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Introduction

I Our goal is to analyze 3 significant 133Xe detections made
between 7-9 April 2013 at Takasaki station (JPX38, CTBTO
IMS)

I We attempt to estimate time- and height-dependent source
shapes using a state-of-the-art inverse modeling technique and
investigate influence of non-detections

I SRS fields and the inversion are performed in a more detailed
manner than performed by the CTBTO (computational costs
too high for routine calculations)

I Scenarios with both know and unknown source location are
studied



Samples included into inversion
I 3 significant JPX38 detections:

I 08 April 2013 06:54 UTC collection stop
I 08 April 2013 18:53 UTC collection stop
I 09 April 2013 06:54 UTC collection stop

I Spatially we include additional samples from 5 adjacent
stations (RUX58, MNX45, CNX20, CNX22 and USX77)

I Temporally we include ±1 sampling period for JPX38 and ±2
for other stations



Source-Receptor Sensitivity (SRS) calculations

I SRS calculated using backward runs of FLEXPART, i.e. 34
runs, each with 1.5M particles, 12 days back

I SRS calculations performed with high accuracy:
I ECMWF input data 0.25◦horizontal resolution, 91 vertical

levels, 3 h temporal resolution
I FLEXPART output on lon-lat grid with ∆x = 0.25◦and

∆y = 0.2◦every 3 hours
I Convection enabled in FLEXPART

I We assume 5 vertical levels in order to account for complex
terrain at the DPRK test site (100 m, 500 m, 1000 m,
1500 m, and 2000 m)



Methodology

I Problem is ill-conditioned – data do not constraint enough all
elements of the source vector ⇒ we need regularization

I Solution is found via minimizing the cost function

J(x) = (y−Mx)TR−1(y−Mx)+(x−xa)TB−1(x−xa)+ε(Dx)T (Dx)

I Model error estimated using “pseudo-ensemble” of model runs
and added to measurement error

I First-guess solution = all zero; error selected using
try-and-error approach

I Negative parts of solution were suppressed via iterative process
modifying first guess error

I We assume point releases only (from a single grid cell)



Case 1: Instantaneous release at the DPRK test site
I Instantaneous (i.e. 3-h) release at the DPRK test site
I min J(x) on Apr 6, 9:00 for the release x = 2.58E11 Bq
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Case 2: Continuous release at the DPRK test site
I Simultaneous estimation of the source strength as a function

of release time and height
I Addition of non-detections suppressed releases at the

beginning of assumed interval
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Case 3: Cost function all over the domain
I Cost function evaluated for all grid cells in the domain as

candidate source location, time/shape determined by inversion
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Case 3: Cost function all over the domain

I Clipped at 10% of the maximum cost value
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Case 3: Cost function all over the domain

I Clipped at 10% of the maximum cost value and oceans masked
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Conclusion

I The problem is heavily ill-conditioned (34 samples, mostly
non-detections, 605 unknowns), regularization methods for
obtaining physically reasonable solution must be employed.

I Release shape and overall magnitude (2.58E11-3.81E11 Bq)
estimated using different variants of the method are consistent
and appear to be stable features.

I Magnitude of release is lower than previously suggested due to
different inversion strategy and settings.

Ringbom et al.: Radioxenon detections in the CTBT international monitoring
system likely related to the announced test in North Korea on Feb 12, 2013, J.
Environ. Rad., (2013) estimated 2 releases of Xe-131m, each 7.0E11 Bq, where
expected ratio 131mXe/133Xe ≈ 10−1 − 1 after 55-60 days since fission

I Source location cannot be pinpointed to a small area with this
amount of detections. However, the possible source area is still
small enough to be useful for data fusion.



Future plans

I Better treatment of model error (more types of NWP data,
different ATM models, off-diagonal terms)

I Try to include known background radioxenon sources into
inversion

I Include also 131mXe data into the inversion
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