and 50 values of λ.
Our algorithm used the R package glmnet Friedman et al. (2010) to compute the Lasso estimators
for 50 lambdas on a log scale and with o = 5.

12
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Table 1: Plan of experiments for linear models.
n p β̊ ρ σ2 SNR

N.1.5 100 3000 β̊(1) .5 4 2.3
N.1.7 100 3000 β̊(1) .7 4 2.6
N.1.9 100 3000 β̊(1) .9 4 3
N.2.5 200 2000 β̊(2) .5 7 2.4
N.2.7 200 2000 β̊(2) .7 7 2.3
N.2.9 200 2000 β̊(2) .9 7 2.2

We generated samples (yi, xi), i = 1, . . . , n from the normal linear model. Two vectors
of parameters were considered: β̊(1) = (3, 1.5, 0, 0, 2, 0Tp−5)T , as in Wang et al. (2013) as well
as β̊(2) = (0Tp−10, s1 · 2, s2 · 2, . . . , s10 · 2)T , where sl equals 1 or -1 with equal probability, l =
1, . . . , 10 chosen separately for every run as in experiment 2 in Wang et al. (2014). The rows of
X were iid p-dimensional vectors xi ∼ N(0p,Ξ). We considered auto-regressive structure of co-
variance matrix that is Ξ =

(
ρ|i−j|

)p
i,j=1

for ρ = 0.5, 0.7, 0.9. The columns of X were centred
and normalized so that ||x·j ||2 = n and ε ∼ N(0n, σ

2In). The plan of experiments is presented in
Table 1 with SNR meaning a Signal to Noise Ratio.

For every experiment the results were based on N = 1000 simulation runs. We reported mean
model dimension (MD) that is |supp(β̂)| and mean squared prediction error (PE) on new data set
with 1000 observations equalling ‖Xβ̊ −Xβ̂‖2/(nσ2). We chose the model using GIC with λ2 =
c · log(p) · σ2. For each value of hyperparameter c = .25, .5, . . . , 7.5 values of (MD(c), PE(c))
for the models chosen by GIC=GIC(c) were calculated and averaged over simulations. The results
are presented in two first columns of Figure 1. The two vertical lines indicate models chosen using
GIC with c = 2.5: the black one for SOSnet and the red one for SparseNet. The blue vertical
line denotes the true model dimension.

For logistic models we compared the performance of two algorithms: SOSnet and MCP im-
plemented in the R package cvplogistic for the default value of κ = 1/2.7 and 100 values of
λ. As for linear models, SOSnet called the R package glmnet Friedman et al. (2010) to compute
the Lasso estimators for 20 lambdas on a default log scale and with o = 5. We performed experi-
ments very similar to those for linear models, changing only n and the number of simulation runs
to N = 500. The plan of experiments is shown in the Table 2. Random samples were generated
according to the binomial distribution. We reported prediction error defined as misclassification
frequency on new data set with 1000 observations. The results organized in a similar way as for the
linear models are shown in columns 3–4 of Figure 1. The two vertical lines indicate models chosen
using GIC with c = 2, the black one for SOSnet and the red one for cvplogistic.

Summarizing the results of the simulation study, one can observe that SOSnet for linear models
turned out to have equal or lower PE in almost all of the experimental setups. The differences are
most visible in setups with autocorrelation structure with ρ = 0.7. The value c = 2.5 in GIC usually
gave satisfactory results. The mean execution time of SOSnet was approximately 1.5 times longer
than for SparseNet. SOSnet for logistic regression gave similar accuracy as cvplogistic
with much lower execution time: SOSnet was approximately 10 times faster. The value c = 2 in
GIC usually gave satisfactory results.

13
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Table 2: Plan of experiments for logistic models.
n p β̊ ρ

B.1.5 300 3000 β̊(1) .5
B.1.7 300 3000 β̊(1) .7
B.1.9 300 3000 β̊(1) .9
B.2.5 500 2000 β̊(2) .5
B.2.7 500 2000 β̊(2) .7
B.2.9 500 2000 β̊(2) .9

Figure 1: Results for simulated data
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6.2. Real Data Sets

The methylation data set was described in Hannum et al. (2013). It consist of the age of 656
human individuals together with values of phenotypic features such as gender and body mass index
and of genetic features, which are methylation states of 485 577 CpG markers. Methylation was
recorded as a fraction representing the frequency of methylation of a given CpG marker across
the population of blood cells taken from a single individual. In our comparison we used only
genetic features from which we extracted 193 870 most relevant CpGs according to onefold t-tests
with Benjamini-Hochberg adjustment, FDR=.05. We compared the root mean squared errors (PE)
and model dimensions (MD) for SOSnet and SparseNet via 10-fold cross-validation. For each
value of hyperparameter c = .25, .5, . . . , 7.5 values of (MD(c), PE(c)) for the models chosen
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Figure 2: Results for the methylation data set
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by GIC=GIC(c) were calculated and averaged over 10 folds. The results are presented in Figure
2. SparseNet yields a path of models for each value of parameter γ = g1, . . . , g9. We present
results for g1, corresponding to the Lasso, for g9, close to the best subset, and for an intermediate
value g8 in Figure 2. Remarkably, SOSnet gives uniformly smaller PE than SparseNet for all
MD ≥ 3. The two vertical lines indicate models chosen using GIC with c = 2.5: the black one for
SOSnet and the red one for SparseNet.

A logistic model was fitted to the breast cancer data described in Gravier et al. (2010) which
concerns small, invasive carcinomas without axillary lymph node involvement to predict metastasis
of small node-negative breast carcinoma. There were 168 patients: 111 with no event after diagnosis
labeled as good, and 57 with early metastasis labeled as poor. The number of predictors in this data
was 2905. We compared the mean errors of binary prediction (PE) and model dimensions (MD)
for SOSnet and cvplogistic via 10-fold cross-validation. The results are presented in Figure
3. Minimal PE for SOSnet was smaller than for cvplogistic, but for a larger model. The
algorithms work comparably, but again SOSnet was 63 times faster. The two vertical lines indicate
models chosen using GIC with c = 2: the black one for SOSnet and the red one for cvplogistic.
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Figure 3: Results for the breast cancer data set
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7. Conclusions

In the paper we propose the SS algorithm which is an alternative method to TL and FCP of improv-
ing the Lasso. For linear models it seems to be the benchmark for the theory of model selection
as it is constructive, computationally efficient and leads to consistent model selection under weak
assumptions.

Our approach encompasses fundamental model for prediction of continuous as well as of binary
response and the main result is stated jointly for both of them. Its assumptions are stated in the most
general form which allows proving exponential bound without obscuring the essence of the results
and comparing the bounds for both models. By simplifying SOS to SS we were able to simplify
reasoning used for SOS and then extend them from linear models to general predictive models.

We propose an algorithm SOSnet, which is a generalization of the SOS algorithm for general
predictive models. Using net of parameters, SOSnet avoids problem of choosing one specific λ.
The gap between theoretical results for SS and the SOSnet algorithm is similar to the difference
between theory for FCP and it implementations SparseNet or cvpologistic. Numerical ex-
periments reveal that for linear models SOSnet is more accurate than SparseNetwith comparable
computing time, whereas for logistic models performance of SOSnet is on par with performance of
cvpologistic with computing times at least 10 times shorter.

We have shown in simulations (dotted vertical lines in Figure 1) that predictively optimal λ for
linear models equals approximately

√
2.5σ2 log p, which is close to (14) and for logistic models is√

2 log p, which together with (15) suggests that c ≈ 1/4. The relations between the safest choice
λ discussed in Remark 2 and predictively optimal λ are important applications of our theory.
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Appendix A. Proofs and auxiliary results

Let us define for k = 1, . . . , t− 1

Ek(τ) = {∃J ⊂ T |T \ J | = k : `J − `T ≤ τ},
δk = min

J⊂T, |T\J |=k
||(I −HJ)XT β̊T ||2,

Bk = {βT : ||XTβT −XT β̊T ||2 ≤ δk}.

Obviously δ = mink δk/k. First we prove the following lemma which will be used in the proof of
Lemma 3.
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Lemma 5. For b ∈ (0, 1) we have

Ek(bcδk/2) ⊆ CT ((1− b)2c2δk/4).

Proof [Proof of Lemma 5] For βT ∈ ∂Bk from assumption (5), Schwartz inequality and properties
of the orthogonal projection HT we get

˚̀(βT ) := `(βT )− `(β̊T ) ≥ (β̊T − βT )TXT
THT ε+

c

2
(β̊T − βT )TXT

TXT (β̊T − βT )

≥ −
√
δkεTHT ε+

c

2
δk.

Since the last expression does not depend on βT , we have for b ∈ (0, 1)

Lk(b) =

{
min

βT∈∂Bk

˚̀(βT ) ≤ bcδk
2

}
⊆
{
−
√
δkεTHT ε+

c

2
δk ≤

bcδk
2

}
= CT

(
(1− b)2c2δk

4

)
.

Let us notice that for J ⊂ T such that |T \ J | = k we have ||XT (β̂ML
J − β̊T )||2 ≥ δk, so

β̂ML
J /∈ int(Bk). Since ˚̀is convex and ˚̀(β̊T ) = 0 we obtain Lk(b) ⊇ Ek(bcδk/2).

Proof [Proof of Lemma 3] From assumption of the Lemma λ2 < cδ, so bk = λ2k/(cδk) < 1.
Hence for k = 1, . . . , t− 1

kλ2 ≤ bkcδk. (31)

Moreover, if a ∈ (0, 1) then
akcλ2 ≤ (1− bk)2c2δk/4, (32)

because ab ≤ (1− b)2/4 for b = λ2/(cδ). The last inequality is true if

b ≤ 1 + 2a−
√

(1 + 2a)2 − 1 = f1(a). (33)

Indeed, it is easy to check that (33) follows from the assumption as

f1(a) =
1

1 + 2a+
√

(1 + 2a)2 − 1
≥ 1

(1 +
√

2a)2
.

Finally from (31), Lemma 5 and (32) we obtain, respectively

{T ∈ J , T̂ ⊂ T} ⊆
t−1⋃
k=1

Ek(
kλ2

2
) ⊆

t−1⋃
k=1

Ek(
bkcδk

2
) ⊆

t−1⋃
k=1

CT (
(1− bk)2c2δk

4
) ⊆ CT (acλ2)

Proof [Proof of Lemma 4] For J ⊃ T define WJ = XJ(β̊J − β̂ML
J ) and m = |J \ T |. We have

from assumption (5) and properties of orthogonal projection HJ

`J − `T ≥ `(β̂ML
J )− `(β̊J) ≥ (β̊J − β̂ML

J )TXT
J HJε+

c

2
(β̊J − β̂ML

J )TXT
J XJ(β̊J − β̂ML

J )

= W T
J HJε+

c

2
W T
J WJ =

1

2c
||cWJ +HJε||2 −

1

2c
εTHJε ≥ −

1

2c
εTHJε,
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so {`J − `T ≤ −mλ2/2} ⊆ {εTHJε ≥ mcλ2}.
Moreover, εTHJε ≤ εTHT ε+ εTHJ\T ε, hence we obtain for τ > 0 and a ∈ (0, 1)

{εTHJε ≥ τ} ⊆ {εTHT ε ≥ (1− a)τ} ∪ {εTHJ\T ε ≥ aτ}.

Finally

{T ∈ J , T̂ ⊃ T} ⊆
⋃
J⊃T
{`J−`T ≤ −|J\T |λ2/2} ⊆ CT ((1−a)cλ2)∪

⋃
J⊃T
CJ\T (|J\T |acλ2).
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